TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Winkler, Nicolas P. A1 - Schugardt, Jan ED - Rudnitskaya, A. T1 - Remote Drone-to-Drone Gas Sensing: A Feasibility Study T2 - 2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN) Proceedings N2 - Remote gas sensors mounted on mobile robots enable the mapping of gas distributions in large or poorly accessible areas. A challenging task however, is the generation of three-dimensional distribution maps from these spatially sparse gas measurements. To obtain high-quality reconstructions, the choice of optimal measuring poses is of great importance. Remote gas sensors, that are commonly used in Robot Assisted Gas Tomography (RAGT), require reflecting surfaces within the sensor’s range, limiting the possible sensing geometries, regardless of whether the robots are ground-based or airborne. By combining ground and aerial robots into a heterogeneous swarm whose agents are equipped with reflectors and remote gas sensors, remote inter-robot gas measurements become available, taking RAGT to the next dimension – releasing those constraints. In this paper, we demonstrate the feasibility of drone-to-drone measurements under realistic conditions and highlight the resulting opportunities. T2 - 19th International Symposium on Olfaction and Electronic Nose CY - Aveiro, Portugal DA - 29.05.2022 KW - Aerial robot KW - TDLAS KW - Inter-robot measurements KW - Gas tomography KW - Plume PY - 2022 SN - 978-1-6654-5860-3 DO - https://doi.org/10.1109/isoen54820.2022.9789627 SP - 1 EP - 3 PB - IEEE CY - USA AN - OPUS4-54926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Winkler, Nicolas P. A1 - Schugardt, Jan T1 - Remote Drone-to-Drone Gas Sensing: A Feasibility Study N2 - Remote gas sensors mounted on mobile robots enable the mapping of gas distributions in large or poorly accessible areas. A challenging task however, is the generation of three-dimensional distribution maps from these spatially sparse gas measurements. To obtain high-quality reconstructions, the choice of optimal measuring poses is of great importance. Remote gas sensors, that are commonly used in Robot Assisted Gas Tomography (RAGT), require reflecting surfaces within the sensor’s range, limiting the possible sensing geometries, regardless of whether the robots are ground-based or airborne. By combining ground and aerial robots into a heterogeneous swarm whose agents are equipped with reflectors and remote gas sensors, remote inter-robot gas measurements become available, taking RAGT to the next dimension – releasing those constraints. In this paper, we demonstrate the feasibility of drone-to-drone measurements under realistic conditions and highlight the resulting opportunities. T2 - 19th International Symposium on Olfaction and Electronic Nose CY - Aveiro, Portugal DA - 29.05.2022 KW - Aerial robot KW - TDLAS KW - Inter-robot measurements KW - Gas tomography KW - Plume PY - 2022 AN - OPUS4-54927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Bennetts, V. H. A1 - Hüllmann, Dino A1 - Winkler, Nicolas P. A1 - Schugardt, Jan A1 - Monroy, J. A1 - Lilienthal, A. J. T1 - Mobile Applications with Drones/Robots - Aerial- and Ground-based Gas Tomography N2 - Remote gas sensors mounted on mobile robots enable the mapping of gas distributions in large or poorly accessible areas. A challenging task however, is the generation of three-dimensional distribution maps from these spatially sparse gas measurements. To obtain high-quality reconstructions, the choice of optimal measuring poses is of great importance. Remote gas sensors, that are commonly used in Robot Assisted Gas Tomography (RAGT), require reflecting surfaces within the sensor’s range, limiting the possible sensing geometries, regardless of whether the robots are ground-based or airborne. By combining ground and aerial robots into a heterogeneous swarm whose agents are equipped with reflectors and remote gas sensors, remote inter-robot gas measurements become available, taking RAGT to the next dimension – releasing those constraints. In this paper, we demonstrate the feasibility of drone-to-drone measurements under realistic conditions and highlight the resulting opportunities. T2 - ISOCS Short Course Winter 2023 CY - Bormio, Italy DA - 16.01.2023 KW - Aerial robot KW - Ground robot KW - Gas tomography KW - Inter-robot measurements KW - Plume KW - TDLAS PY - 2023 AN - OPUS4-56872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Kohlhoff, Harald A1 - Hüllmann, Dino A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Dzierliński, M. A1 - Lilienthal, A. J. A1 - Bartholmai, Matthias T1 - Aerial-based gas tomography – from single beams to complex gas distributions JF - European Journal of Remote Sensing N2 - In this paper, we present and validate the concept of an autonomous aerial robot to reconstruct tomographic 2D slices of gas plumes in outdoor environments. Our platform, the so-called Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS), combines a lightweight Tunable Diode Laser Absorption Spectroscopy (TDLAS) gas sensor with a 3-axis aerial stabilization gimbal for aiming at a versatile octocopter. While the TDLAS sensor provides integral gas concentration measurements, it does not measure the distance traveled by the laser