TY - CONF A1 - Paul, Andrea T1 - A process spectroscopic approach for the monitoring of microplastics  in environmental samples N2 - The potential of Raman and NIR process-spectroscopic as a rapid approach for the estimation of microplastics (MP) in soil matrix were tested. For this purpose, artificial MP/soil mixture samples consisting of standard soils or sand with defined ratios of MP (0,5 – 10 mass% polymer) from polyethylene (PE), polypropylene (PP), polystyrene (PS) and polyethylene terephthalate (PET) were prepared. MP particles with diameters < 2 mm and < 125 µm were obtained from industrial polymer pellets after cryo-milling. Spectra of these mixtures were collected by (i) a process FT-NIR spectrometer equipped with a reflection probe, (ii) by a cw-process Raman spectrometer and (iii) by a time-gated Raman spectrometer using fiber-optic probes. The evaluation of process-spectra was performed by chemometric methods. Whereas MP could be detected by Raman spectroscopy in coastal sand at 0.5 mass%, in standard soil detection of MP was limited to 10 – 5 mass% with the large fraction, but samples containing particles of the 125µm mass-fraction yielded no positive result at all. One reason for the lacking sensitivity could be fluorescence by soil organic matter and thus, in a next test time-gated Raman spectroscopy was applied. However, although being indeed more sensitive to the small particles this method failed at MP < 5 mass% indicating that fluorescence was not the major problem. Finally, FT-NIR was tested. Depending on the polymer, MP contents of 0,5 or 1 mass%, respectively, could be detected in standard soils and polymers identified. Furthermore, this approach could be used for the investigation of mixtures of up to four polymers and in real-world samples from bio-waste fermenter residues. T2 - Einladung zu einem Beratungsgespräch zum Thema Mikroplastik durch die Firma Endress+Hauser Conducta GmbH+Co.KG CY - Gerlingen, Germany DA - 11.06.2018 KW - Chemometrics KW - Microplastics KW - Raman KW - Process-spectroscopy KW - NIR PY - 2018 AN - OPUS4-45406 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Makowski, Maike A1 - Werneburg, M. A1 - Jung, Christian A1 - Haase, H. A1 - Koch, Matthias T1 - Non-invasive GC-MS Analysis of Trichodiene as Volatile Mycotoxin Biomarker in Cereals N2 - Due to the increasing consumption of cereals worldwide, monitoring of growth, storage and processing is becoming more crucial. Particularly when stored, infested grains breed fungal clusters (“hot spots”) in which mycotoxins greatly exceed allowed maximum levels. Because of their unpredictable presence, current sampling and procedures for mycotoxin analysis are complex and contain invasive and cost intensive steps. A possible approach to avoid sampling inaccuracies is the non-invasive analysis of the homogeneous gas phase above the crops, instead of analyzing random samples. However, this procedure requires microbial volatile organic compounds (MVOC´s) being released by the samples. Previous investigations revealed trichodiene to be a precursor in trichothecenes biosynthesis – one of the largest mycotoxin groups with more than 180 compounds. Due to its non-functionalized sesquiterpene structure, quantification of trichodiene using Headspace GC-MS methods is possible (e.g. [1]). Thereby, it could be used as biomarker for trichothecene contamination in foodstuff. However, further studies are necessary. The correlation between trichodiene concentration in the gas phase and trichothecenes mass fraction in the sample must be examined closely to draw conclusions about the trichothecene content in samples. Realizing this idea, would widely extend the applicability of trichodiene and enormously simplify trichothecene quantification. Hence, this first step of an ongoing study aims to develop a laboratory reference method using trichodiene as volatile biomarker to quantify trichothecenes in cereals. Static headspace and SPME-enrichment coupled to gas chromatography with mass spectrometry (GC-MS) were employed. In a second step, this reference method is intended to validate new approaches for fast on-site screening of trichodiene in cereals. T2 - 40th Mycotoxin Workshop CY - Munich, Germany DA - 11.06.2018 KW - Trichodiene KW - Gaschromatography-Mass Spectrometry KW - Mycotoxin Biomarker PY - 2018 AN - OPUS4-45314 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike A1 - Klöckner, P. A1 - Wagner, S. A1 - Ruhl, A.S. A1 - Eisentraut, P. A1 - Albrecht, M. A1 - Reemtsma, T. T1 - Determination of tire wear particles based on elemental composition N2 - In this presentation the use of ICP-MS for the analysis of tire wear particles in environmental samples is presented. T2 - Wassertagung der GdCh CY - Papenburg, Germany DA - 07.05.2018 KW - ICP-MS KW - Mikroplastik KW - Analytik KW - Reifenabrieb PY - 2018 AN - OPUS4-45201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike A1 - Klöckner, P. A1 - Wagner, S. A1 - Ruhl, A.S. A1 - Eisentraut, Paul A1 - Albrecht, M. A1 - Reemtsma, T. T1 - Identification of tire wear particles based on elemental composition N2 - The identification of tire wear particles by use of ICP-MS is presented. T2 - SETAC CY - Rome, Italy DA - 13.05.2018 KW - Microplastics KW - Tire wear particles KW - ICP-MS PY - 2018 AN - OPUS4-45205 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - C., Ruibal A1 - L., Selbmann A1 - Serap, Avci A1 - Martin-Sanchez, Pedro Maria A1 - Gorbushina, Anna ED - Gorbushina, Anna T1 - Roof-Inhabiting Cousins of Rock-Inhabiting Fungi: Novel Melanized Microcolonial Fungal Species from Photocatalytically Reactive Subaerial Surfaces N2 - Subaerial biofilms (SAB) are an important factor in weathering, biofouling, and biodeterioration of bare rocks, building materials, and solar panel surfaces. The realm of SAB is continually widened by modern materials, and the settlers on these exposed solid surfaces always include melanized, stress-tolerant microcolonial ascomycetes. After their first discovery on desert rock surfaces, these melanized chaetothyrialean and dothidealean ascomycetes have been found on Mediterranean monuments after biocidal treatments, Antarctic rocks and solar panels. New man-made modifications of surfaces (e.g., treatment with biocides or photocatalytically active layers) accommodate the exceptional stress-tolerance of microcolonial fungi and thus further select for this well-protected ecological group. Melanized fungal strains were isolated from a microbial community that developed on highly photocatalytic roof tiles after a long-term environmental exposure in a maritime-influenced region in northwestern Germany. Four of the isolated strains are described here as a novel species, Constantinomyces oldenburgensis, based on multilocus ITS, LSU, RPB2 gene phylogeny. Their closest relative is a still-unnamed rock-inhabiting strain TRN431, here described as C. patonensis. Both species cluster in Capnodiales, among typical melanized microcolonial rock fungi from different stress habitats, including Antarctica. These novel strains flourish in hostile conditions of highly oxidizing material surfaces, and shall be used in reference procedures in material testing. KW - Microcolonial fungi KW - Multilocus phylogeny KW - Photocatalytic surfaces KW - Subaerial biofilms KW - Stress tolerance KW - Constantinomyces PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-455182 DO - https://doi.org/10.3390/life8030030 VL - 8 IS - 3 SP - 30 EP - 44 PB - MDPI CY - Basel, Schweiz AN - OPUS4-45518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike A1 - Bannick, C. G. T1 - Sampling, sample preparation and detection of microplastics, current activities in the ISO/TC 61/SC14/WG 4 N2 - Presentation about the actual status of microplastic research in BAM and UBA, activities in Germany and ISO/TC61/SC14. T2 - Microplastic Methodes Workshop CY - London, UK DA - 23.05.2018 KW - Microplastics KW - TED-GC-MS KW - Analysis KW - Standardisation PY - 2018 AN - OPUS4-45033 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittmann, Daniel A1 - Braun, Ulrike A1 - Jekel, M. A1 - Ruhl, A. S. T1 - Quantification and characterisation of activated carbon in activated sludge by thermogravimetric and evolved gas analyses N2 - Advanced wastewater treatment with powdered activated carbon (PAC) leads to a spread of PAC into different purification stages of wastewater treatment plants (WWTP) due to recirculation and filter back-wash. Currently, no methods for quantification of PAC in activated sludge are available. In this study, PAC containing activated sludge from four WWTP were examined by two-step thermogravimetric analysis (TGA) with heating up to 600°C in N2 and subsequently in synthetic air. Direct quantification of PAC according to temperature specific weight losses was possible for one WWTP. Quantification by combining specific mass losses was found to be an alternative direct method, with a detection limit of 1.2% PAC in dry sample mass. Additionally, evolved gas analysis (EGA) by infrared-spectroscopy (FTIR) during TGA revealed interaction mechanisms between PAC and activated sludge. Aliphatic compounds from activated sludge were identified as major substances influenced by PAC. In derivative thermogravimetry (DTG), a typical double peak at approximately 300°C was found to be related to carbonylic species with increased evolution of acetic acid in aged activated sludge. TGA and EGA are promising tools to understand, control and optimise the application of PAC in advanced wastewater treatment. KW - Advanced wastewater treatment KW - Powdered activated carbon KW - Sewage treatment plant KW - Thermoanalysis KW - Thermogravimetry KW - Fourier transform infrared spectroscopy PY - 2018 UR - http://www.sciencedirect.com/science/article/pii/S2213343718301313 DO - https://doi.org/10.1016/j.jece.2018.03.010 SN - 2213-3437 VL - 6 IS - 2 SP - 2222 EP - 2231 PB - Elsevier CY - Amsterdam AN - OPUS4-44978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oberpaul, M. A1 - Spohn, M. A1 - Fracowiak, J. A1 - Plarre, Rüdiger A1 - McMahon, Dino Peter A1 - Hammann, P. A1 - Vilcinskas, A. A1 - Gläser, J. T1 - Exploiting termite nest microbiomes for antibiotic discovery by using an ultra-high throughput Microfluidics/FACS driven pipeline combined with a microtiter plate based cultivation strategy N2 - Infections with multi-resistant Gram negative pathogens are a major threat to our health system. In order to serve the needs in antibiotics development we selected untapped bioresources and implemented high throughput approaches suitable for the discovery of strains producing antibiotics with anti-Gram negative activity. Our approaches rely on the hypothesis that Termite associated bacteria are likely to produce potent antibiotics to defend their hosts against entomopathogenic microorganisms. Termite nests and guts harbor suitable, highly diverse microbiomes in which bacterial taxa are present known to potentially produce natural compounds. In a first step the diversity of Coptotermes species nest microbiomes was assessed carefully by using 16S rDNA amplicon sequencing on the Illumina MiSeq platform and nest material was selected to retrieve viable cells by using Nycodenz density gradient centrifugation. In order to analyze the diversity of the culturable termite nest microbiome, bacterial cells were either distributed in 384-well plates (approach 1) or encapsulated in small spheric agarose beads by an high throughput microfluidics technique (approach 2). Cultures obtained from approach 1 were scaled-up in 96-well Duetz-systems for characterization of diversity and for rapid supernatant screening using the bioluminescence-labeled E. coli pFU166. The generated droplets of approach 2 simultaneously received a small population of GFP-tagged Gram negative screening cells and were sorted for low fluorescence using FACS. After elimination of redundancy we performed a fast scale-up of active strains. Implementation of this pipeline allows us to prioritize antibiotics producing strains in a ultra-high throughput fashion and by cultivation of broad diversity in our approches. T2 - Annual Conference of the Society for General and Applied Microbiology (VAAM) CY - Wolfsburg, Germany DA - 15.04.18 KW - Biotechnology KW - Termites KW - Anti-microbial effects PY - 2018 AN - OPUS4-44987 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mueller, Axel A1 - Duemichen, E. A1 - Eisentraut, Paul A1 - Braun, Ulrike A1 - Scholz, K. A1 - Bannick, C.-G. T1 - Analysing microplastics in samples of terrestrial systems N2 - The presence, fate and effects of microplastics (MP) in terrestrial systems are largely unknown. The few existing studies investigated either agricultural or industrial sites. Several techniques were used for analysis, primarly spectroscopic methods such as FTIR or Raman. Sample pretreatments like density separations are common to reduce matrix. A lack of harmonised and standardised sampling instructions for microplastic investigations in the terrestrial area was identified as particular critical, because different studies are barely comparable. The aim of the project is to develop a proposal for a harmonized procedure for sampling, sample preparation and the detection of microplastics in terrestrial matrices for total content determination. By detecting specific degradation products the thermal extraction desorption gas chromatography mass spectrometry (TED-GC-MS) allows a direct determination of mass content of MP in environmental samples. T2 - SETAC 2018 CY - Rome, Italy DA - 13.05.2018 KW - Microplastics KW - Soil sample KW - TED-GC-MS KW - Analysis PY - 2018 AN - OPUS4-44988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bandow, Nicole A1 - Jürgens, Frederike A1 - Schoknecht, Ute T1 - Leachiing tests - a useful tool for the environmental impact assessment of construction products? N2 - Construction products and waste materials used for construction can be in contact with the environment and may release potential harmful compounds. Information on the total content of these substances in the product is not sufficient to assess its envrionmental impact since it does not consider realistic exposure conditions.The impact of these compounds is often assessed by using the total content in the product. This estimation lacks realistic exposure conditions. Concerning the pathway to soil and groundwater by contact with rain or seepage water leaching tests, which were developed and standardized by the European Committee for Standardization, are available. While for secondary construction products and waste this investigation of the leaching behaviour is standard procedure and is already part of regulation in Germany (draft ordinance on reuse of mineral waste) and within Europe (landfill directive) the release from primary construction products got in the focus more recently. Several monitoring studies found unexpected high concentrations of substances used as herbicides and fungicides in surface water and stormwater originating from urban areas. As some of these compounds are even banned for the use in agricultural applications in Europe alternative sources as roof materials and façade coatings exposed to rain were suggested. Further field and laboratory tests confirmed construction products as sources of these substances in water. The aim of this presentation is to show exemplary results of existing leaching methods and underline the strength and weaknesses of the test system with selected examples from our work. We especially draw the attention to the research which is still needed to close the gap between the results of leaching experiments and the subsequent risk assessment of the products. T2 - SETAC Europe CY - Rome, Italy DA - 13.05.2018 KW - Leaching KW - DSLT KW - Construction products PY - 2018 AN - OPUS4-44949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bandow, Nicole T1 - Consideration of organic contaminants and ecotoxicologal impact of recycling materials - Handling of substances without treshold values N2 - The presentation gives an overview about the use of ecotoxicity testing in assessment of waste. Especially in cases with unknown composition this kind of test are useful. Recently, the assessment of the hazard property HP 14 "ecotoxicity" for the labelling of waste was published. The labelling procedure is explained in detail. T2 - Travelling Conference CY - Perth, Australia DA - 06.02.2018 KW - Ecotoxicity KW - HP14 KW - Recycling materials PY - 2018 AN - OPUS4-44456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bandow, Nicole T1 - Consideration of organic contaminants and ecotoxicologal impact of recycling materials - Handling of substances without treshold values N2 - The presentation gives an overview about the use of ecotoxicity testing in assessment of waste. Especially in cases with unknown composition this kind of test are useful. Recently, the assessment of the hazard property HP 14 "ecotoxicity" for the labelling of waste was published. The labelling procedure is explained in detail. T2 - Travelling Conference CY - Seoul, Korea DA - 29.01.2018 KW - Ecotoxicity KW - Recycling materials KW - HP14 PY - 2018 AN - OPUS4-44454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bandow, Nicole T1 - Consideration of organic contaminants and ecotoxicologal impact of recycling materials - Handling of substances without treshold values N2 - The presentation gives an overview about the use of ecotoxicity testing in assessment of waste. Especially in cases with unknown composition this kind of test are useful. Recently, the assessment of the hazard property HP 14 "ecotoxicity" for the labelling of waste was published. The labelling procedure is explained in detail. T2 - Travelling Conference CY - Ho-Chi-Ming City, Vietnam DA - 01.02.2018 KW - Ecotoxicity KW - HP14 KW - Recycling materials PY - 2018 AN - OPUS4-44455 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hofmann, Michael A1 - Moufid, M. A1 - El Bari, N. A1 - Tiebe, Carlo A1 - Bouchikhi, B. T1 - Multigas Sensor System for Outdoor Odour Nuisance Monitoring N2 - The presentation gives a brief overview of the main goals, the used methods and the first results of the PMARS OdourSense project. In cooperation with the Moulay Ismaïl University in Meknès (Morocco), a multi-gas sensor system for odour nuisance monitoring in outdoor air and a method for testing/calibration of such devices are being developed in this project. T2 - German-Moroccan Workshop on PMARS III CY - Bonn, Germany DA - 20.06.2018 KW - Air-pollution monitoring KW - Multi-gas sensor system KW - Odour KW - Electronic nose KW - Outdoor odour control PY - 2018 AN - OPUS4-45266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lauer, Franziska A1 - Diehn, Sabrina A1 - Seifert, Stephan A1 - Kneipp, Janina A1 - Sauerland, V. A1 - Barahona, C. A1 - Weidner, Steffen T1 - Multivariate analysis of MALDI imaging mass spectrometry data of mixtures of single pollen grains N2 - Here, we present an advanced approach to identify pollen grains in mixtures based on: - a simplified sample preparation procedure - MALDI imaging mass spectrometry - chemometric tools Our goals are to: - explore the biomolecular variations in pollen - determine species-specific peak patterns - discriminate and identify single pollen grains in mixtures using MSI T2 - 66th Conference on Mass Spectrometry and Allied Topics CY - San Diego, CA, USA DA - 03.06.2018 KW - Pollen PY - 2018 AN - OPUS4-45196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Isleyen, A. A1 - Vogl, Jochen A1 - Nikolic, D. A1 - Jotanovic, A. A1 - Näykki, T. A1 - Perkola, N. A1 - Horvat, M. A1 - Zon, A. A1 - Bulska, E. A1 - Ochsenkühn-Petropoulou, M. A1 - Can, S. Z. A1 - Jacimovic, R. A1 - Gazevic, L. A1 - Cankur, O. A1 - Ari, B. A1 - Tunc, M. A1 - Binici, B. A1 - Gokcen, T. A1 - Cakilbahce, Z. A1 - Lymperopoulou, V. T1 - Three candidate certified reference materials for environmental analysis N2 - This project aims to develop capacity to produce certified reference materials (CRMs) for environmental analysis by transferring know-how between the partners and combining their skills to focus on environmental CRM production. The production process includes good manufacturing practices for processing materials, method development, the validation and application of homogeneity, stability and characterisation tests, the calculation of individual uncertainties (between-unit inhomogeneity, long term stability, characterisation) and combination of uncertainties to determine overall uncertainty of the matrix reference materials. An inter laboratory comparison registered as a EURAMET project is set as the ultimate project outcome, confirming the partners’ capabilities in applying newly acquired skills. T2 - 10th International Conference on Instrumental Methods of Analysis CY - Heraklion, Greece DA - 17.09.2017 KW - Certified reference materials KW - Toxic metals KW - PFOS KW - PFOA PY - 2017 AN - OPUS4-45253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Näykki, Teemu A1 - Perkola, N. A1 - Isleyen, A. A1 - Vogl, Jochen A1 - Skundrić, N. A1 - Jotanović, A. A1 - Horvat, M. A1 - Zoń, A. A1 - Bulska, E. A1 - Ochsenkuhn-Petropoulou, M. A1 - Can, S. Z. A1 - Bilsel, M. A1 - Hafner, K. A1 - Suljagić, Š. A1 - Kovačević, L. A1 - Jaćimović, R. A1 - Gažević, L. A1 - Arı, B. A1 - Tunc, M. A1 - Binici, B. A1 - Gökcen, T. A1 - Fotis, T. T1 - A joint research project for the sustainable production of certified matrix reference materials for environmental analysis N2 - This project aims to develop capacity to produce certified reference materials (CRMs) for environmental analysis by transferring know-how between the partners and combining their skills to focus on environmental CRM production. The production process includes good manufacturing practices for processing materials, method development, the validation and application of homogeneity, stability and characterisation tests, the calculation of individual uncertainties (between-unit inhomogeneity, long term stability, characterisation) and combination of uncertainties to determine overall uncertainty of the matrix reference materials. An inter laboratory comparison registered as a EURAMET project is set as the ultimate project outcome, confirming the partners’ capabilities in applying newly acquired skills. T2 - EcoBalt 2016 CY - Tartu, Estonia DA - 09.10.2016 KW - Certified reference material KW - Toxic metals KW - PFOS KW - PFOA PY - 2016 AN - OPUS4-45254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Isleyen, A. A1 - Vogl, Jochen A1 - Nikolic, D. A1 - Jotanovic, A. A1 - Näykki, T. A1 - Perkola, N. A1 - Horvat, M. A1 - Zoń, A. A1 - Bulska, E. A1 - Ochsenkuhn-Petropoulou, M. A1 - Can, S. Z. A1 - Bilsel, M. A1 - Hafner, K. A1 - Jacimovic, R. A1 - Gažević, L. T1 - Joint research project for the production of certified matrix reference materials for environmental analysis N2 - Reliable analysis of chemical indicators in water, sediment and soil samples for the purpose of environmental pollution assessment poses one of the greatest analytical challenges, having in mind the complexity of sample matrix and low concentrations of pollutants. Organics (pesticides, PAHs, PFOS, etc.) and heavy metals (Hg, Cd, Ni, Pb and As) represent target parameters. Laboratories performing sampling and tests in this field regulated by respective EU directives, need strong support in order to establish a quality system. It is necessary to provide appropriate calibrators i.e. matrix CRMs relates to the unique sample matrices representing typical samples in the geomorphological and anthropological sense. In addition to that, bearing in mind the complexity and instability of environmental samples, it is very difficult to obtain appropriate referents materials with no local providers. Our project is aiming to develop capacity to produce CRMs for environmental analysis by transferring the theoretical and practical know-how between the partners and combining their skills to focus on environmental CRM production in accordance with ISO Guide 34. Our project will have an impact on environmental monitoring in the partnering countries and on the scientific community, who will use the newly developed reference materials. Furthermore, partners will develop strategies for producing new CRMs either on their own or in cooperation. This will lead to regional CRM producers serving scientific and official laboratories. T2 - 2nd International Congress of Chemists and Chemical Engineers of B&H CY - Sarajevo, Bosnia and Herzegovina DA - 21.10.2016 KW - CRM KW - Environmental analysis KW - CRM producer KW - Quality system PY - 2016 AN - OPUS4-45257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Tiebe, Carlo A1 - Bartholmai, Matthias A1 - Hüllmann, Dino A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Kohlhoff, Harald A1 - Lilienthal, A.J. T1 - Airborne Remote Gas Sensing and Mapping N2 - Leaking methane (CH4) from infrastructures, such as pipelines and landfills, is critical for the environment but can also pose a safety risk. To enable a fast detection and localization of these kind of leaks, we developed a novel robotic platform for aerial remote gas sensing. Spectroscopic measurement methods for remote sensing of selected gases lend themselves for use on mini-copters, which offer a number of advantages for inspection and surveillance over traditional methods. No direct contact with the target gas is needed and thus the influence of the aerial platform on the measured gas plume can be kept to a minimum. This allows to overcome one of the major issues with gas-sensitive mini-copters. On the other hand, remote gas sensors, most prominently Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensors have been too bulky given the payload and energy restrictions of mini-copters. Here, we present the Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS), which combines a novel lightweight TDLAS sensor with a 3-axis aerial stabilization gimbal for aiming on a versatile hexacopter. The proposed system can be deployed in scenarios that cannot be addressed by currently available robots and thus constitutes a significant step forward for the field of Mobile Robot Olfaction (MRO). It enables tomographic reconstruction of gas plumes and a localization of gas sources. We also present first results showing its performance under realistic conditions. T2 - Networked Environmental Monitoring – from sensor principles to novel services CY - BAM, Berlin, Germany DA - 06.02.2018 KW - Localization of gas sources KW - Mobile Robot Olfaction KW - Tomographic reconstruction of gas plumes KW - Tunable Diode Laser Absorption Spectroscopy (TDLAS) KW - UAV-REGAS PY - 2018 AN - OPUS4-44085 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Kohlhoff, Harald A1 - Bartholmai, Matthias A1 - Bennetts, V.H. A1 - Lilienthal, A.J. T1 - Mobile robot olfaction with flying platforms N2 - This presentation gives an introduction to the gas-sensitive aerial robots developed at BAM, including various application examples in the field of mobile robot olfaction: gas source localization and gas distribution mapping T2 - Networked Environmental Monitoring – from sensor principles to novel services CY - BAM, Berlin, Germany DA - 06.02.2018 KW - Localization of gas sources KW - Mobile Robot Olfaction KW - Tomographic reconstruction of gas plumes KW - Tunable Diode Laser Absorption Spectroscopy (TDLAS) KW - UAV-REGAS PY - 2018 AN - OPUS4-44086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Schütze, A. T1 - Sensor network deployment N2 - Content • Fixed monitoring stations • Mobile monitoring stations (on trams, buses, cars) • Personal mobile monitoring systems • Environmental monitoring for agriculture and beyond • Sensors on flying platforms T2 - Networked Environmental Monitoring – from sensor principles to novel services CY - BAM, Berlin, Germany DA - 06.02.2018 KW - Environmental monitoring KW - Gas sensors PY - 2018 AN - OPUS4-44073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartholmai, Matthias A1 - Neumann, Patrick P. A1 - Tiebe, Carlo A1 - Johann, Sergej T1 - Adaptable multi-sensor device for gas detection N2 - Innovation is the catalyst for the technology of the future. It is important to develop new and better technologies that can continuously monitor the environmental impact, e.g., for air Quality control or emission detection. In the recently at BAM developed Universal Pump Sensor Control (UPSC3) module, different components and sensors are fused. The combination of the individual components makes the UPSC3 module an excellent monitoring and reference system for the development and characterization of gas specific sensors. Measurements over long periods are possible, for mixed gas loads or for certain gas measurements. The System is part of a mobile sensor network of several sensor units, which can also be used as standalone systems. T2 - Networked Environmental Monitoring – from sensor principles to novel services CY - BAM, Berlin, Germany DA - 06.02.2018 KW - Environmental monitoring PY - 2018 AN - OPUS4-44077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rübner, Katrin A1 - Hempel, S. A1 - Lindemann, Mathias A1 - Peplinski, Burkhard A1 - Vogler, Nico A1 - Zimathies, Annett T1 - Comparative study of lightweight aggregates N2 - Lightweight aggregates (LWA) are mixtures of porous grains of mineral origin characterised by particle bulk densities less than 2000 kg/m³ or loose bulk densities less than 1200 g/m³. They are used in concrete, mortar and grout in buildings, roads and civil engineering works. LWA are commonly produced by thermal treatment of natural raw materials such as clay, shale and other clayey or igneous rocks at temperatures between 1000 °C and 1300 °C. Expanded clay, expanded shale, vermiculite and expanded perlite are well-known aggregates used in the construction industry today. But porous LWA can also be manufactured from mineral residues, such as waste glass or masonry rubble, by thermal expending process. The source materials must satisfy two conditions. First, their chemical composition must be in balance between fluxing agents, silica and alumina to reach pyroplastic conditions at an economically viable temperature to develop sintering and melting phases of proper viscosity. Second, the material should contain some components, which ensure gas release during the partial melting, to form expanded porous particles. Lightweight aggregates usually show a heterogeneous and macroporous pore structure. Their solid skeleton is continually opened by large bulky pores whereas the skeletal walls contain many small pores. Additionally, the grains consist of partly melted areas. The specific microstructural and morphological characteristics of different LWA are strongly influenced by the great variety of source materials and the particular manufacturing conditions. Recycling granules (RC granules), which are lightweight aggregates made from masonry rubble containing about 50 % brick material, are already described in terms of manufacturing process, engineering properties and microstructure in. The objective of this study is to compare the chemical, physical, mineralogical and microstructural characteristics of RC granules with those of commercially produced expanded clay aggregates. Results of the ICP optical emission spectrometry, X-ray diffraction, thermal analysis, fusibility tests, particle shape analysis, porosity measurements, mercury intrusion porosimetry und environmental scanning electron microscopy are presented. The microstructural characteristics are correlated with engineering properties of the lightweight aggregates, such as water absorption and particle strength. The study was part of two research projects that were supported by the Federal Ministry of Education and Research in the framework of the funding initiative “r2-Innovative Technologies for Resource Efficiency - Resource-Intensive Production Processes” and the Bundesministerium für Wirtschaft und Energie in the framework of the Central Innovation Programme for SMEs. T2 - 11th International Symposium on the Charcterization of Porous Solids (COPS-XI) CY - Avignon, France DA - 14.05.2017 KW - Lightweight aggregates (LWA) KW - Composition and pore structure KW - Recycling granules KW - Expanded clay PY - 2017 AN - OPUS4-44120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lauer, Franziska A1 - Diehn, Sabrina A1 - Weidner, Steffen A1 - Kneipp, Janina T1 - A graphical user interface for a fast multivariate classification of MALDI-TOF MS data of pollen grains N2 - The common characterization and identification of pollen is a time-consuming task that mainly relies on microscopic determination of the genus-specific pollen morphology. A variety of spectroscopic and spectrometric approaches have been proposed to develop a fast and reliable pollen identification using specific molecular information. Amongst them, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) shows a high potential for the successful investigation of such complex biological samples. Based on optimized MALDI sample preparation using conductive carbon tape, the application of multivariate statistics (e.g. principal components analysis, PCA) yields an enormous improvement concerning taxonomic classification of pollen species compared to common microscopic techniques. Since multivariate evaluation of the recorded mass spectra is of vital importance for classification, it’s helpful to implement the applied sequence of standard Matlab functions into a graphical user interface (GUI). In this presentation, a stand-alone application (GUI) is shown, which provides multiple functions to perform fast multivariate analysis on multiple datasets. The use of a GUI enables a first overview on the measured dataset, conducts spectral pretreatment and can give classification information based on HCA and PCA evaluation. Moreover, it can be used to improve fast spectral classification and supports the development of a simple routine method to identify pollen based on mass spectrometry. T2 - 12. Interdisziplinäres Doktorandenseminar, GDCh AK Prozessanalytik CY - BAM, AH, Berlin, Germany DA - 25.03.2018 KW - MALDI KW - GUI KW - Pollen PY - 2018 AN - OPUS4-44661 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Taube, Mareike Carolin A1 - Adam, Christian A1 - Adamczyk, Burkart A1 - Schulenburg, F. A1 - Bartmann, U. A1 - Beckmann, T. A1 - Michalik, K. A1 - Reuter, M. A1 - Stelter, M. T1 - Optimisation of a Pyrometallurgical Niobium and Tantalum Recyling Process with on-line-LIBS N2 - Tantalum and niobium are essential for the development of electronics towards a more and more compact design, but without reducing their performance today. Especially in smart phones and tablets, tantalum and niobium capacitors with high charge densities have already become almost indispensable. However, tantalum as a critical raw material is still a problem for the sustainable production of electronics. Due to this fact, the existence of efficient recycling processes especially in Europe is becoming even more important nowadays. The Bundesanstalt für Materialforschung und -prüfung (BAM) is currently working on the optimisation of an existing pyrometallurgical tantalum recycling process. Optimisation of this industrial process is carried out in a small-scale electric arc furnace (480 kVA, capacity approx. 150 kg/h) at BAM using a new and innovative equipment for on-line analysis of high temperature processes. The aim of this project is to identify the best timing for an optimum slag tapping, when the slag is lower than minimum targeted tantalum concentration. Hence, LIBS (Laser induced breakdown spectroscopy) is used to identify the chemical composition of the slag layer and during slag tapping. The on-line-LIBS prototype of BAM enables an in-situ measurement of the element distribution in the melt after calibration on the slag system. First results of this joint research project will be presented including on-line-LIBS-measurements and thermodynamic and kinetic aspects of the process. T2 - European Mineral Processing & Recycling Congress (EMPRC 2018) CY - Essen, Germany DA - 25.06.2018 KW - Laser-induced breakdown spectroscopy KW - Process control KW - Tantalum KW - In-situ analysis KW - Pyrometallurgy PY - 2018 AN - OPUS4-45614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kotthoff, Lisa A1 - Schwerdtle, T. A1 - Koch, Matthias T1 - Investigation of ionophore antibiotics and their transformation products by using electrochemistry coupled to LC-MS N2 - Ionophore antibiotics are used to cure and prevent coccidiosis by chicken especially in broiler farming. The residues are found not only in food products (chicken and eggs) but also in the environment (manure, soil or water). In this work the ionophores monensin (MON), salinomycin (SAL), maduramicin (MAD) and lasalocid (LAS) are investigated aiming to study their transformation products (TPs) through biotransformation processes. Biotransformation can be divided into two phases, phase I: oxidation, reduction or hydrolysis and Phase II: conjugation reactions. It is necessary to further examine the biotransformation pathways to determine TPs to be able to detect residues more specifically in different matrices. The technique of electrochemistry (EC) offers the opportunity to simulate biotransformation processes and to generate TPs for further analysis. The combination of EC with liquid chromatography and mass spectrometry (EC-LC-MS) provide a fast and simple tool to separate and determine the EC-generated TPs. The electrochemical flow through cell is coupled to the (LC)-MS system, allowing the reaction mixture to be separated by a RP-18 column and then analyzed in the MS. The oxidation products are generated at different potentials between 0.0 – 2.5 V vs. Pd/H2 using glassy carbon or boron doped diamond as working electrode materials . The results show a broad spectrum of different TPs depending on used solvents and working electrode materials. Among the generated TPs already known as well as unknown TPs of the drugs can be found. Further investigations on structure elucidation of unkown TPs are planned. T2 - World Conference on Analytical and Bioanalytical Chemistry CY - Barcelona, Spain DA - 23.07.2018 KW - Transformation Product KW - Electrochemistry KW - Ionophore Antibiotics PY - 2018 AN - OPUS4-45600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mansurova, Maria A1 - Bell, Jérémy A1 - Gotor, Raul A1 - Rurack, Knut T1 - Fluorescence-based optical system for the detection of total petroleum hydrocarbons in water and soil with smartphone read-out compatibility - Spectrocube, a sensor for rapid oil test in water and soil N2 - Contamination of natural bodies of water with oil and lubricants (or generally, hydrocarbon derivatives such as petrol, fuel and others) is a commonly found phenomenon around the world due to the extensive production, transfer and use of fossil fuels. The timely identification of these contaminants is of utmost importance, since they directly affect water quality and represent a risk for wildlife and human health even in trace amounts. In this work, we develop a simple system for the on-field detection of total petroleum hydrocarbons (TPH) in water and soil, the "Spectrocube". The test is based on the measurement of the fluorescence signal emitted by the molecular rotor 4-DNS-OH dye. This dye is embedded in a hydrophobic polymeric matrix (PVDF), avoiding interactions of water with the dye and providing a robust support for use in test-strip fashion. The test-strip’s fluorescence intensity increases linearly at low concentrations of TPH, reaching a saturation value at higher concentrations. For excitation and evaluation of the test-strip fluorescence, a simple miniature optical system was designed. The system works semi-quantitatively as solvent-free TPH detection kit, as well as quantitatively when using a simple cyclopentane extraction step. To simplify the fluorescence read-out, the device is coupled to a tablet computer via Bluetooth, running a self-programmed software ("app"). T2 - Oil Spill India 2018 CY - New Delhi, India DA - 05.07.2018 KW - Oil analysis KW - Water analysis KW - Fluorescence KW - Spectrocube KW - Rapid test KW - Field test KW - Spectroscopy KW - Sensor PY - 2018 AN - OPUS4-45606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Keller, Julia A1 - Borzekowski, Antje A1 - Haase, H. A1 - Rueß, L. A1 - Menzel, R. A1 - Koch, Matthias T1 - Using the model organism Caenorhabditis elegans for the toxicity testing of citrinin, zearalenone and zearalenone-14-sulfate N2 - To keep up with emerging mycotoxins and their transformation products fast and reliable toxicity tests are needed. Toxicity testing of mycotoxins is carried out usually by performing in vitro assays or is evaluated by using laboratory animals like mice, rats or chicken in in vivo studies. Settled between classical in vitro approaches and in vivo studies with higher animals are tests with the nematode Caenorhabditis elegans. Since Sydney Brenner described 1974 the cultivation and handling of C. elegans, this worm is widely used as model organism in developmental biology and neurology. Due to many benefits like easy and cheap cultivation, a completely sequenced genome and short generation time, it also plays an important role in toxicological research. Finally, the high number of conserved genes between human and C. elegans make the worm an ideal candidate for toxicological investigations. In this study we used C. elegans to assess the toxic effects of the relevant food mycotoxin citrinin (CIT), the mycoestrogen zearalenone (ZEN) and the modified mycotoxin ZEN-14-sulfate (ZEN-14-S) on different lifetable parameters including reproduction, thermal and oxidative stress tolerance and lifespan. All tested mycotoxins significantly decreased the amount of offspring. In case of ZEN and CIT also significant negative effects on stress tolerance and lifespan were observed compared to the control group. Moreover, metabolization of mycotoxins in the worms was investigated by using LC MS/MS. Extraction of the worms treated 5 days with mycotoxin-containing and UVC-killed bacteria showed metabolization of ZEN to α-ZEL and β-ZEL (ZEL = zearalenol, ratio about 3:2). ZEN 14-S was reduced to ZEL 14-S and CIT was metabolized to mono hydroxylated CIT. T2 - 40th Mycotoxin Workshop CY - Munich, Germany DA - 11.06.2018 KW - Mycotoxins KW - Caenorhabditis elegans KW - Toxicity testing PY - 2018 AN - OPUS4-45170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen A1 - Kleinbub, Sherin T1 - Microbial corrosion coupled to methanogenesis by strains from different environments N2 - Microbiologically influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms, either chemically (formation of hydrogen sulfide) or electrically (direct electron uptake). Methanogenetic Archaea are also known to be involved in iron corrosion, forming a multi-species biofilm on corroding metallic structures. However, mechanistic details and kinetics of the overall process in methanogen-induced MIC are poorly understood. T2 - Beirat Material CY - Berlin, Germany DA - 26.04.2018 KW - Corrosion KW - Methanogens KW - Archaea KW - Implants KW - Biofilm PY - 2018 AN - OPUS4-45112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wöhlecke, Andreas T1 - Agency perspectives on geomembrane durability, service life and end of life N2 - Die Präsentation erläutert die Hintergründe der nationalen Anforderungen für die Verwendung von Kunststoffdichtungbahnen in Deponieabdichtungen. Die Beständigkeit wird diskutiert. Anforderungen an das Qualitatsmanagement während der Produktion der Produkte und der Bauphase werden aufgezeigt und die Auswirkungen auf die langzeitige Funktionserfüllung werden beschrieben. T2 - IGS TC-B GeoBarrier Workshop CY - Munich, Germany DA - 06.06.2018 KW - Beständigkeit KW - Kunststoffdichtungsbahnen KW - Deponiebau PY - 2018 AN - OPUS4-45123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald A1 - Schmidt, Alexandra A1 - Bachmann, V. A1 - Kämpf, K. A1 - Kuhlbusch, T. A1 - Schwirn, K. A1 - Völker, D. T1 - OECD Test Guideline on particle size and size distribution of manufactured nanomaterials N2 - The properties of nanomaterials are influenced not only by their chemical composition but also by physical properties (such as size, geometry and crystal structure). For the reliable determination and assessment of behaviour and effects of nanomaterials as well as for the determination of the exposure of humans and environment a comprehensive physical-chemical characterization of nanomaterials is essential. This is an important prerequisite to identify them as nanomaterials and to interpret and compare test results and - in future – to forecast interaction and effects of nanomaterials. In 2006, the OECD launched a sponsorship program for the testing of nanomaterials in which 11 nanomaterials were thoroughly investigated using a variety of methods. The aim of the project was, among other things, to find out where problems occur and where there are gaps in the measurement and test procedures and where are changes required. An important outcome of the sponsorship program was the finding that the OECD Test Guidelines should in several cases be extended to the specific needs in testing of nanomaterials. The existing standardized test methods of the OECD for physical-chemical characterization have not been developed for nanomaterials in particular. A high demand for an extension of the test guidelines was identified. Germany complied with the OECD's request in 2017 and has agreed to extend the “Test Guideline on Particle Size Distribution / Fiber Length and Diameter Distributions Test Guideline” for Manufactured Nanomaterials (MN). UBA commissioned BAM and BAuA with the preparation of the Test Guideline. The aim of the project is the development of a harmonized test protocol for a valid and reproducible determination of particle size and size distribution which is one of the most relevant physical-chemical properties for MNs. Different measuring methods provide different results for the size distribution of the particles. This is caused by the different measuring principles of the methods. Each method measures a specific parameter that ultimately determines particle size. First, the measured quantity differs for each method (Scattered light intensity, 2D image / projection, electric mobility, etc.). Second, the calculated diameters of the MN may differ (Feret Diameter, Area Projection, Mobility Diameter, Aerodynamic Diameter, Hydrodynamic Diameter). Third, a measuring method provides a size distribution which is measured either mass-based, surface-based or number-based. A conversion between the results requires additional parameters and thus possibly increases the measurement error. In addition to the technical differences, the individual parameters are strongly influenced by the structure and material of the nanoparticles. For example, a surface functionalization can lead to very different results in the size distribution. The suitability of measurement methods differs with the material of the MN. As a result, two very different results can be measured for the particle size distribution using two different methods, which are nevertheless both correct. Several large projects in recent years therefore concluded that nanomaterials should be characterized by at least two complementary method. Imaging techniques are regarded as one of these methods for the characterization, the complementary methods are supposed to be statistical methods. The different results for the size distribution of nanomaterials become problematic for the registration of new MN. A comparable and reproducible size distribution is a prerequisite for a standardized registration. In the future, the particle size distribution in the EU will also decide on the classification of a substance as a nanomaterial or as a non-nanomaterial. Especially in borderline cases, a standardized and comparable measurement methodology is therefore essential. T2 - BAM-PTB Workshop 2018 CY - Berlin, Germany DA - 14.05.2018 KW - Nano KW - OECD KW - Test Guideline KW - Size distribution KW - Particle PY - 2018 AN - OPUS4-45106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kämpf, K. A1 - Bachmann, V. A1 - Bresch, Harald A1 - Schmidt, Alexandra A1 - Kuhlbusch, T. A1 - Schwirn, K. A1 - Völker, D. T1 - OECD Test Guideline on particle size and particle size distribution of manufactured nanomaterials: simultaneous measurement of length and diameter of fibers N2 - The new OECD test guideline will address the following four main steps in the determination of the length and width distributions of fibers: sample preparation, image acquisition, data evaluation and uncertainty analysis. As the sample preparation has to be optimized for each material, general quality criteria will be given in the protocol. For full visibility of a fiber the appropriate resolution has to be chosen. In the data evaluation the length and diameter of each fiber will be determined concurrently to allow for application of different regulatory definitions. The quality of the results critically depends on the sample preparation as well as the data evaluation. In this step the classification rules have to be formulated and followed accurately in order to optimize reproducibility of the method. The SOP will be validated in an international round robin test, which is planned for 2018/2019. T2 - BAM-PTB-Workshop 2018 CY - Berlin, Germany DA - 14.05.2018 KW - Nano KW - Fibre KW - Fiber KW - OECD KW - Size distribution PY - 2018 AN - OPUS4-45107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schwirn, K. A1 - Völker, D. A1 - Ahtiainen, J. A1 - Schmidt, Alexandra A1 - Bresch, Harald A1 - Kämpf, K. A1 - Bachmann, V. A1 - Kuhlbusch, T. T1 - OECD Test Guidelines development for chemicals safety assessment of nanomaterials N2 - The OECD test guidelines (TGs) for testing chemicals have been widely used for regulatory purposes all over the world since the establishment of the Mutual Acceptance of Data (MAD) principle in 1984. This MAD principle ensures that, if a chemical is tested under the Good Laboratory Practice (GLP) conditions accordingly to an OECD TG, the data should be accepted in all OECD countries. The TGs have been developed, harmonized, internationally validated (round robin tests) and adopted by OECD countries to be used for the physical-chemical characterisation, fate estimation, and hazard identification for risk assessment of various chemicals. In addition to the TGs, OECD Guidance Documents (GDs) usually provide guidance on how to use TGs and how to interpret the results. These GDs do not have to be fully experimentally validated, and hence they are not under MAD, but they are based on relevant published scientific research. But are the existing TGs and the related GDs applicable and adequate for the regulatory testing of nanomaterials? In general, it is accepted that most of the "endpoints" or more precisely measurement variables are applicable also for nanomaterials. However, for some endpoints new or amended TGs are needed. In addition, several GDs are needed to give more precise advice on the test performance in order to gain regulatory relevant data on nanomaterials. The poster will present the status quo on recent TGs and GDs development for nanomaterials at OECD level with relevance for physical-chemical characterisation. Emphasis will be given to the proposed OECD TG on particle size and size distribution for manufactured nanomaterials. The development of such a TG is of special importance as particle size and size distribution is considered as major information for nanomaterial identification and characterization. A reliable and reproducible characterisation of particle size and size distribution is also needed for chemicals risk assessment of nanomaterials, for instance to interpret and compare test results and - in future – to forecast interaction and effects of nanomaterials. The presented poster will illustrate the way from the idea for a new TG and new GD to an accepted OECD TG/GD. T2 - BAM-PTB Workshop 2018 CY - Berlin, Germany DA - 14.05.2018 KW - Nano KW - OECD KW - Nanomaterials KW - Test Guideline KW - Prüfrichtlinie PY - 2018 AN - OPUS4-45108 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Adam, Christian A1 - Krüger, Oliver ED - IWA Publishing, T1 - Wastewater as a resource: From rare earth metals to phosphorus N2 - Wastewater contains a diverse array of organic and inorganic compounds and its complex composition strongly depends on the location and the connected dischargers. However, municipal wastewater as a carrier of feces and urine generally contains considerable amounts of the main nutrients nitrogen and phosphorus. The latter is in the focus of the discussions about the recovery potential of wastewater due to the relatively high mass flows of phosphorus in wastewater and the finite nature and decreasing quality of phosphate rock reserves. But due to the presence of the whole periodic table of elements, wastewater might contain further valuable components of interest for recovery including those defined as critical raw materials by the European Commission. Phosphorus and most of the other critical raw materials are fixed in the sewage sludge and after incineration in the sewage sludge ash (SSA). This is accompanied by high concentration factors from wastewater via sludge to ash. However, the mass fractions of the majority of elements in sewage sludge are comparable to those of the earth crust, indicating no relative enrichment. Nevertheless, enrichment factors of 100 or higher are given for phosphorus, copper, zinc, cadmium, silver, tin, lead and the platinum group elements indicating an anthropogenic input. An economic value of sewage sludge was estimated to $460,-/t calculated on the basis of the respective market prices for high purity elements – a theoretical value. A German survey of sewage sludge ashes showed that the mass fractions and the mass flows of most of the elements present in SSA are probably too low for an economic recovery. In most cases the mass flows are rather small compared to the imports and the chemical forms are not suitable for recovery. An exception is phosphorus that is present in high mass fractions up to 13% and that bears a high substitution potential. If the application of P-recovery technologies lead to a further concentration of valuable elements e.g. as by-products in side streams of the process, it would probably make also the recovery of other elements of economic interest. KW - Wastewater KW - Sewage sludge PY - 2018 SN - 978-1-78040-835-4 SN - 978-1-78040-836-1 SN - 978-1-78040-954-2 DO - https://doi.org/10.2166/9781780408361 SP - 241 EP - 252 PB - IWA Publishing CY - London AN - OPUS4-45679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Özcan Sandikcioglu, Özlem A1 - Widdel, F. T1 - Microbial corrosion of iron coupled to methanogenesis by strains from different environments N2 - Microbially influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) which act upon the metal by the reactiveness of hydrogen sulfide, and by withdrawal of the available electrons (Fe → Fe²⁺ + 2e⁻ ; E° = 0.47 V) in electrical contact through surface attachment. Also methanogenic archaea are supposed to cause MIC. Because they do not produce hydrogen sulfide, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. Precipitation of siderite (4Fe + 5HCO₃⁻ + 5H⁺ → 4FeCO₃ + CH₄ + 3H₂O) can lead to an insulating layer on the metal surface and lower the corrosion rate. Still, the extent of FeCO₃ precipitation may be significantly influenced by environmental conditions such as pH and advective processes. To investigate the corrosive potential of methanogens, we studied strains isolated from marine sediments (Methanococcus maripaludis 14266, 2067, Methanobacterium-affiliated strain IM1), crude oil tanks (Methanococcus maripaludis Mic1c10, KA1) and the oral cavity (Methanobrevibacter oralis) in a closed (batch) culture, and in a sand-packed flow-through cell with pH control and simulation of a fluctuating environment. Results indicate that the rates of iron corrosion due to coupled methanogenesis (up to 0.3 mm/yr) are comparable to that caused by SRM. Surface analyses of the metal showed severe pitting. Such knowledge and deeper understanding also from an electrokinetic point of view may not only provide further models in microbial electrophysiology, but also contribute to mitigation strategies in MIC. T2 - ISME 17th International Symposium on Microbial Ecology CY - Leipzig, Germany DA - 12.08.2018 KW - Corrosion KW - Methanogens KW - Biofilm KW - Flow-System KW - Iron PY - 2018 AN - OPUS4-45735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Simple and fast prediction of train-induced track forces, ground and building vibrations N2 - A simple and fast prediction scheme is presented for train induced ground and building vibrations. Simple models such as (1-dimensional) transfer matrices are used for the vehicle-track-soil interaction and for the building-soil interaction. The wave propagation through layered soils is approximated by a frequency-dependent homogeneous half-space. The prediction is divided into the parts “emission” (excitation by railway traffic), “transmission” (wave propagation through the soil) and “immission” (transfer into a building). The link between the modules is made by the excitation force between emission and transmission, and by the free-field vibration between transmission and immission. All formula for the simple vehicle-track, soil and building models are given in this article. The behaviour of the models is demonstrated by typical examples, that is the mitigation of train vibrations by elastic track elements, the low- and high-frequency cut-offs characteristic for layered soils, and the interacting soil, wall and floor resonances of multi-storey buildings. It is shown that the results of the simple prediction models can well represent the behaviour of the more time-consuming detailed models, the finite-element boundary-element models of the track, the wavenumber integrals for the soil, and the three-dimensional finite-element models of the building. In addition, measurement examples are given for each part of the prediction confirming that the methods provide reasonable results. As the prediction models are fast in calculation, many predictions can be done, for example to assess the environmental effect along a new railway line. The simple models have the additional advantage that the user needs to know only a minimum of parameters. So, the prediction is fast and user-friendly, but also theoretically and experimentally well-founded. KW - Railway induced vibration KW - Ground vibration KW - Layered soil KW - Building response KW - Excitation forces KW - Track and vehicle irregularities PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513340 DO - https://doi.org/10.1007/s40534-020-00218-7 SN - 2662-4745 VL - 28 IS - 3 SP - 232 EP - 250 PB - Springer AN - OPUS4-51334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winkler, Nicolas P. A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Kohlhoff, Harald A1 - Bartholmai, Matthias A1 - Bennetts, V. H. A1 - Lilienthal, A. J. T1 - Remote gas sensing with multicopter platforms N2 - This presentation gives an introduction to the gas-sensitive aerial robots developed at BAM, including various application examples in the field of mobile robot olfaction: gas source localization and gas distribution mapping. T2 - Zweites Innovationsforum "Autonome, mobile Dienste; Services für Mobilität" CY - Berlin, Germany DA - 04.06.2019 KW - Localization of gas sources KW - Mobile Robot Olfaction KW - Nano UAV Swarm KW - Tomographic reconstruction of gas plumes KW - Tunable Diode Laser Absorption Spectroscopy (TDLAS) KW - UAV-REGAS PY - 2019 AN - OPUS4-48167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia T1 - Photoperception in black fungi that share niches with green organisms N2 - Sunlight, the major source of energy, drives life but in excess it provokes UV-induced DNA damage, accumulation of reactive oxygen species, desiccation, osmotic stresses and so on. Biological strategies to survive excess light include protection, avoidance and active utilisation. Phototrophic organisms including cyanobacteria, green algae and plants use all three strategies. Fungi occupying phototrophic niches may profit from the surplus photosynthetic products which also obliges them to cope with the same light-induced stresses. One way of handling these stresses would be to use similar signalling pathways to sense the presence and to interact with their phototrophic partners. Obviously, the levels of adaptation and responses to light will depend on the environment as well as fungal genotype and phylogenetic position. Black fungi – a polyphyletic group – accumulate the dark pigment DHN melanin in their cell walls and often occupy light-flooded habitats from phyllosphere to rock surfaces. Here we compare two sequenced melanised fungi of different lifestyles in their response to light. The Leotiomycete Botrytis cinerea is an aggressive pathogen that primarily infects the above-ground parts of plants. It possesses large numbers of photoreceptors that respond to a broad spectrum of light. As a consequence, light controls morphogenesis in which it induces conidiation for disease spreading and represses sclerotial development for survival and/or sexual recombination. Cellular components involved in photo-perception and regulation of morphogenesis, stress responses and virulence have been identified and appear to regulate propagation, survival and infection. These include phytochromes, a group of photoreceptors which are particularly enriched in the Leotiomycetes and that mediate coordinated responses to light and elevated temperatures. Assuming that photo-regulation may be equally important for fungi that live in mutualistic relationships with phototrophs either by forming composite organisms or biofilms, we investigate the role of light in the rock-inhabiting Eurotiomycete Knufia petricola. Like other black yeasts, K. petricola grows slowly, does not form specialised reproductive structures and constitutively produces DHN melanin as well as carotenoids. Combining K. petricola with the cyanobacterium Nostoc punctiforme, we developed a model system for studying biofilm formation and bio-weathering. A genetic toolbox to manipulate this model system is being developed. K. petricola strain A95 possesses ten putative photoreceptors, more than found in filamentous Eurotiomycetes suggesting that light plays an important role for abiotic and biotic interactions in extremo-tolerant and symbiosis-capable fungi. T2 - International Symposium on Fungal Stress (ISFUS) CY - Sao Jose dos Campos, Brazil DA - 19.05.2019 KW - Botrytis KW - carotenoids KW - Knufia KW - melanin KW - Nostoc PY - 2019 AN - OPUS4-48130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weimann, Karin A1 - Adam, Christian T1 - Advantages of recycling gypsum plasterboards N2 - During the last decades the material composition of buildings has become increasingly diverse. However, largely sorted material flows are needed for generating high quality secondary building materials. The use of secondary building materials can meet the requirements of sustainability in several ways: the extended time availability of primary raw materials and, thereby, the preservation of natural resources as well as the conservation of landfill sites. Recycling of gypsum (calcium sulfate) can be a good example for the environmental benefits of closed-loop recycling. The content of sulfates in other secondary building materials, in particular in recycled concrete aggregates, should be minimized for quality reasons. In contrast, separated gypsum can also be used in gypsum production if the high quality requirements for the recycled gypsum are met. Since almost all processing steps in the recycling process are associated with environmental impacts, an environmental evaluation of the use of recycled gypsum as a substitute in gypsum production has to be carefully conducted. This paper focusses on the techniques for generating recycled gypsum from gypsum plasterboards, the related quality requirements and a comprehensive environmental evaluation of the complete process. T2 - IV International Conference Progress of Recycling in the Built Environment CY - Lisbon, Portugal DA - 11.10.2018 KW - Environmental evaluation KW - CDW processing KW - Gypsum PY - 2018 AN - OPUS4-48079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hirschberger, Paul A1 - Baurzhan, Zhandos A1 - Tiebe, Carlo A1 - Hofmann, Michael A1 - Hüllmann, Dino A1 - Bartholmai, Matthias T1 - Indoor air quality monitoring using flying nanobots: Design and experimental study N2 - In this paper, we introduce a nano aerial robot swarm for Indoor Air Quality (IAQ) monitoring applications such as occupational health and safety of (industrial) workplaces. The robotic swarm is composed of nano Unmanned Aerial Vehicles (UAVs), based on the Crazyflie 2.0 quadrocopter, and small lightweight Metal Oxide (MOX) gas sensors for measuring the Total Volatile Organic Compound (TVOC), which is a measure for IAQ. An indoor localization and positioning system is used to estimate the absolute 3D position of the swarm similar to GPS. A test scenario was built up to validate and optimize the swarm for the intended applications. Besides calibration of the IAQ sensors, we performed experiments to investigate the influence of the rotor downwash on the gas measurements at different altitudes and compared them with stationary measurements. Moreover, we did a first evaluation of the gas distribution mapping performance. Based on this novel IAQ monitoring concept, new algorithms in the field of Mobile Robot Olfaction (MRO) are planned to be developed exploiting the abilities of an aerial robotic swarm. T2 - 18th International Symposium on Olfaction and Electronic Nose CY - Fukuoka, Japan DA - 26.05.2019 KW - Nano aerial robot KW - Swarm KW - Indoor air quality KW - Monitoring PY - 2019 SN - 978-1-5386-3641-1 SP - 1 EP - 3 PB - IEEE CY - USA AN - OPUS4-48148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hirschberger, Paul A1 - Baurzhan, Zhandos A1 - Tiebe, Carlo A1 - Hofmann, Michael A1 - Hüllmann, Dino A1 - Bartholmai, Matthias T1 - Indoor air quality monitoring using flying nanobots: Design and experimental study N2 - In this paper, we introduce a nano aerial robot swarm for Indoor Air Quality (IAQ) monitoring applications such as occupational health and safety of (industrial) workplaces. The robotic swarm is composed of nano Unmanned Aerial Vehicles (UAVs), based on the Crazyflie 2.0 quadrocopter, and small lightweight Metal Oxide (MOX) gas sensors for measuring the Total Volatile Organic Compound (TVOC), which is a measure for IAQ. An indoor localization and positioning system is used to estimate the absolute 3D position of the swarm similar to GPS. A test scenario was built up to validate and optimize the swarm for the intended applications. Besides calibration of the IAQ sensors, we performed experiments to investigate the influence of the rotor downwash on the gas measurements at different altitudes and compared them with stationary measurements. Moreover, we did a first evaluation of the gas distribution mapping performance. Based on this novel IAQ monitoring concept, new algorithms in the field of Mobile Robot Olfaction (MRO) are planned to be developed exploiting the abilities of an aerial robotic swarm. T2 - 18th International Symposium on Olfaction and Electronic Nose CY - Fukuoka, Japan DA - 26.05.2019 KW - Nano aerial robot KW - Swarm KW - Indoor air quality KW - Monitoring PY - 2019 AN - OPUS4-48149 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Kohlhoff, Harald T1 - Aerial- and ground-based gas tomography for increasing environmental safety in chemical industry (AGATO) N2 - In AGATO, we combine ground and aerial robots into a heterogeneous robot swarm, equip robots with gas sensors (in-situ/open-path) and/or reflectors as payload, reconstruct potential gas plumes/clouds in 3D, and identify potential gas leaks based on reconstructed tomographic images. T2 - 18th International Symposium on Olfaction and Electronic Nose CY - Fukuoka, Japan DA - 26.05.2019 KW - Mobile Robot Olfaction KW - Tomographic reconstruction of gas plumes KW - Tunable Diode Laser Absorption Spectroscopy (TDLAS) KW - UAV-REGAS PY - 2019 AN - OPUS4-48150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Kleinbub, Sherin T1 - Investigation of methanogen-induced microbiologically influenced corrosion (Mi-MIC) using simulated marine environments under flowing conditions N2 - Microbially influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) which act upon the metal by the reactiveness of hydrogen sulfide, and by withdrawal of the available electrons in electrical contact with the metal. Methanogenic archaea can also cause MIC by directly withdrawing electrons from the iron surface for methanogenesis. However, the mechanistic details and kinetics of the overall process are poorly understood. Precipitation of siderite, a by-product of methanogenesis, (4Fe + 5HCO3 + 5H+  4FeCO3 + CH4 + 3H2O) can lead to an insulating layer on the metal surface and lower the corrosion rate. Still, the extent of FeCO3 precipitation may be significantly influenced by environmental conditions such as pH and advective processes. T2 - Dechema CY - Frankfurt a. M., Germany DA - 13.05.2019 KW - MIC KW - Corrosion KW - Methanogens KW - Corrosion product PY - 2019 AN - OPUS4-47982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Büchele, Dominique A1 - Chao, Madlen A1 - Ostermann, Markus T1 - Development of a robust calibration model for determination of nutrients in soils using EDXRF N2 - As part of the BonaRes research initiative, funded by the BMBF, strategies are being developed to use soil as a sustainable resource in the bio economy. The interdisciplinary subproject I4S - “Intelligence for soil” - is responsible for the development of an integrated system for site-specific management of soil fertility. For this purpose, a platform is constructed and various sensors are installed. Real-time data will be summarised in models and decision-making algorithms will be used to control fertilisation and accordingly improve soil functions. Aim of the BAM in the frame of I4S is the characterisation of an energy-dispersive X-ray fluorescence (EDXRF) based sensor for robust determination of plant essential nutrients in soil. First a principal component analysis (PCA) was used to identify outliers and to observe the largest variance within the German soil samples. It could be monitored that splitting of the samples was due to their iron content. Given that clay samples contain high amounts of iron and sandy samples low amounts, a classification of the samples by their soil texture according to VD LUFA was possible. Considering the complex composition of soil, a matrix-specific calibration was carried out by univariate and multivariate data analysis. The figures of merit demonstrated that a more robust calibration model with negligible matrix effects can be obtained by a multivariate approach using partial least squares regression (PLSR). A better correlation between predicted values compared to reference values for German soil samples was observed for the chemometric calibration model than for the univariate one. Different factors can affect the received calibration models such as moisture and particle size distribution which is especially important due to later online Analysis. In first studies the influence of moisture on the detection of plant essential nutrients was investigated. With increasing water content, the characteristic fluorescence peaks decrease and start to increase again at a water content of 15 %. With lower moisture content the soil agglomerates which leads to lower packing of the sample, resulting in a rougher surface which negatively influence the signals. Whereas, agglomerates are not formed at higher water content. This allows the sample to be packed more tightly thus a smoother surface and a better homogeneity is obtained. Furthermore, particle size distribution leads to significantly higher uncertainties and lower signals when comparing grounded (< 500 μm) and not grounded (< 2 mm) samples. This can be explained by amplifying of the already known inhomogeneity of soils. Both factors must be included in the chemometric PLSR to obtain robust calibration models for each macro and micro nutrient. T2 - AK Prozessanalytik CY - Hannover, Germany DA - 03.12.2018 KW - EDXRF KW - Soil KW - Chemometrics PY - 2018 AN - OPUS4-48280 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Büchele, Dominique A1 - Chao, Madlen A1 - Ostermann, Markus T1 - Influence of moisture and grain sizes on the determination of nutriens in german agricultural soils using EDXRF N2 - As part of the BonaRes research initiative, funded by the BMBF, strategies are being developed to use soil as a sustainable resource in the bio economy. The interdisciplinary subproject I4S - “Intelligence for soil” - is responsible for the development of an integrated system for site-specific management of soil fertility. For this purpose, a platform is constructed and various sensors are installed. Real-time data will be summarised in models and decision-making algorithms will be used to control fertilisation and accordingly improve soil functions. Aim of the BAM in the frame of I4S is the characterisation of an energy-dispersive X-ray fluorescence (EDXRF) based sensor for robust determination of plant essential nutrients in soil. First a principal component analysis (PCA) was used to identify outliers and to observe the largest variance within the German soil samples. It could be monitored that splitting of the samples was due to their iron content. Given that clay samples contain high amounts of iron and sandy samples low amounts, a classification of the samples by their soil texture according to VD LUFA was possible. Considering the complex composition of soil, a matrix-specific calibration was carried out by univariate and multivariate data analysis. The figures of merit demonstrated that a more robust calibration model with negligible matrix effects can be obtained by a multivariate approach using partial least squares regression (PLSR). A better correlation between predicted values compared to reference values for German soil samples was observed for the chemometric calibration model than for the univariate one. Different factors can affect the received calibration models such as moisture and particle size distribution which is especially important due to later online analysis. In first studies the influence of moisture on the detection of plant essential nutrients was investigated. With increasing water content, the characteristic fluorescence peaks decrease and start to increase again at a water content of 15 %. With lower moisture content the soil agglomerates which leads to lower packing of the sample, resulting in a rougher surface which negatively influence the signals. Whereas, agglomerates are not formed at higher water content. This allows the sample to be packed more tightly thus a smoother surface and a better homogeneity is obtained. Furthermore, particle size distribution leads to significantly higher uncertainties and lower signals when comparing grounded (< 500 μm) and not grounded (< 2 mm) samples. This can be explained by amplifying of the already known inhomogeneity of soils. Both factors must be included in the chemometric PLSR to obtain robust calibration models for each macro and micro nutrient. T2 - BonaRes Statusseminar CY - Leipzig, Germany DA - 19.02.2019 KW - XRF KW - Mmoisture KW - Chemometrics PY - 2019 AN - OPUS4-48281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weimann, Karin T1 - Gypsum plasterboard recycling N2 - The use of secondary building materials can meet the requirements of sustainability in several ways: the extended time availability of primary raw materials and, thereby, the protection of natural ressources as well as the conservation of landfill sites. Regarding the predicted decrease of gypsum supply in Germany, particularly the recycling of gypsum (calcium sulfate) is of growing importance. Currently, the gypsum demand is fulfilled (at least 60%) by gypsum as side product from coal-fired power plants (FGD Gypsum). Germany’s natural gypsum deposits fulfil the remaining gypsum demand. Due to national climate protection goals the gypsum supply from coal power plants will decrease significantly in the future. In addition, the content of sulfates in other secondary building materials, in particular in recycled concrete aggregates, should be minimized for quality reasons. Separated gypsum can be used in gypsum production if the high quality requirements for recycled gypsum are met. Accordingly, there have been significant advancements in the processing of gypsum residues in the last years. Since almost all processing steps in the recycling process are associated with environmental impacts, an evironmental evaluation of the use of recycled gypsum as a substitute in gypsum production has to be carefully conducted. The presentation focusses on the techniques for generating recycled gypsum from gypsum plaster boards, the related quality requirements and a comprehensive environmental evaluation of the complete process. T2 - MINEA Workshop: Recovery Potential of Construction and Demolition Waste CY - Brussels, Belgium DA - 21.03.2019 KW - Gypsum KW - CDW processing KW - Environmental evaluation PY - 2019 AN - OPUS4-48220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Torge, Manfred A1 - Seneschal-Merz, Karine A1 - Günther, Tobias A1 - Wilsch, Gerd T1 - Determination of boron in 19th and 20th century paint layers using LIBS N2 - 19th and 20th centuries glass paint layers consist of a colour body and a colourless lead silicate flux, in which borax or boric acid was added as further component to improve the paint ability and to reduce the firing temperature for multiple layers of paint. Model glasses were used in laboratory tests to investigate the stability of glass paints with additions of boron oxide. To determine boron in paint layers, a LIBS-system with pulsed NdYAG-laser was used. T2 - Technart 2019 CY - Brugge, Belgien DA - 07.05.2019 KW - Stained glass windows KW - Glass paints KW - LIBS PY - 2019 AN - OPUS4-48229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geburtig, Anja T1 - Possibilities on prediction of plastic’s fragmentation time - Digital twins for decomposing-time predictions N2 - Depending on the specific plastic’s ageing sensitivities, the durations which plastic components remain in the environment can be very long. As, in the past, the advantages in ageing resistance and durability were highly evaluated, we now face the problem of quite stable plastic waste within the environment. However, there is only little knowledge on the real timescales until macroscopic fragmentation for the different kinds of plastic under various environmental conditions. Here, weathering methods are presented, which have been used for the failure prediction in specific outdoor conditions. Issues of uncertainty, reproducibility, or validation are discussed. For the prediction of the plastic’s fragmentation, much longer time scales have to be considered. To do this within a limited project life span, various processes as well as their acceleration potential have to be evaluated separately, such as temperature increase or spectral shift. The possibilities and limitations of such controlled acceleration will be discussed. T2 - 29th IAPRI Symposium on Packaging CY - Twente, Enschede, The Netherland DA - 11.06.2019 KW - Digital twin KW - Plastic KW - Ageing KW - Environment KW - Fragmentation PY - 2019 SN - 978-90365-4731-4 SP - 630 EP - 631 PB - University of Twente CY - Twente, Enschede, The Netherlands AN - OPUS4-48238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisentraut, Paul A1 - Hassanein, Yosri A1 - Elert, Anna Maria A1 - Braun, Ulrike T1 - Understanding degradation mechanisms of microplastics in environmental samples N2 - Im Vortrag wird die Problematik Mikroplastik eingeführt und ein Probenset aus dem Mittelmeer mit ersten Ergebnissen besprochen. Die Alterung von Polymeren im Umweltkontext sowie Möglichkeiten der Analyse von Polymeralterungsfortschritten werden diskutiert. Die thermoanalytische Methode mit Zersetzungsgasanalytik (TED-GC-MS) wird eingeführt und deren Einsatzmöglichkeiten in der Thematik umrissen. T2 - EuroMech Colloquium 607 Marine Aging of Polymers CY - Brest, France DA - 28.08.2019 KW - Microplastics KW - Tara Mediterranee KW - Polymer aging KW - TED-GC-MS PY - 2019 AN - OPUS4-49110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schraut, Katharina A1 - Adamczyk, Burkart A1 - Simon, Sebastian A1 - von Werder, Julia A1 - Meng, Birgit A1 - Stephan, D. A1 - Kargl, F. A1 - Adam, Christian T1 - Formation and chemical stabilisation of tricalcium-silicate during solidification from the melt of post-treated metallurgical slags N2 - Tricalcium-silicate (C3S) or Alite is the most important mineral in Portland cement. Since pure tricalcium-silicate is only stable above temperatures of 1250 °C, its decomposition has to be prevented technically by fast cooling after the sintering process. At room temperature, the decomposition velocity is very slow so that metastable tricalcium-silicate is obtained. Although the mechanisms of clinker phase formation during burning process of Portland cement in a rotary kiln were solved and improved over the years, in view of possible economic and ecological benefits current projects aim to produce clinker phases from metallurgical slags. Recent studies discovered that the mineral phase which remained after a reducing treatment and separation of formed metallic iron from molten Linz-Donawitz (LD-) slags contained about 60 wt.% Alite despite it was cooled slowly. Because the results could be verified using slags from different origins and varying cooling velocities a chemical stabilisation of the Alite can be assumed. First tests in mortars indicate that workability, hardening and solid state properties are comparable with an ordinary Portland cement. An application of the observed phenomenon in cement production requires enhanced knowledge about formation and stabilisation conditions of Alite during crystallisation from melts in contrast to the sintering reactions in conventional Portland cement production. Therefore, this study focuses on the stabilisation mechanisms of Alite in consolidating melts. Samples from different melting experiments are analysed to determine stabilising factors. T2 - 15th International Congress on the Chemistry of Cement CY - Prag, Czech Republic DA - 16.09.2019 KW - Tricalcium-silicate KW - Portland Cement KW - Alite KW - Steelmaking slag PY - 2019 SP - Paper 492, 1 EP - 10 AN - OPUS4-49050 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Axel A1 - Vogler, M. A1 - Grathwohl, P. A1 - Kocher, B. A1 - Braun, Ulrike T1 - Analysis of tire wear particles in soil samples from roadside using TED-GC/MS N2 - Tire wear particles (TW) are generated by the abrasions of tires on the road surface through traffic. These particles can be transported by air and surface runoff and might also infiltrate the soil and consequently affect terrestrial ecosystems. The estimated tire wear (TW) emissions are immense, with 1.33 106 t a-1 in Europe. Despite this, only little is known about the environmental contents or the fate of TW. One reason for this knowledge gap is the challenging analysis of TW in environmental samples. Detection of TW with spectroscopic methods is problematic due to high fluorescence interferences caused by contained black carbon. One analytical approach is to use zinc (Zn), a typical additive in tires, as a specific marker for the quantification of tire wear. However, any Zn originating from the sample matrix must be separated beforehand and requires elaborate sample preparation. Car tires consist partly of synthetic rubbers, such as styrene-butadiene-rubber (SBR). This SBR could be identified and quantified via Thermal-Extraction-Desorption-Gas Chromatography-Mass Spectrometry (TED-GC-MS). This newly developed and fast screening method allows the simultaneous detection of microplastics and TW mass contents and requires minimal to no sample preparation. Firstly the sample is thermally extracted in a thermobalance under a nitrogen atmosphere. The resulting specific decomposition products are sorbed on a solid phase adsorber, which is then transferred to a GC-MS via an autosampler, where the products are desorbed, separated and identified. Cyclohexenylbenzene is used as a specific marker for SBR. Here we investigated top layer soil samples, collected at the roadside of highly frequented German highways. Samples were analyzed without sample preparation, and SBR was detected in all investigated samples in mass contents ranging from 67.2 to 2230 mg kg-1. A correlation between SBR and Zn content in the soil was confirmed, while the correlation between SBR and Corg was hardly pronounced. We successfully demonstrated the application of TED-GC-MS as a screening method for tire wear in soil samples. The present study will discuss these analytical results in detail as well as sampling parameters like sampling depth and distance to the roadside, and the effect of the particle size on the particle transport by water runoff and air. T2 - SETAC 2020 SciCon CY - Online meeting DA - 03.05.2020 KW - Microplastic KW - Analysis KW - Tire wear KW - Soil PY - 2020 AN - OPUS4-51086 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Vandrich, Jasmina T1 - Metabolic engineering in Halomonas elongata N2 - Halomonas elongata is a halophilic γ-proteobacterium that synthesizes and accumulates the compatible solute ectoine to cope with osmotic stress in saline environments. Ectoine possesses protecting properties and stabilizes proteins as well as whole cells against stresses like ionizing radiation and cytotoxins. These properties make ectoine a highly demanded ingredient in cosmetics and pharmaceuticals. To date H. elongata is the industrial Producer strain of ectoine, but several metabolic factors for optimum ectoine production remain to be explored. In this work, we used up to date Metabolic engineering approaches following the ‘Push, Pull, Block – strategy’ to examine targets that contribute to ectoine synthesis. Firstly, the basics of glucose catabolism were inspected to PUSH and enhance carbon flow towards ectoine synthesis. Secondly, lysine biosynthesis was targeted to BLOCK a pathway that is competing for precursors with ectoine synthesis. Thirdly, the mechanosensitive (MS) channels of H. elongata have been examined as possible excretion routes for ectoine. An overexpression of the ectoine excretion channels potentially could PULL out product at the end of ectoine synthesis and increase overall ectoine flux. For the interrogation of central metabolic pathways, we established the new molecular tool CRISPR-mediated interference (CRISPRi) for targeted modulation of gene expression. PUSH Glucose catabolism through the Entner-Doudoroff (ED) and Emden-Meyerhof-Parnas (EMP) pathway was targeted with CRISPRi and examined on gene expression level for ist response to changing salinity and different carbon sources. Changing salinity did not influence gene expression levels of glucose catabolism but the carbon source glucose triggered glycolysis through the (ED) pathway. When gene expression of the ED pathway was downregulated with CRISPRi, the growth rates remained constant. The observations indicate a metabolic overflow mechanism for glycolysis, in which fluxes are constantly high - even at lower salinity when no resources are demanded for ectoine synthesis. The further analysis of glucose to product conversion rates will advise optimum conditions for future industrial cultivation processes. BLOCK Lysine biosynthesis was downregulated with CRISPRi, which led to a significant increase in ectoine production. Hence, the blockage of lysine biosynthesis would be a valuable strategy for the optimization of the industrial producer strain in future studies. PULL MS channels and ectoine regulation are inevitably connected in osmoadaptation. Therefore, ectoine excretion, growth performance and gene expression levels of the MS channels were monitored in steady state conditions and in response to osmotic shock in the wildtype strain and in a MS channel deletion mutant. We observed that the MS channels were essential for the survival of osmotic shock but surprisingly their presence reduced cell growth under high salinity. The MS channels were only partially responsible for ectoine excretion. Thus, alternative ectoine excretion channels must exist and remain to be explored. KW - Halomonas elongata KW - Ectoine KW - CRISPR dCas9 PY - 2019 SP - 1 EP - 94 CY - Potsdam AN - OPUS4-51094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erning, Johann Wilhelm A1 - Bobzien, M. T1 - Corrosion behaviour of printed 1.4404 in drinking water systems N2 - The regulations for materials in contact with drinking water require tests to evaluate the hygienic properties of the materials. A printed 1.4404 was tested according to EN 16056 and the suitability for the use in drinking water was proven. T2 - Eurocorr 2020 CY - Online meeting DA - 07.09.2020 KW - Passivity KW - Drinking water KW - Stainless steel KW - Additive manufacturing PY - 2020 AN - OPUS4-51237 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Winkler, Nicolas P. A1 - Kohlhoff, Harald A1 - Bartholmai, Matthias A1 - Hirschberger, Paul A1 - Bennetts, V.H. A1 - Lilienthal, A.J. T1 - Aerial Robot Olfaction - A Summary and Survey from BAM Perspective N2 - This presentation gives an introduction to the gas-sensitive aerial robots developed at BAM, including various application examples in the field of mobile robot olfaction: gas source localization and gas distribution mapping. T2 - Harvard University School of Engineering and Applied Sciences (SEAS)/Earth and Planetary Sciences (EPS) - Martin Group Seminar CY - Online meeting DA - 11.06.2020 KW - Mobile Robot Olfaction KW - Localization of gas sources KW - UAV KW - Tomographic reconstruction of gas plumes KW - Tunable Diode Laser Absorption Spectroscopy (TDLAS) PY - 2020 AN - OPUS4-50916 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Merryweather, S. A1 - Zweifel, D. A1 - Woydt, Mathias ED - Franek, F. ED - Bartz, Wilfried J. ED - Pauschitz, A. ED - Vizintin, J. ED - Ciulli, E. ED - Crockett, R. T1 - Fuel economy of engine oils based on polyalkylene glycols N2 - The driver for automotive OEMs to work on alternative engine oils is the need for fuel economy and no adverse effect of the engine oil on the durability of particulate filters and catalysts. The alternative engine oils should for mid-term also comply with a positive environmental Profile. T2 - 3rd European Conference on Tribology and 4th Vienna International Conference on Nano-Technology CY - Vienna, Austria DA - 07.06.2011 KW - Biomotox KW - Head capacity KW - Fuel economy KW - Drain KW - Polyglycol KW - Polypropylene glycol KW - Polyalkylene glycol KW - Polybutylene glycol PY - 2011 SN - 978-3-901657-38-2 SP - 25 EP - 34 PB - MDH Media GesmbH CY - Wien AN - OPUS4-35671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Adam, Christian A1 - Herbeck, Maximilian T1 - Metal recovery by reductive melting of red mud N2 - Investigation about metal recovery from red mud by reductive smelting. T2 - Exchange of good practices on metal by-products recovery CY - Brussels, Belgium DA - 12.11.2015 KW - Red mud KW - Metal recovery KW - Reductive smelting PY - 2015 AN - OPUS4-35691 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Adam, Christian T1 - Phosphorus recovery from waste streams N2 - Presentation of all relevant recovery technologies from wastes T2 - Vorlesung im Rahmen der integrierten Veranstaltung "Advanced Recycling Technologies" der TU Berlin CY - Berlin, Germany DA - 19.01.2016 KW - Phosphorus recovery PY - 2016 AN - OPUS4-35694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hoffmann, Dirk A1 - Niesel, Konrad T1 - Effect of air pollutants on renderings and moisture-transport phenomena in masonry N2 - Determining a pore structure’s mechanical and chemical data on lime rendering exposed outdoors and including masonry in the laboratory, with regard to their behaviour on moisture transport and weathering was the objective. In search of clues for a dose-response relation - i.e. upon a connection between the emission rate of SO2 and NOx on one hand and the degree of damage to mainly plaster having a lime component on the other - it has been of interest to what extent their structural characteristics including pore space are modified and so consequently also physico-technical properties and chemical composition. For determining corresponding criteria, a widely diversified spectrum of test methods such as to obtain data concerning porosity and moisture transport, mechanical behaviour, and chemistry as well is available. A description of the manufacture of plate-shaped rendering specimens with lime putty, industrially hydrated lime and dolomitic hydrate (the last two also having a cement admixture) and also hydraulic lime as binding agents is included. First deposition velocity and absorption rate for SO2 were determined in laboratory tests on these materials in dry and moist states. After their exposure on outdoor racks at six locations in the Berlin region with differing SO2 atmospheric contents over at least 5 years, the samples of course show timedependent modifications of chemical and physical qualities which are especially reflected in the form of profiles of structure, strength and concentration, e.g. for sulphate. Local climatic differences, however, partly exert a greater influence on material than emissions. Similar investigations were performed on samples of comparable composition exposed 4 and 17 years. But the real surprise is furnished by the renderings’ behaviour depending upon orientation and upon height at a building. Since weathering behaviour and moisture transport (absorption, storage, release) are directly interdependent, further criteria are necessary for a critical assessment of a plasters’ pore structure. Starting from sands, plasters were characterized. The structural parameters were lastly influenced by the respective contents of sand, binder and mixing water. These results and those gained from bricks naturally find their expression in masonry sections manufactured there from, and above all in their capillary and evaporative behaviours, and also when applying different test liquids. Summary and cited literature is given at the end of this report. KW - Building Material KW - Mercury Intrusion Porosimetry KW - Gas Adsorption PY - 2008 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-356780 SP - 1 EP - 126 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-35678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogler, Nico A1 - Barthel, Maria A1 - Kühne, Hans-Carsten T1 - Self-cooling concrete pavers – performance tests by long-term studies under various climatic conditions N2 - In the last several decades, the rural exodus has led to an increasing number of inhabitants in the urban areas. The increased building and infrastructural construction caused the transformation of the landscape and to an increased land sealing in these areas. Consequently, the increased land sealing influences the air temperatures in the cities, since houses, streets and squares heat up continuously. As a result, the city and metropolitan areas became significantly warmer than their surroundings - the effect is known as Urban Heat Island (UHI). These changes have a negative impact for the quality of life. To deal with the negative effects of UHI, a high level of technical and financial effort is necessary. The costs caused by the UHI effects are in the range of several billion US dollars worldwide per year. The recent studies on UHI showed that the established methods like parks and green spaces or bright coatings for roof areas will soon not be able to effectively cope with the UHI effect in urban areas. Therefore there is a need for additional methods to mitigate UHI effect in the cities. The streets, sidewalks and squares represent approximately 30% to 40% of the inner cities areas. If these areas are designed functionally, they can have a significant impact on the UHI. This contribution focuses on development of a concrete paving stone with self-cooling properties. For the cooling effect the evaporative cooling is used. The paving stone is able to store large quantities of water and deliver during appropriate environmental conditions. This paper deals with the results of the long-term experiments on the test-fields under different climatic conditions. To interpret the test-field-results, laboratory tests were carried out as well. The paper presents and discuss the obtained results, and points out the difficulties occurred. T2 - 2nd International conference on advances in cement and concrete technology in Africa CY - Dar es Salaam, Tanzania DA - 27.01.2016 KW - Urban heat island KW - Concrete paving stone KW - Self-cooling KW - Performance tests KW - Long-term studies KW - Hitzeinsel KW - Betonpflasterstein KW - Selbstkühlend KW - Nachweis der Wirksamkeit KW - Langzeitversuch PY - 2016 SP - 595 EP - 602 AN - OPUS4-35679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dengel, Jörg A1 - Lohrer, Christian A1 - Stein, F. A1 - Perriam, J. T1 - Investigations on aerosol emissions of pyrotechnic smoke generators N2 - Pyrotechnic smoke generators fall under the Directive 2013/29/EU in Europe and could potentially belong to all categories except consumer fireworks. These types are especially present in the field of “Other Pyrotechnic Articles” of the categories P1 and P2, e.g. as simulation devices for paintball or airsoft gaming. The specific users of these products are aware of the corresponding smoke liberation during use and usually wear protective equipment to minimize exposure to potentially harmful aerosols. However, such products are often misused against the labelling requirements in locations where these articles are not supposed to be used, like football stadiums and demonstrations. In contrast to the intended use, uninvolved third parties are likely exposed to these reaction products without proper protective equipment. This study aims at identifying the transient particle size range of the aerosols emitted during the functioning of such common smoke generators for simulation purposes. In total four different types of articles were investigated, with five colors per type (white, blue, green, red, orange). Results show that the majority of the particles were emitted in a range between 40 nm and 350 nm, with some variation depending on the smoke color. Particles with diameters of less than 100 nm are generally of specific concern, as they can penetrate the alveolar system of the human lungs and therefore present a specific hazard. KW - FMPS KW - Simulation devices PY - 2016 VL - 2016 IS - 35 SP - 3 EP - 8 PB - Journal of Pyrotechnics CY - Cambridgeshire (UK) AN - OPUS4-35742 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Schoknecht, Ute A1 - Mathies, Helena A1 - Wegner, R. A1 - Uhlig, S. A1 - Baldauf, H. A1 - Colson, B. T1 - Emissions of material preservatives into the environment - realistic extimation of environmental risks through the improved characterisation of the leaching of biocides from treated materials used outdoors N2 - This report supports the implementation of European regulations on biocidal products for the product types 7, 9 and 10. Emission of active substances from material preservatives into environmental compartments can occur due precipitation. Risk characterisations have to be based on estimations of environmental concentrations of target substances leached from material preservatives. Harmonised test procedures are required to predict environmental impact due to leaching. Seventeen treated articles, mainly paints, but also a textile, sealing tapes and sealing masses were investigated by intermittent contact to water to prove suitability of the proposed laboratory test procedure. Parameters that affect leaching of active substances were examined. Further development of a semi-analytical model to describe laboratory leaching data revealed that the model can be improved if changes of the leachability of substances during the test are supposed and integrated. Six paints and a textile were exposed to weathering to compare results from laboratory and field experiments. Similarities between leaching processes in both test approaches were observed. Generally, emissions of active substances are considerably higher in laboratory tests than from vertically installed test specimens exposed to weathering. Competing processes that cause losses of active substances can occur in both tests, but to a higher degree in field experiments. In addition, the influence of meteorological parameters on leaching processes was investigated. Factors besides the amount of driving rain were identified that effect leaching processes by complex interaction. Relations between laboratory and field data were analysed, and the applicability of the semi-analytical model was tested for field data. Guidance documents for leaching tests under laboratory and field conditions were drafted and discussed with experts on EU Level workshop 3./4. July 2014, BAM, Berlin), and are included in this Report. N2 - Dieser Bericht unterstützt die Umsetzung europäischer Regelungen für Biozidprodukte der Produkttypen 7, 9 und 10. Die Freisetzung von Wirkstoffen aus Materialschutzmitteln in Umweltkompartimente kann bei Niederschlagsereignissen auftreten. Risikocharakterisierungen müssen auf Abschätzungen von Umweltkonzentrationen der betrachteten Stoffe basieren. Harmonisierte Testverfahren sind erforderlich, um eine Beeinflussung der Umwelt durch Auswaschung vorherzusagen. Siebzehn behandelte Waren, vor allem Farben, aber auch ein Textil, Dichtungsbänder und Dichtungsmassen wurden bei periodischem Wasserkontakt untersucht, um die Anwendbarkeit des vorgeschlagenen Laborverfahrens nachzuweisen. Faktoren, die Einfluss auf die Auswaschung von Wirkstoffen haben, wurden untersucht. Die Wieterentwicklung eines semianalytischen Modells zur Beschreibung von Auswaschdaten aus Laborversuchen ergab, dass das Modell verbessert werden kann, wenn eine Änderung der Auswaschbarkeit von Substanzen während des Versuchs angenommen und einbezogen wird. Sechs Farben und ein Textil wurden der Witterung ausgesetzt, um Ergebnisse aus Labor- und Freilandversuchen zu vergleichen. Zwischen Auswaschprozessen in beiden Versuchsansätzen wurden Ähnlichkeiten beobachtet. Im Allgemeinen sind die Emissionen von Wirkstoffen im Laborversuch deutlich höher als bei vertikal installierten bewitterten Prüfkörpern. Konkurrierende Prozesse, die Verluste an Wirkstoffen bewirken, können in beiden Testverfahren auftreten, sind aber im Freilandversuch stärker ausgeprägt. Außerdem wurde der Einfluss von meteorologischen Parametern auf Auswaschprozesse untersucht. Es wurden Faktoren identifiziert, die zusätzlich zur Schlagregenmenge durch komplexe Interaktion auf Auswaschprozesse wirken. Beziehungen zwischen Labor- und Frei-landdaten wurden analysiert und die Anwendbarkeit des semianalytischen Modells für Freilanddaten getestet. Leitfäden für Auswaschversuche unter Labor-bzw. Freilandbedingungen wurden entworfen, mit europäischen Experten diskutiert (Workshop 3./4. Juli 2014, BAM, Berlin) und sind Bestandteil dieses Berichts. KW - EU Biocides Regulation KW - Leaching tests KW - Treated articles KW - Modelling KW - EU-Biozidverordnung KW - Auswaschversuche KW - Behandelte Waren KW - Modellierung PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-355139 SN - 1862-4804 SP - 1 EP - 136 AN - OPUS4-35513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Holm, Olaf A1 - Rein, A. A1 - Trapp, S. A1 - Popp-Hoffmann, S. A1 - Bittens, M. A1 - Leven, C. A1 - Dietrich, P. T1 - Comparison of phytoscreening and direct-push-based site investigation at a rural megasite contaminated with chlorinated ethenes N2 - The reliable characterization of subsurface contamination of spatially extended contaminated sites is a challenging task, especially with an unknown history of land use. Conventional technologies often fail due to temporal and financial constraints and thus hinder the redevelopment of abandoned areas in particular. Here we compare two site screening techniques that can be applied quickly at relatively low cost, namely Direct Push (DP)-based groundwater sampling and tree core sampling. The effectiveness of both methods is compared for a rural megasite contaminated with chlorinated hydrocarbons. Unexpected pollution hot spots could be identified using both of these methods, while tree coring even enabled the delineation of the contaminant plume flowing into an adjacent wetland inaccessible for DP units. Both methods showed a good agreement in revealing the spatial pattern of the contamination. The correlation between groundwater concentrations and equivalent concentrations in wood was linear and highly significant for trichloroethene. Correlation was less obvious for its metabolite cis-dichloroethene, but still significant. As outcome of our study we recommend tree coring and for initial screening in combination with a DP sampling to retrieve quantitative data on groundwater pollutants in order to assess the contamination situation of a non- or only partly investigated site. The subsequent placement of monitoring wells for long-term monitoring of contamination levels is recommended. A combination of methods would achieve more relevant information at comparable or possibly even lower efforts in comparison to a conventional site investigation. KW - non-invasive investigation KW - phytoscreening KW - direct-push KW - screening KW - trichloroethene KW - trichloroethylene KW - groundwater contamination KW - tree core sampling PY - 2015 UR - http://onlinelibrary.wiley.com/doi/10.1111/gwmr.12122/abstract DO - https://doi.org/10.1111/gwmr.12122 SN - 1745-6592 VL - 35 IS - 4 SP - 45 EP - 56 PB - Wiley Online Library AN - OPUS4-35595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Muhammad, R. A1 - Greiser, Sebastian A1 - Kosslick, H. A1 - Ibad, F. A1 - Jäger, Christian A1 - Rabeah, J. A1 - Schulz, A. T1 - Influence of the of dealumination and porosity on the acid sites of natural zeolite clinoptilolite N2 - Heavy feedstock from crude and bio oil is a widely available and renewable resource for production of fuel and starting materials for other organic valuables by cracking or hydrocracking. Catalytic processing of heavy feedstock can meet the increased demand of energy up to a great extent. It requires the application of acidic catalysts like zeolites. However, the used synthetic catalysts are difficult to recover and reuse and are mostly spent. The use of natural zeolite as spent catalysts may open new perspectives in the chemical use of heavy feed feedstock by chemical conversion. Natural zeolites are not expensive, widely available and environment friendly. Clinoptilolite is the most abundant natural zeolite. Clinoptilolite has a crystalline structure with a defined micropore system of medium size showing unique ion exchange and sorption properties. However, it is catalytically active only in the H-form. Also certain porosity is required for improvement of the accessibility of active sites. This paper deals with the tuning of acid properties and of the mesoporosity of the clinoptilolite by variation of the Si/Al framework ratio, extra-framework aluminum and modification of the porosity by specific acid and water vapor treatment. The preparation of hierarchical pore structures containing interconnected micro-meso-macropores is an important factor influencing the catalytic performance. The obtained materials have been characterized by XRD, TEM, FTIR, Raman, TG/DSC. The chemical composition has been determined by ICP-AES. The porosity have been investigated by nitrogen adsorption desorption measurements. The acidity has been measured by Ammonia-TPD. The extent of dealumination, stability of the clinoptilolite against acid treatment and the change in the nature of acid sites and their local structure has been studied by solid state 29Si and 27Al MAS NMR spectroscopy in detail. The catalytic activity has been investigated in the acetalization of benzaldehyde with 1,3-butanediol. The impact of the porosity, change of the Si/Al ratio as well as present Al species on catalytic properties will be discussed. T2 - 28. Deutsche Zeolith-Tagung CY - Giessen, Germany DA - 02.03.2016 KW - NMR KW - Zeolite KW - Clinoptilolite KW - Catalyst PY - 2016 AN - OPUS4-35886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Greiser, Sebastian A1 - Sturm, Patrick A1 - Gluth, Gregor A1 - Hunger, M. A1 - Jäger, Christian T1 - 29Si-27Al NMR to verify and distinguish Qn(mAl) sites in zeolites and geopolymers N2 - One-part-geopolymers, produced by addition of water to a mixture of solid silica and sodium alumi-nate, are a less exhaustively studied approach to form geopolymeric binders. Depending on the silica source, the reaction products show significant amounts of zeolite Na-A besides amorphous compounds. Previously, 29Si MAS NMR has been used to analyze the chemical structure of such one-part geopolymers, having crystalline structures and amorphous phases (Q2, Q3, Q4). In this work, pure zeolites and three different one-part-geopolymers cured for 1 day were investigated by 29Si-27Al TRAPDOR NMR. It was used to identify aluminum phases in overlapping silicon sites. Zeolites Na-X (Si/Al=1.4) and Na-Y (Si/Al=2.7) served as model systems to measure the TRAPDOR effect of the structural units Q4(mAl). Both materials show several Q4(mAl) signals, which are all separated by their chemical shifts. The more aluminum surrounds the silicon tetrahedron the higher are the normalized TRAPDOR difference signals (S0/∆S). The intensity ratios between Q4(mAl) to Q4({m-1}Al) of these signals is fixed but vary slightly between both zeolites. These results are transferred to the complex geopolymer structure. T2 - 57th Experimental nuclear magnetic resonance conference CY - Pittsburgh, PA, USA DA - 10.04.2016 KW - NMR KW - 29Si-27Al TRAPDOR MAS KW - Geopolymer KW - One-part formulation KW - Rice husk ash PY - 2016 AN - OPUS4-35864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kalbe, Ute A1 - Krüger, Oliver A1 - Bandow, Nicole A1 - Geburtig, Anja ED - Reichert, Thomas T1 - Laboratory Weathering Test for Simulating the Leaching from Artificial Sporting Grounds N2 - In order to estimating the amount and kind of emissions from polymeric sporting tracks a laboratory test was developed in BAM that combines artificial weathering and subsequent batch and column tests [1, 2, 3]. The goal consisted in nvestigating a possible change of emissions into soil and groundwater of a new sporting ground as a function of ageing and egradation of the system. At various stages of the weathering, the samples were removed and subjected to especially designed column extraction tests for the solid samples. Both these extracts and the accumulated rainwater run-off of the weathering device were subjected to analytical tests of their ingredients. The overall aim of the test consisted in developing ontrollable, reproducible, and standardisable conditions and methods of investigation that would allow an estimation of the emissions in the course of outdoor application of about five years. T2 - 7th European Weathering Symposium. Natural and Artificial Ageing of Polymers CY - Naples, Italy DA - 16.09.2015 KW - artificial weathering KW - emission KW - leaching KW - sporting track KW - degradation KW - ageing KW - rubber KW - extraction PY - 2015 SN - 978-3-9816286-6-1 VL - CEES 17 SP - 195 EP - 208 PB - Thomas Würtz CY - Karlsruhe, Germany AN - OPUS4-35401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Keller, Julia A1 - Haase, H. A1 - Koch, Matthias T1 - Electrochemistry coupled with mass spectrometry - a versatile tool to investigate metabolic processes of mycotoxins N2 - To understand the metabolic fate of food relevant mycotoxins in vitro systems were mainly used as the method of choice, so far. Yet, in recent years coupling of electrochemistry mass spectrometry (EC-MS) gained increasing importance as promising technique for fast simulation of metabolic processes and was successfully applied in particular for drug metabolism [1]. The aim of our work was to investigate the potential of EC-MS to predict phase I metabolites of priority mycotoxins and to compare the results with in vitro experiments. Hence, the EU-regulated Fusarium mycotoxins zearalenone (ZEN) and patulin as well as dihydroergocristine (DHEC) as model compound of ergot alkaloids were electrochemically oxidized and analyzed by EC MS for the first time. Electrochemical conditions were set-up individually for each of the three mycotoxins. By using a coulometric flow through cell with a diamond working electrode oxidation of the chosen mycotoxins was observed after applying potentials between 1.7 and 2.0 V vs. Pd/H2. The electrochemically generated reaction products were analyzed online by mass-spectrometric detection. All of the three chosen mycotoxins were electrochemically converted to mono- and/or dihydroxylated products confirming the results of ZEN related metabolism studies [2, 3] and in case of DHEC own results from in vitro assays. Due to a lack of metabolism studies concerning the oxidative fate of patulin, interpretation of EC-MS data and performing microsomal studies is of particular relevance. Beside the identified products from electrochemical oxidation of ZEN, patulin and DHEC there is still a number of yet unknown compounds. Additional structural characterization of detected compounds by NMR and X-ray analysis will be facilitated by their large-scale production using preparative EC cells. T2 - Mycotoxin Workshop CY - Berlin, Germany DA - 02.05.2016 KW - Mycotoxins KW - Electrochemistry KW - Biotransformation KW - Mass spectrometry PY - 2016 AN - OPUS4-35981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Climent Terol, Estela A1 - Biyikal, Mustafa A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Rapid, sensitive and selective fluorescence sensing device for the determination of the nerve agents Sarin, Soman and Tabun in the gas phase N2 - The organophosphate nerve agents Tabun (GA), Sarin (GB) and Soman (GD) are among the most toxic chemical warfare agents (CWA) known, and exert their biological effects by irreversibly inhibiting acetylcholinesterase enzymes of the human nerve system. The use of these agents in the past century has killed millions of civilians around the world during World Wars I and II, and after that, approximately 40.000 tons of chemical ammunition were dumped into the Baltic Sea, containing ca. 13.000 tons of chemical warfare agents. Since their production, almost all the nations of the world have been strictly avoiding the development and use of CWA, participating in active destruction of CWA stockpiles, especially since the Chemical Weapon Convention (CWC) of 1993. However, CWA have been used in offensive ways against civilian population by terrorists, as for instance in the fatal Tokyo subway terror incident of 1995 or, most recently, against antigovernment demonstrators in Syria in 2013. Due to their higher toxicity and continuous use, it is therefore very important to develop simple and fast detection methods relying on new nerve agent sensing modalities for use in control and inspection. A practically useful fluorescent probe must possess a rapid response and high sensitivity, and shall be implementable into easy-to-use devices for real time detection by untrained personnel. Taking into account this fact, in this work we have synthesized several mesoporous silica materials containing boron–dipyrromethene (BODIPY) moieties for the detection of nerve agents GA, GB and GD in the gas phase. Development of our system indicated that the most potent materials are able to respond to the presence of nerve agent simulants diethyl cyanophosphonate, diethyl chlorophosphate and diisopropyl fluorophosphate, which have to be used in a laboratory setting, yet also for the real nerve agents Sarin, Soman and Tabun, producing a strong quenching of the fluorescence. Furthermore, a portable device for the detection of GA, GB and GD in the gas phase has been prepared for in situ sensing and rapid screening applications, consisting of strips that are able to indicate the targets down to below 1 mgm-3 which is below the LD50 values. T2 - XIII Europtrode Conference CY - Graz, Austria DA - 20.03.2016 KW - nerve agent KW - mesoporous material KW - sensor PY - 2016 AN - OPUS4-35921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Life on the rocks and other hard surfaces N2 - After their discovery on rock surfaces in cold and hot deserts, a polyphyletic group of ascomycetous black fungi was found to dominate a range of hostile environments – natural and man-made, from salterns to dishwashers, roofs and solar panels. Together with bacteria and algae they may establish subaerial biofilms and cause weathering of the surfaces they grow on. Their impressive survival abilities as well as their constitutive protective pigmentation and cluster-like microcolony organisation are similar in environmental isolates as well as in heat-tolerant opportunistic pathogens of animals and humans. We selected the rock-inhabiting fungus Knufia petricola (class Eurotiomycetes, order Chaetothyriales) that exhibits all the characteristics of microcolonial black fungi such as yeast-like cell growth, absence of reproductive structures and constitutive dihydroxynaphthalene (DHN) melanogenesis (Nai et al. 2013, Fungal Genet Biol). We developed protocols to efficiently generate and transform protoplasts resulting in stable homokaryotic transformants by targeting genes involved in pigment synthesis. The differences between the wild-type fungus and its melanin-deficient mutants were tested in geomicrobiological experiments and measured are now discussed in detail, with special accent on the possible effects of the mutation on EPS and other exuded substances. T2 - Departmental colloquium of the Tuscia University CY - Viterbo, Italy DA - 14.02.2020 KW - Ascomycetes KW - Fungal biofilms KW - Material surface colonisation KW - Genetics KW - Genomics KW - Extremophilic fungi PY - 2020 AN - OPUS4-50643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meermann, Björn A1 - Von der Au, Marcus A1 - Borovinskaya, O. A1 - Büchel, C. T1 - Metal based pollutant assessment via diatoms - new possibilities via automated single cell-ICP-ToF-MS N2 - Diatoms are located at the bottom of the food chain. Toxicological relevant metals can possibly accumulate within the food web and cause harmful effects. Diatoms are a test system in ecotoxicology. Toxicological effects weaken the growth of algae which is by default investigated by means of fluorescence detection. On basis of the expose concentration as well as obtained fluorescence data potential threshold exceedance in e.g. surface waters is assessed. However, this approach does not allow for the determination of “real” accumulated metal concentration in diatoms. Common approaches are based on bulk analysis via e.g. ICP-MS, ICP-OES or AAS. But, biological variability is completely disregarded. To tackle this problem, alternative approaches are highly needed. Within the last years, sp-ICP-MS for nanoparticle as well as single cell analysis turned out as a powerful technique to analyze metal contents as well as size distributions on broad size range. But, common ICP-MS systems do not allow for multi-element detection within single particle/cell events. Thus, simultaneous MS detection devices are needed - just recently, ICP-ToF-MS experienced a revival. Within our previous work, we developed an automated sample introduction system based on a HPLC system on-line with single particle-ICP-MS, which allowed for ionic background separation and single algae analysis. However, for unambiguous tracing several fingerprint elements and multielement analysis in single algae (diatoms) is needed. Thus, we coupled our previous setup on-line to ICP-ToF-MS. Test diatom species were exposed to test substances (Zn) as well as nanoparticles (FeNPs). The developed setup allowed for a fast, automated and multielement analysis in single diatoms. Furthermore, we combined our approach with multivariate data assessment - multielement detection of characteristic fingerprint elements allowed for an unambiguous diatom tracing. Clustering of diatoms according to metal exposure concentration levels was enabled. Our approach is a new potential tool in ecotoxicological testing. T2 - 53. DGMS & 27th ICP-MS user meeting CY - Münster, Germany DA - 01.03.2020 KW - Single cell-ICP-ToF-MS KW - Diatoms KW - New ecotoxicological testing tools PY - 2020 AN - OPUS4-50644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Priebe, Nsesheye Susan A1 - Sturm, Patrick A1 - Kühne, Hans-Carsten A1 - Gluth, Gregor ED - Bishnoi, S. T1 - Comparison of brick clays and a kaolinitic clay regarding calcination and performance in blended cement mortars N2 - Two brick clays (rich in 2:1 clay minerals) and a low-grade kaolinitic clay were studied regarding their transformations during calcination and their performance in blended cement mortars. The mortars with calcined clays exhibited decreased workability (slump flow), but this effect could be mitigated by employment of a conventional superplasticizer; however, compressive strength of the hardened mortar was lowered in some cases. While the kaolinitic clay generally yielded the highest strength, the performance of a brick clay could be increased by grinding to higher fineness and by mixing it with the kaolinitic clay. T2 - 3rd International Conference on Calcined Clays for Sustainable Concrete CY - New Delhi, India DA - 15.10.2019 KW - Calcined clays KW - Blended cements KW - Workability KW - Supplementary cementitious materials PY - 2020 SN - 978-981-15-2805-7 DO - https://doi.org/10.1007/978-981-15-2806-4_10 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. VL - 25 SP - 85 EP - 93 PB - Springer CY - Singapore AN - OPUS4-50663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia T1 - Many-sided DHN melanin – spotlight on its function in microcolonial black fungi N2 - Dihydroxynaphthalene (DHN) melanin is produced by different Ascomycetes via slightly differing biosynthetic routes. The polyketide synthases (PKS) release the heptaketide YWA1, the hexaketide AT4HN or the pentaketide T4HN. The first two products are deacetylated by ‘yellowish-green’ hydrolases to T4HN, and T4HN is further converted by a core set of enzymes to DHN. Final polymerization steps are accomplished by multicopper oxidases. DHN melanogenesis is often regulated in a spatial and temporal fashion resulting e.g. in melanized reproduction, survival and/or infection structures. Remarkable is the regulation of the DHN melanogenesis in the foliar plant pathogen Botrytis cinerea: it involves two differently expressed PKSs providing the precursor in conidia and sclerotia, respectively (Schumacher 2016, Mol Microbiol). In contrast, a polyphyletic group of Ascomycetes (microcolonial fungi/ black yeast) dwelling in hostile habitats such as bare rock surfaces in hot and cold deserts, exhibits constitutive melanogenesis. Here, DHN melanin builds a protective layer around all vegetative cells thus contributing to the survival of diverse environmental stresses even without specialized reproduction structures. As part of our continuing research on microcolonial rock-inhabiting fungi, we chose the genetically amenable Knufia petricola strain A95 (Nai et al. 2013, Fungal Genet Biol; Noack-Schönmann et al. 2014, AMB Express) for detailed studies. DHN-deficient mutants generated by targeted mutation of biosynthetic genes were studied with regard to the architecture of the cell wall and the EPS (extracellular polymeric substances) matrix, attachment to and weathering of olivine, as well as the tolerance to abiotic and biotic stresses. We will discuss the critical role of the outer cell surface (DHN melanin and EPS) in adhesion to the substrate and subsequent damage of the colonized surface. T2 - European Conference on Fungal Genetics (ECFG15) CY - Rome, Italy DA - 17.02.2020 KW - fungus KW - melanin KW - pigmentation PY - 2020 AN - OPUS4-50591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia T1 - Genetic manipulation of the microcolonial black fungus Knufia petricola N2 - Microcolonial black fungi, a polyphyletic group of ascomycetes, exhibit constitutive melanin formation, yeast-like growth and high stress tolerances. They dominate – often together with bacteria and algae in sub-aerial biofilms – a range of hostile environments including natural and man-made ones, from salterns to dishwashers, roofs and solar panels. Because of lacking genetic tools and the slow growth of most isolates, the genetic bases for these specific properties are largely unknown. The rock-inhabiting fungus Knufia petricola (Eurotiomycetes, Chaetothyriales) exhibits all characteristics of microcolonial black fungi and was selected as recipient for genetic engineering to study gene functions and genetic interactions. Different variants of green and red fluorescent proteins were successfully expressed indicating that fluorescence microscopy using genetically encoded fluorescent proteins and fluorescent dyes enables various cell biology approaches. Furthermore, genes of biosynthetic pathways (DHN melanin, carotenoids, uracil, adenine) were successfully mutated by applying traditional gene replacement and plasmid-based or ribonucleoprotein (RNP)-based CRISPR/Cas9 or silenced by RNA interference (RNAi). The availability of this advanced and efficient genetic toolbox and the annotated genome sequence of strain A95 makes K. petricola an excellent model for exploring the secrets of microcolonial black fungi. T2 - Departmental colloquium of the Tuscia University CY - Viterbo, Italy DA - 14.02.2020 KW - black fungus KW - genetics KW - Crispr/Cas9 PY - 2020 AN - OPUS4-50592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna A1 - Knabe, Nicole A1 - Voigt, Oliver A1 - Heeger, Felix A1 - Schumacher, Julia T1 - A genetic toolbox for exploring the life style of the rock-inhabiting black fungus Knufia petricola N2 - After their discovery on rock surfaces in cold and hot deserts, a polyphyletic group of ascomycetous black fungi was found to dominate a range of hostile environments – natural and man-made, from salterns to dishwashers, roofs and solar panels. Together with bacteria and algae they may establish subaerial biofilms and cause weathering of the surfaces they grow on. Their impressive survival abilities as well as their constitutive protective pigmentation and cluster-like microcolony organisation are similar in environmental isolates as well as in heat-tolerant opportunistic pathogens of animals and humans. The exact genetic properties that ensure their survival in extreme environments can be studied if some black fungi were amenable to genetic manipulations. We selected the rock-inhabiting fungus Knufia petricola (class Eurotiomycetes, order Chaetothyriales) that grows moderately in axenic culture and exhibits all the characteristics of microcolonial black fungi such as yeast-like cell growth, absence of reproductive structures and constitutive dihydroxynaphthalene (DHN) melanogenesis (Nai et al. 2013, Fungal Genet Biol). We developed protocols to efficiently generate and transform protoplasts resulting in stable homokaryotic transformants by targeting genes involved in pigment synthesis and expressing fluorescent reporter genes. Hence, endogenous and foreign genes can be expressed from episomal AMA1-containing plasmids and genome-integrated DNA constructs. Moderate rates of homologous recombination allow for both ectopic and targeted integrations. CRISPR-Cas9 was further validated as a strategy for obtaining selection marker-free mutants and silencing via RNA interference as an approach to study essential genes. Availability of this genetic toolbox and an annotated genome sequence of the strain A95 is paving the way for studying interactions of K. petricola with environmental stressors, material surfaces, soil matrices and phototrophic symbionts. T2 - European Conference on Fungal Genetics (ECFG15) CY - Rome, Italy DA - 17.02.2020 KW - black fungi KW - genomics KW - genetics PY - 2020 AN - OPUS4-50593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - An, Biwen Annie A1 - Voordouw, G. ED - An, Biwen Annie T1 - Chapter 4. Microbial Communities Involved in High Salinity Souring in Shale Oil Fields N2 - This book chapter provides an overview of the negative impacts of halophilic microorganisms in oil and gas operations. The chapter used a Canadian shale oil reservoir as an case study example to show the high souring and corrosion potential of halophilic microorganisms. KW - Corrosion KW - Halophilic KW - Microorganism KW - Microbial community modelling KW - Oil and gas reservoir KW - Shale KW - Geological formation KW - Oilfield PY - 2019 SN - 13 978-1-138-05775-3 SP - 57 EP - 69 PB - CRC Press CY - Boca Raton ET - 1. AN - OPUS4-49599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Microbiology / biofilms in material research and testing N2 - In the modern world there is an increased understanding that design and performance monitoring of materials have to be tested in connection to chemical, physical and (micro)biological challenges. A systematic study on how biofilms interact with materials and what could be done to engineer biofilms and/or materials in order to maximize the resistance of the material (surface) or the resistance the biofilm-modified material (bulk) is in strong need. In the Department “Materials and the Environment” of the BAM new experimental platform is being developed. With the help of different type of device for high throughput and microbiologically-controlled environment simulation we establish a new approach to clarify the mechanisms of biofilm/material interactions. Despite the focus on fundamental research, the main results of this project proposal will be transferable into material technology and construction chemistry and will influence the development of standardization in this topic. As the interactions of biofilms and materials have implications for most constructions as well as climate change, the results of the research generates additional value. T2 - Initialgespräch - DFG-Forschungsgruppe "Mikrobiologie/Biofilme" CY - Karlsruhe, Germany DA - 14.11.2019 KW - Biofilm KW - Microbiology KW - Black fungi KW - Solar panel PY - 2019 AN - OPUS4-50199 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Life on the rocks - Black fungi from biofilms on material-atmosphere interface N2 - Interface between the atmosphere and mineral substrates is the oldest terrestrial habitat. Morphologically simple microbial biofilms were the first settlers on these inhospitable surfaces at times when the Earth was inhabited only by microorganisms and the solid substrates represented only by natural rock surfaces i.e. lithosphere. Miniature, self-sufficient microbial ecosystems continue to develop on subaerial (i.e. air-exposed) solid surfaces at all altitudes and latitudes where direct contact with the atmosphere and solar radiation occurs – on rocks, mountains, buildings, monuments, solar panels. All these sub-aerial biofilms develop under fluctuating and hostile conditions – and thus frequently harbour stress-tolerant black fungi inherently able to cope with the stresses of bright sunlight and constantly changing atmospheric conditions. Black fungi – a polyphyletic group of Ascomycetes– accumulate the dark pigment DHN melanin, diverse carotenoids and mycosporines in their cells and thus successfully colonise sunlight-flooded habitats from phyllosphere to rock surfaces. Various chemical and physical extremes and fluctuating environments belong to the challenges effectively mastered by black fungi. In our laboratory we isolate novel black fungi from man-made habitats like building materials and solar panels. Using Knufia petricola A95 as a model we conduct experiments to clarify interactions of black fungi with inorganic substrates. We use available mutants to determine the functional consequences of changes in the outer cell wall envelopes – from excreted EPS to layers of protective pigments. A genetic toolbox to manipulate this Chaetothyriales representative is in further development. Our long-term goal is to understand the fundamental mechanisms how black fungi are able (i) to adhere to dry atmosphere-exposed surfaces, (ii) to survive multiple stresses and (iii) to change the underlying substrates including rocks. T2 - International Symposium on Fungal Stress (ISFUS) CY - São José dos Campos, Brazil DA - 19.05.2019 KW - Subaerial biofilm KW - Melanins KW - Carotenoids KW - Knufia KW - Mineral weathering PY - 2019 AN - OPUS4-50200 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna T1 - Life on the rocks and other hard surfaces N2 - The story of how black fungi survive harsh conditions on sun-exposed desert rocks and material surfaces is fascinating. In the presentation examples of how knowledge of these organisms can be of practical value (e.g., in biodeterioration studies, such as on stone markers in cemeteries) would be given. Among other stories, the example of how roof tiles amended with a titanium oxide layers as a biocide actually selected for the black fungi will be told. A hypothesis about how these organisms would likely be found on solar panels and some early BAM work in that area will be presented. This then brings the connection to a study ripe for investigation in North Carolina. The talk presents the development of a study aiming at deciphering the influence of microbial biofilm formation on the energy conversion efficiency of solar photovoltaic panels or modules at two facilities (one facility under the impact of high intensity of animal agriculture and high deposition of ammonia from atmosphere and the other with low animal agriculture and lower atmospheric ammonia deposition) in North Carolina. The main hypothesis of the study is that microbial biofilm formation on solar photovoltaic panels will lead to significant decreases in energy conversion efficiency of solar photovoltaic modules and biofilm formation will also be accelerated by high ammonia concentration in the ambient atmosphere and high nitrogen deposition. T2 - Dr. Michael D. Aitken Symposium CY - Chapel Hill, NC, USA DA - 08.11.2019 KW - Black fungi KW - Solar panel KW - Biofilm PY - 2019 AN - OPUS4-50125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hirschberger, Paul A1 - Bartholmai, Matthias ED - Zemčík, Robert ED - Krystek, Jan T1 - Influence of rotor downwash on vertically displaced nanobots in flight N2 - Using a swarm of copter-based gas-sensitive aerial nano robots for monitoring indoor air quality is challenging due to, e.g., limited air space in buildings. To avoid an over-regulation of the available indoor air space (e.g., prohibit copters to fly above each other), a safety region around each copter must be defined to guarantee a safe operation of the swarm. The key contributions of this paper are the realization of experiments that investigate the influence of the rotor downwash on flying vertically displaced nano robots and the development of a model describing the above-mentioned safety region. T2 - 36th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Pilsen, Czech Republic DA - 24.09.2019 KW - Gas sensing KW - Mobile Robot Olfaction KW - Nano aerial robot KW - Swarm PY - 2019 SP - 23 EP - 24 CY - Plzeň AN - OPUS4-49173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hirschberger, Paul A1 - Bartholmai, Matthias T1 - Influence of rotor downwash on vertically displaced nanobots in flight N2 - Using a swarm of copter-based gas-sensitive aerial nano robots for monitoring indoor air quality is challenging due to, e.g., limited air space in buildings. To avoid an over-regulation of the available indoor air space (e.g., prohibit copters to fly above each other), a safety region around each copter must be defined to guarantee a safe operation of the swarm. The key contributions of this poster are the realization of experiments that investigate the influence of the rotor downwash on flying vertically displaced nano robots and the development of a model describing the above-mentioned safety region. T2 - 36th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Pilsen, Czech Republic DA - 24.09.2019 KW - Gas sensing KW - Mobile Robot Olfaction KW - Nano aerial robot KW - Swarm PY - 2019 AN - OPUS4-49175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hüllmann, Dino A1 - Neumann, Patrick P. A1 - Lilienthal, A. J. T1 - Gas Dispersion Fluid Mechanics Simulation for Large Outdoor Environments N2 - The development of algorithms for mapping gas distributions and localising gas sources is a challenging task, because gas dispersion is a highly dynamic process and it is impossible to capture ground truth data. Fluid-mechanical simulations are a suitable way to support the development of these algorithms. Several tools for gas dispersion simulation have been developed, but they are not suitable for simulations of large outdoor environments. In this paper, we present a concept of how an existing simulator can be extended to handle both indoor and large outdoor scenarios. T2 - 36th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Pilsen, Czech Republic DA - 24.09.2019 KW - Gas dispersion simulation KW - CFD KW - Gas tomography PY - 2019 SN - 978-80-261-0876-4 SP - 49 EP - 50 CY - Pilsen, Czech Republic AN - OPUS4-49224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hüllmann, Dino A1 - Neumann, Patrick P. A1 - Lilienthal, A. J. T1 - Gas Dispersion Fluid Mechanics Simulation for Large Outdoor Environments N2 - The development of algorithms for mapping gas distributions and localising gas sources is a challenging task, because gas dispersion is a highly dynamic process and it is impossible to capture ground truth data. Fluid-mechanical simulations are a suitable way to support the development of these algorithms. Several tools for gas dispersion simulation have been developed, but they are not suitable for simulations of large outdoor environments. Here we present a concept of how an existing simulator can be extended to handle both indoor and large outdoor scenarios. T2 - 36th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Pilsen, Czech Republic DA - 24.09.2019 KW - Gas dispersion simulation KW - CFD KW - Gas tomography PY - 2019 AN - OPUS4-49225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schlegel, Moritz-Caspar A1 - McAlister, C. A1 - Spiliotopoulos, C. T1 - Ecodesign spinning towards the circular Economy - The contribution of new standards on the material efficiency N2 - Whilst the concept of ecodesign is intended to account for the environmental impacts of the product across its whole lifecycle, European ecodesign policy to date has been heavily focused upon energy efficiency in the use phase. The Ecodesign Directive and Energy Labelling Regulation have achieved substantial energy savings since their inception. For many products, the magnitude of savings available from further tightening existing energy efficiency requirements is now often outweighed by savings that can be achieved by material efficiency requirements. Further, there are some products such as smartphones for which there are limited gains to be made in energy efficiency but for material efficiency. In the Commission’s Circular Economy Action Plan from 2015, a new direction was defined for ecodesign policy, to systematically examine considerations such as reparability, durability, upgradability, recyclability, or the identification of certain materials or substances. The Commission consequently issued a standardisation request (M/543, 2015) to the European Standardization Organisations (CEN / CENELEC / ETSI) to develop generic/horizontal standards relevant to energy-related products that address these major aspects of material efficiency. In this study we evaluate the potential contribution of these new standards (with specific focus on the standards for repair, durability and recyclability) to future developments under the European Ecodesign Directive. Opportunities for the impact of these standards to be enhanced by future work are highlighted. T2 - PLATE - Product Lifetimes and the Environment CY - Berlin, Germany DA - 18.09.2019 KW - Ecodesign KW - Circular economy KW - Material efficiency KW - Resource efficiency KW - Standardisation PY - 2019 AN - OPUS4-49146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trubiroha, P. A1 - Geburtig, Anja A1 - Wachtendorf, Volker T1 - 40 Years of Global-UV-Test weathering device: with fluorescent UV lamps and a precise microclimatical control into the future N2 - On the basis of a lot of investigation on the spectral sensitivity of photo degradation of plastics and on the underestimated influence of temperature and relative humidity on degradation processes a new type of weathering device was presented at the end of the seventies: It was a combination of a radiation source with fluorescent UV lamps and a precise climatic cabinet. The radiation emission from a combination of four different types of fluorescent UV lamps was superimposed on the specimen surfaces in the climatic cabinet to match the UV part of solar radiation as closely as possible. Air temperature was controlled to within ± 1 °C, and relative humidity to within ± 5 %RH. As the lamps’ emission is focussed on the UV range almost no radiation heating of the sample occurs. Therefore, the temperature of the sample, which is the quantity of consideration for the degradation, is nearly identical with the chamber’s air temperature, which is the quantity to be controlled. Also, therefore, high humidity can be obtained on the sample surface. The limitation of the emission to the UV range is sufficient for the study of the polymer matrix. This type of weathering device offers an exactness of microclimatic control of the sample’s surface, which should be a standard for weathering devices. Even now it is the only weathering device which generates pure relative humidity (without aerosol). T2 - 9th European Weathering Symposium CY - Basel, Switzerland DA - 18.09.2019 KW - Weathering KW - Irradiation PY - 2019 SN - 978-3-9818507-5-8 SP - 37 EP - 47 PB - Thomas Würtz Grafik-Design CY - Karlsruhe, Germany AN - OPUS4-49151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wachtendorf, Volker A1 - Geburtig, Anja A1 - Trubiroha, P. T1 - Application of a newly proposed sensor for effective UV-irradiance for the monitoring of both natural and artificial weathering conditions N2 - To improve on the classic radiometric sensor with radiometric measurement [ ] here a new UV-sensor characteristic for effective UV is proposed that no longer applies equal weighting of spectral irradiation into the UV irradiance value but rather aims at approaching a weighting according to a typical spectral sensitivity curve of polymers. This curve resembles the erythema curve of the skin which is the basis of the UV-index. For the use of the sensor it would be desirable to keep it in the artificial weathering device for the complete weathering test (including rain phases) while the same sensor should also be applicable for the monitoring of outdoor weathering exposures. A first application of this kind of weighted measurement and a comparison with radiometric measurements accompanied with polymer ageing results will be presented together with conclusions for a future effective UV irradiance sensor. T2 - 9th European Weathering Symposium CY - Basel, Switzerland DA - 18.09.2019 KW - UV-irradiance PY - 2019 SN - 978-3-9818507-5-8 VL - 19 SP - 293 EP - 306 AN - OPUS4-49154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Frenzel, Florian A1 - Grauel, Bettina A1 - Nirmalananthan-Budau, Nithiya A1 - Pauli, Jutta A1 - Hoffmann, Katrin T1 - Photoluminescence at BAM – Photoluminescence at BAM – Photophysical Studies, Quantum Yield Measurements, Multiplexing Strategies, and Standards N2 - Photoluminescence applications in the life and material sciences require bright molecular and nanocrystalline emitters, stimuli-responsive optical probes, signal enhancement, multiplexing, and barcoding strategies and traceable methods to quantify the signal-relevant optical properties of luminescent materials at the ensemble and single molecule/particle level. In this context, current research at Division Biophotonics of BAM is presented ranging from dye and nanocrystal photophysics, absolute measurements of photoluminescence quantum yields in the UV/vis/NIR/SWIR, lifetime multiplexing, and the development of different types of fluorescence standards for validating optical-spectroscopic measurements. T2 - Institutskolloquium IPHT CY - Jena, Germany DA - 22.10.2019 KW - Surface group analysis KW - NIR KW - SWIR KW - Quantum dot KW - Lanthanide KW - Cleavable probe KW - Lifetime KW - Multiplexing KW - Sensor KW - Assay PY - 2019 AN - OPUS4-49360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Törne, Wipert Jannik A1 - Piechotta, Christian T1 - GC-MS and GC-MS/MS Based Determination of Transformation Products and Major Phase I Metabolites of Warfarin N2 - Herein, we present the development of a gas chromatographic method for Determination of warfarin, its TPs, and selected metabolites. TPs were formed by applying UV-irradiation, ozonation, and an electrochemical cell coupled to mass spectrometry to mimic the oxidative phase I metabolism. The further aim is to use this method for detection and quantification under environmentally relevant conditions, as well as, toxicological assessment. T2 - SETAC GLB CY - Landau, Germany DA - 04.09.2019 KW - Warfarin KW - GC-MS KW - GC-MS/MS PY - 2019 AN - OPUS4-49307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eichhorn, Maria A1 - Eggers, Romina A1 - Ostermann, Markus T1 - XRF as a Sensor on a Mobile Platform for Soil Mapping N2 - The need for sustainable and effective usage of limited resources like water and soil becomes more and more important due to increasing populations and their need for food. The research initiative BonaRes funded by the Federal Ministry of Education and Research, develops strategies to use soil as a sustainable resource for the bio-economy. One part of this initiative is the Intelligence for Soil (I4S) project. It deals with the development of an integrated system for the site-specific soil fertility management. The goal of the project is to establish a mobile sensor platform for soil mapping as well as to apply soil and crop models to deal with the high amount of produced data. These models are going to be used to formulate recommendations on the use of fertilizers and to gain an improvement on the soil fertility. Using this information, the environmental pollution with substances like nitrate contained in fertilizers can be decreased. Furthermore, the costs for farmers can be decreased if only the amounts of fertilizer needed are applied to the field. The task for BAM is installation and optimization of a handheld XRF sensor for online measurement directly on the field. It is a non-destructive technique and quite suitable for an online approach due to a low maintenance in sample preparation and a fast and simultaneous multi element analysis. The elements of interest in this case are light elements like phosphorus, calcium, and potassium. One of the major tasks is the calibration of the sensor for different soils is finding suitable calibration models, which are evolved to deal with different types of soil. Due to the multi element analysis, micro and macro nutrients can be determined simultaneously. Those differ a lot in their contents, which makes it inevitable to optimize and adapt the analytical procedure. By analyzing soil it is always important to deal with matrix effects, that is why the influence of different disturbances like the moisturize content and the grain size needs to be investigated. The XRF is only one of many sensors that combined give customized fertilizing recommendations in the end. T2 - Tag der Chemie CY - TU Berlin, Germany DA - 11.07.2019 KW - XRF KW - BonaRes PY - 2019 AN - OPUS4-49551 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eichhorn, Maria A1 - Eggers, Romina A1 - Ostermann, Markus T1 - Development of an online XRF method to determine micro- and macro nutrients in soil N2 - The need for sustainable and effective usage of limited resources like water and soil becomes more and more important due to increasing populations and their need for food. The research initiative BonaRes funded by the Federal Ministry of Education and Research, develops strategies to use soil as a sustainable resource for the bio-economy. One part of this initiative is the Intelligence for soil (I4S) project. It deals with the development of an integrated system for the site-specific soil fertility management. The goal of the project is to establish a mobile sensor platform for soil mapping as well as to apply soil and crop models to deal with the high amount of produced data. These models are going to be used to formulate recommendations on the use of fertilizers and to gain an improvement on the soil fertility. Using these information’s, the environmental pollution with substances like nitrate contained in fertilizers can be decreased. Furthermore, the costs for farmers can be decreased if only the amounts of fertilizer actually needed are applied to the field. The task for the Federal Institute for Materials Research and Testing (BAM) is the installation and optimization of a handheld XRF sensor for the online measurement directly on the field. It is a non-destructive technique and quite suitable for the online approach due to a low maintenance in the sample preparation and a fast and simultaneous multi element analysis. The elements of interest in this case are light elements like phosphorus, calcium and potassium. One of the major tasks is the calibration of the sensor for different soils, therefore, calibration models are evolved to deal with different types of soil. Due to the multi element analysis, micro and macro nutrients can be determined simultaneously. Those differ a lot in their contents which makes it inevitable to optimize and adapt the measuring procedure. By analyzing soil, its always important to deal with matrix effects, that is why the influence of different disturbances like the moisturize content and the grain size needs to be investigated. The XRF is only one of many sensors that combined give customized fertilizing recommendations in the end. T2 - CANAS 2019 CY - Freiberg, Germany DA - 24.09.2019 KW - XRF KW - BonaRes PY - 2019 AN - OPUS4-49553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Adam, Christian T1 - What is in your opinion the fertiliser of the future? N2 - Conventional fertilisers have their disadvantages as nutrient release is not synchronised with the demand of plants. Several approaches of "next generation fertilisers" are aiming at controlled nutrient release. Recycling fertilisers are often not soluble in water but fully plant available. They are suitable raw materials for the production of new types of controlled release fertilisers. T2 - CLOOP-Workshop "What is in your opinion the fertiliser of the future?" CY - Berlin, Germany DA - 22.10.2019 KW - Controlled release fertilisers KW - Recycling fertilisers PY - 2019 AN - OPUS4-49554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - An, Biwen Annie A1 - Koerdt, Andrea T1 - Investigating and modelling MIC using in-house developed flow system (Hi-Tension) N2 - Microbiologically influenced corrosion is a multidisciplinary research area. To develop successful mitigation strategies, expertise from the industry and research institutes are essential. In Department 4.1, we developed an innovative laboratory flow model (Hi-Tension) that allows effective monitoring of MIC under both standard and non-standard conditions. The flow model allows flexibility with material selection, flow rates, temperature and other environmental parameters changes. Furthermore, the flow model allows integration of electrochemical measurements using microsensors, providing a comprehensive view of corrosion at the biofilm level. Currently, initial results indicate corrosion in the flow model is significantly higher than that of standard laboratory set ups, i.e. static incubations, particularly for methane-producing microorganisms. T2 - Departmental Meeting with Helmotz Dresden CY - BAM, Berlin, Germany DA - 04.11.2019 KW - MIC KW - Corrosion KW - FIB/SEM KW - Corrosion products KW - Hi-Tension KW - Flow Model KW - Modelling PY - 2019 AN - OPUS4-49417 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Kleinbub, Sherin A1 - Herrmann, Annett T1 - Investigation of methanogen-induced microbiologically influenced corrosion (Mi-MIC) using simulated marine environments under flowing conditions N2 - Microbiologically influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) in offshore industries, such as the oil and gas pipelines, due to the high concentrations of sulfate in the seawater. SRM act upon the metal by the reactiveness of hydrogen sulfide (HS-), and by withdrawal of the available electrons (Fe --> Fe2+ + 2e-; E° = -0.47 V) in electrical contact with the metal (EMIC). However, methanogenic archaea can also cause MIC. Because they do not produce HS-, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. To investigate the corrosion potential of methanogens, we studied the EMIC methanogenic strains isolated from marine sediments (Methanobacterium-affiliated strain IM1) and crude oil tanks (Methanococcus maripaludis Mic1c10), in an in-house developed flow-through cell to simulate a fluctuating environment. A co-culture of M. maripaludis and D. alaskensis was also established to study the effect of syntrophic growth on metal corrosion that may occur in industrial pipelines. Results indicate that the rates of iron corrosion due to coupled methanogenesis (up to 0.4 mm/yr) are higher to that caused by the marine SRM Desulfovibrio alaskensis (0.15 mm/yr). Surface analyses of the metal showed severe pitting with high methane production. Genomic analysis of the EMIC methanogen M. maripaludis Mic1c10 will provide an insight on the mechanisms of MIC. Such knowledge and deeper understanding also from an electrokinetic point of view may not only provide further models in microbial electrophysiology, but also contribute to mitigation strategies in MIC T2 - Einladung zum Kolloquium HZDR – Helmholtz-Zentrum Dresden-Rossendorf CY - Dresden, Germany DA - 24.09.2019 KW - Corrosion KW - MIC KW - Archaea KW - Methanogens KW - Environmental Simulation PY - 2019 AN - OPUS4-49403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Kleinbub, Sherin A1 - Herrmann, Annett T1 - Investigation of methanogen-induced microbiologically influenced corrosion (Mi-MIC) using simulated marine environments under flowing conditions N2 - Microbiologically influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) in offshore industries, such as the oil and gas pipelines, due to the high concentrations of sulfate in the seawater. SRM act upon the metal by the reactiveness of hydrogen sulfide (HS-), and by withdrawal of the available electrons (Fe --> Fe2+ + 2e-; E° = -0.47 V) in electrical contact with the metal (EMIC). However, methanogenic archaea can also cause MIC. Because they do not produce HS-, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. To investigate the corrosion potential of methanogens, we studied the EMIC methanogenic strains isolated from marine sediments (Methanobacterium-affiliated strain IM1) and crude oil tanks (Methanococcus maripaludis Mic1c10), in an in-house developed flow-through cell to simulate a fluctuating environment. A co-culture of M. maripaludis and D. alaskensis was also established to study the effect of syntrophic growth on metal corrosion that may occur in industrial pipelines. Results indicate that the rates of iron corrosion due to coupled methanogenesis (up to 0.4 mm/yr) are higher to that caused by the marine SRM Desulfovibrio alaskensis (0.15 mm/yr). Surface analyses of the metal showed severe pitting with high methane production. Genomic analysis of the EMIC methanogen M. maripaludis Mic1c10 will provide an insight on the mechanisms of MIC. Such knowledge and deeper understanding also from an electrokinetic point of view may not only provide further models in microbial electrophysiology, but also contribute to mitigation strategies in MIC T2 - Archaea Meeting-Schmitten VAAM Fachgruppe CY - Schmitten, Germany DA - 12.09.2019 KW - Corrosion KW - MIC KW - Archaea KW - Methanogens KW - Environmental Simulation PY - 2019 AN - OPUS4-49405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kalbe, Ute A1 - Schatten, Rene A1 - Szuppa, Tony T1 - Monitoring of soil-like materials for potential reuse N2 - Paragraphs 6 to 8 of the proposed amendment to the German Federal Soil Protection and Contaminated Sites Ordinance contain new requirements regarding the application of soil-like material outside of a rootable soil layer. For example, it is intended to enable reusing of soil-like materials containing regulated substances in concentrations between the single and double precautionary values (PV), provided that the limit values for the eluate are complied with. The aim of a running project (funding code UFOPLAN 3716 74 203 0, German Federal Environmental Agency) is to fill data deficits for soil-like materials which meet the above-mentioned criteria to promote circular economy and conservation of natural resources. Different soil-like materials of various origin (for example dredged material, banquet peeling material, urban and meadow soils) are considered with a special focus on PAHs. A major challenge in sample acquisition is the relatively narrow target range of the PAH content between 3 and 6 mg/kg dm considering a high measurement uncertainty at this concentration level. The contents of PAHs, heavy metals and other inorganic elements in solid matter are determined following established standards. In addition, the soil-like materials are characterized concerning particle size, pH, conductivity, SOM, TOC and carbonate content. To determine the eluate concentration, column tests according to DIN 19528 and batch tests according to DIN 19529 at a liquid/solid ratio (L/S) of 2 l/kg and 10 l/kg are performed comparatively. The results show that the new requirements of the planned amendment to the Federal Soil Protection and Contaminated Sites Ordinance certainly opens additional possibilities for reuse of soil-like materials. Even most soil-like materials within 2-3 x PV comply with the eluate value for PAH (0.2 μg/l) both in the batch test and in the column test at L/S 2 l/kg. Selected inorganic substances lead to similar evaluations. Therefore, the application of such soil-like materials outside of rootable soil layers would be possible. Previously, those materials were often used for landfill construction. In the future, a utilization in the adjacent environment by backfilling, recultivation, renaturation, composting or landscaping would be conceivable. T2 - AquaConSoil 2019 -Sustainable Use and Management of Soil, Sediment and Water Resources CY - Antwerp, Belgium DA - 20.05.2019 KW - Soil-like materials KW - Utilization KW - Ordinance on Contaminated Sites and Soil Protection KW - PAH PY - 2019 AN - OPUS4-50022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raysyan, Anna A1 - Savvina, Olga T1 - Determination of mycotoxins in food and pharmaceuticals by immunochemical analysis N2 - Mycotoxins are toxic secondary metabolites produced by filamentous fungi. The contamination of mycotoxins in food and feed products has been recognized to be an important safety issue for human and animal health. In the context of food safety, medical herbs nowadays are also considered as potential source of mycotoxins. Considering that mycotoxins are generally stable compounds and could not be destroyed completely during food-processing operations, prevention of contamination is identified as main issue. Currently, biochemical, and immunochemical methods based on the use of antibodies as a specific recognition bioreagents are increasingly found to be applied in screening. Along with good common enzyme linked immunosorbent assay (ELISA), more and more widely used method is fluorescence polarization immunoassay (FPIA). These methods help to monitor of many toxic substances in large number of samples and carried out quickly, easily, cheaply, and give good results in quantifying the one or more substances. That is why the use of immunochemical methods of analysis, such as ELISA and FPIA, is the most promising for solving this problem. Thus, the aim of our work is to optimize the determination of mycotoxins by ELISA and FPIA in medical herbs. We selected antibodies and a tracer for the FPIA, then we constructed obtained a calibration curve and determined the sensitivity of this method for the samples in aqueous media. Then, the optimal sample preparation was elaborated: for spiked nuts samples were selected and prepared and a calibration curve was obtained with respect to the matrix effect. After that, the analysis of spiked nuts samples was performed by ELISA and FPIA and the sensitivity of both methods was compared. T2 - Global Food Science Student Competition CY - Jiangnan University, Wuxi, China DA - 14.11.2018 KW - Mycotoxins KW - FPIA KW - ELISA PY - 2018 AN - OPUS4-50048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von der Au, Marcus A1 - Metzger, M. A1 - Meermann, Björn T1 - HR-CS-GF-MAS as a new screening method for emerging pollutants - per- and polyfluorinated substances in the environment N2 - The introduction of fluorine in organic molecules leads to new chemical/physical properties. Especially in the field of pharmaceuticals, fluorinated organic molecules are becoming more and more popular and at present amount up to 25% of market share, with an upward trend. The main benefits of fluorinated pharmaceuticals are: (i) enhanced fat solubility; (ii) enhanced interaction of catalytic-center of enzymes with fluorine-drugs; (iii) a delayed metabolism within the human body. Highly fluorinated organic substances are also used in technical applications (e.g. coatings, fire-extinguishing agents). Due to the broad variety of fluorinated substances and increasing production volumes numerous and up to date unknown fluorine-species are most likely to be present in the (aquatic) environment. Analytical methods to assess the degree of contamination of surface waters with organically bound fluorine are highly needed and up to now only combustion ion chromatography based method is available, which is relatively laborious. Since a few years’ high resolution-continuum source-graphite furnace atomic absorption spectrometers (HR-CS-GFAAS) are commercially available from Analytik Jena. By means of this technique, the detection of high resolution molecular absorption spectra (MAS) is enabled. Thus, fluoride is detectable upon the addition of a modifier and the formation of a diatomic molecule (e.g. GaF). Just recently, we applied this technique for total fluorine (mainly dissolved fluoride) analysis in river water samples. In the present work a HR-CS-GFMAS method for extractable organically bound fluorine (EOF) analysis in surface water samples was developed by us. The method is based on SPE extraction of organically bound fluorine even in the presence of high fluoride concentrations followed by HR-CS-GFMAS analysis upon elution. Due to high enrichment factors, LODs in the low ng/L range were achieved. We successfully applied our SPE HR-CS-GFMAS method to Rhine water samples and EOF in the range of about 50-300 ng/L was detectable. T2 - DGMS 2020 CY - Münster, Germany DA - 01.03.2020 KW - SPE HR-CS GF MAS PY - 2020 AN - OPUS4-50503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von der Au, Marcus A1 - Metzger, M. A1 - Gehrenkemper, Lennart A1 - Meermann, Björn T1 - HR-CS-GF-MAS as a new screening method for emerging pollutants - per- and polyfluorinated substances in the environment N2 - The introduction of fluorine in organic molecules leads to new chemical/physical properties. Especially in the field of pharmaceuticals, fluorinated organic molecules are becoming more and more popular and at present amount up to 25% of market share, with an upward trend. The main benefits of fluorinated pharmaceuticals are: (i) enhanced fat solubility; (ii) enhanced interaction of catalytic-center of enzymes with fluorine-drugs; (iii) a delayed metabolism within the human body. Highly fluorinated organic substances are also used in technical applications (e.g. coatings, fire-extinguishing agents). Due to the broad variety of fluorinated substances and increasing production volumes numerous and up to date unknown fluorine-species are most likely to be present in the (aquatic) environment. Analytical methods to assess the degree of contamination of surface waters with organically bound fluorine are highly needed and up to now only combustion ion chromatography based method is available, which is relatively laborious. Since a few years’ high resolution-continuum source-graphite furnace atomic absorption spectrometers (HR-CS-GFAAS) are commercially available from Analytik Jena. By means of this technique, the detection of high resolution molecular absorption spectra (MAS) is enabled. Thus, fluoride is detectable upon the addition of a modifier and the formation of a diatomic molecule (e.g. GaF). Just recently, we applied this technique for total fluorine (mainly dissolved fluoride) analysis in river water samples. In the present work a HR-CS-GFMAS method for extractable organically bound fluorine (EOF) analysis in surface water samples was developed by us. The method is based on SPE extraction of organically bound fluorine even in the presence of high fluoride concentrations followed by HR-CS-GFMAS analysis upon elution. Due to high enrichment factors, LODs in the low ng/L range were achieved. We successfully applied our SPE HR-CS-GFMAS method to Rhine water samples and EOF in the range of about 50-300 ng/L was detectable. T2 - DGMS 2020 CY - Münster, Germany DA - 01.03.2020 KW - SPE HR-CS GF MAS PY - 2020 AN - OPUS4-50504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin T1 - Optical-Spectroscopic Studies of Soot Particles N2 - Aiming at the development of a non-destructive optical measurement methods for the characterization of