diode’s beam nor the distribution of gas along the optical path. Thus, we complement the set-up with a laser rangefinder and apply principles of Computed Tomography (CT) to create a model of the spatial gas distribution from a set of integral concentration measurements. To allow for a fundamental ground truth evaluation of the applied gas tomography algorithm, we set up a unique outdoor test environment based on two 3D ultrasonic anemometers and a distributed array of 10 infrared gas transmitters. We present results showing its performance characteristics and 2D plume reconstruction capabilities under realistic conditions. The proposed system can be deployed in scenarios that cannot be addressed by currently available robots and thus constitutes a significant step forward for the field of Mobile Robot Olfaction (MRO). KW - Aerial robot olfaction KW - Mobile robot olfaction KW - Gas tomography KW - TDLAS KW - Plume PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-487843 DO - https://doi.org/10.1080/22797254.2019.1640078 SP - 1 EP - 16 PB - Taylor & Francis CY - London AN - OPUS4-48784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hüllmann, Dino A1 - Neumann, Patrick P. A1 - Monroy, J. A1 - Lilienthal, A. J. T1 - A realistic remote gas sensor model for three-dimensional olfaction simulations T2 - 2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN) N2 - Remote gas sensors like those based on the Tunable Diode Laser Absorption Spectroscopy (TDLAS) enable mobile robots to scan huge areas for gas concentrations in reasonable time and are therefore well suited for tasks such as gas emission surveillance and environmental monitoring. A further advantage of remote sensors is that the gas distribution is not disturbed by the sensing platform itself if the measurements are carried out from a sufficient distance, which is particularly interesting when a rotary-wing platform is used. Since there is no possibility to obtain ground truth measurements of gas distributions, simulations are used to develop and evaluate suitable olfaction algorithms. For this purpose several models of in-situ gas sensors have been developed, but models of remote gas sensors are missing. In this paper we present two novel 3D ray-tracer-based TDLAS sensor models. While the first model simplifies the laser beam as a line, the second model takes the conical shape of the beam into account. Using a simulated gas plume, we compare the line model with the cone model in terms of accuracy and computational cost and show that the results generated by the cone model can differ significantly from those of the line model. T2 - 2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN) CY - Fukuoka, Japan DA - 26.05.2019 KW - Remote gas sensor KW - Gas detector KW - TDLAS KW - Sensor modelling PY - 2019 SN - 978-1-5386-8327-9 SN - 978-1-5386-8328-6 DO - https://doi.org/10.1109/ISOEN.2019.8823330 SP - 1 EP - 3 PB - IEEE AN - OPUS4-48919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Kohlhoff, Harald A1 - Lilienthal, A. J. T1 - Gas Tomography Up In The Air! T2 - Proceedings of the IEEE Sensors 2018 N2 - In this paper, we present an autonomous aerial robot to reconstruct tomographic 2D slices of gas plumes in outdoor environments. Our platform, the so-called Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS) combines a lightweight Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensor with a 3-axis aerial stabilization gimbal for aiming on a versatile octocopter. The TDLAS sensor provides integral gas concentration measurements but no information regarding the distance traveled by the laser diode's beam or the distribution of the gas along the optical path. We complemented the set-up with a laser rangefinder and apply principles of Computed Tomography (CT) to create a model of the spatial gas distribution from these integral concentration measurements. To allow for a rudimentary ground truth evaluation of the applied gas tomography algorithm, we set up a unique outdoor test environment based on two 3D ultrasonic anemometers and a distributed array of 10 infrared gas transmitters. We present first results showing the 2D plume reconstruction capabilities of the system under realistic conditions. T2 - IEEE Sensors 2018 CY - New Delhi, India DA - 28.10.2018 KW - Aerial robot KW - TDLAS KW - Gas tomography KW - Plume PY - 2018 SN - 978-1-5386-4707-3 SP - 396 EP - 398 PB - IEEE AN - OPUS4-46477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Kohlhoff, Harald A1 - Lilienthal, A. J. T1 - Gas Tomography Up In The Air! N2 - In this paper, we present an autonomous aerial robot to reconstruct tomographic 2D slices of gas plumes in outdoor environments. Our platform, the so-called Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS) combines a lightweight Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensor with a 3-axis aerial stabilization gimbal for aiming on a versatile octocopter. The TDLAS sensor provides integral gas concentration measurements but no information regarding the distance traveled by the laser diode's beam or the distribution of the gas along the optical path. We complemented the set-up with a laser rangefinder and apply principles of Computed Tomography (CT) to create a model of the spatial gas distribution from these integral concentration measurements. To allow for a rudimentary ground truth evaluation of the applied gas tomography algorithm, we set up a unique outdoor test environment based on two 3D ultrasonic anemometers and a distributed array of 10 infrared gas transmitters. We present first results showing the 2D plume reconstruction capabilities of the system under realistic conditions. T2 - IEEE Sensors 2018 CY - New Delhi, India DA - 28.10.2018 KW - Aerial robot KW - TDLAS KW - Gas tomography KW - Plume PY - 2018 AN - OPUS4-46478 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Bartholmai, Matthias A1 - Tiebe, Carlo A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Kohlhoff, Harald A1 - Lilienthal, A. J. T1 - Gas Tomography Up In The Air! N2 - In this paper, we present an autonomous aerial robot to reconstruct tomographic 2D slices of gas plumes in outdoor environments. Our platform, the so-called Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS) combines a lightweight Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensor with a 3-axis aerial stabilization gimbal for aiming on a versatile octocopter. The TDLAS sensor provides integral gas concentration measurements but no information regarding the distance traveled by the laser diode's beam or the distribution of the gas along the optical path. We complemented the set-up with a laser rangefinder and apply principles of Computed Tomography (CT) to create a model of the spatial gas distribution from these integral concentration measurements. To allow for a rudimentary ground truth evaluation of the applied gas tomography algorithm, we set up a unique outdoor test environment based on two 3D ultrasonic anemometers and a distributed array of 10 infrared gas transmitters. We present first results showing the 2D plume reconstruction capabilities of the system under realistic conditions. T2 - NetMon International training course - Low-cost Environmental Monitoring CY - BAM, Berlin, Germany DA - 09.04.2019 KW - Aerial robot KW - Gas tomography KW - Plume KW - TDLAS PY - 2019 AN - OPUS4-47800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Winkler, Nicolas P. A1 - Lohrke, Heiko A1 - Lilienthal, A. J. ED - Lee, J. B. T1 - Outdoor Gas Plume Reconstructions: A Field Study with Aerial Tomography T2 - 2024 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN) Proceedings N2 - This paper outlines significant advancements in our previously developed aerial gas tomography system, now optimized to reconstruct 2D tomographic slices of gas plumes with enhanced precision in outdoor environments. The core of our system is an aerial robot equipped with a custom-built 3-axis aerial gimbal, a Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensor for CH4 measurements, a laser rangefinder, and a wide-angle camera, combined with a state-of-the-art gas tomography algorithm. In real-world experiments, we sent the aerial robot along gate-shaped flight patterns over a semi-controlled environment with a static-like gas plume, providing a welldefined ground truth for system evaluation. The reconstructed cross-sectional 2D images closely matched the known ground truth concentration, confirming the system’s high accuracy and reliability. The demonstrated system’s capabilities open doors for potential applications in environmental monitoring and industrial safety, though further testing is planned to ascertain the system’s operational boundaries fully. T2 - 20th International Symposium on Olfaction and Electronic Nose CY - Grapevine, Texas, USA DA - 12.05.2024 KW - Aerial robot KW - TDLAS KW - Gas Tomography KW - Plume PY - 2024 SN - 979-8-3503-4865-1 SP - 1 EP - 3 PB - IEEE CY - USA AN - OPUS4-60107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lohrke, Heiko A1 - Kohlhoff, Harald A1 - Neumann, Patrick P. ED - Lee, J. B. T1 - Robotic Scanning Absorption Spectroscopy for Methane Leak Detection: the Virtual Gas Camera T2 - 2024 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN) Proceedings N2 - This paper explores combining a gimbal-mounted tunable diode laser absorption spectroscopy (TDLAS) sensor and a video camera to create a virtual gas camera for methane leak detection. This provides a low-to-zero-cost extension of typical TDLAS gas tomography systems. A prototype setup mounted on a ground robot is evaluated. Results acquired using a simulated methane leak show the feasibility of the virtual gas camera, accurately detecting methane leaks by overlaying concentrations onto a visual image. While the acquisition time is significantly longer than for traditional gas cameras, potential enhancements are discussed. The study concludes that the virtual gas camera is feasible and useful, despite its longer acquisition time. It serves as a valuable software-only addition to typical TDLAS gas tomography systems, offering quickly-available on-site data augmentation for visual leak assessment at low-to-zero cost. T2 - 20th International Symposium on Olfaction and Electronic Nose CY - Grapevine, Texas, USA DA - 12.05.2024 KW - Mobile Robotic Olfaction KW - TDLAS KW - Gas Tomography KW - Gas Camera KW - Plume PY - 2024 SN - 979-8-3503-4865-1 SP - 1 EP - 3 PB - IEEE CY - USA AN - OPUS4-60109 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -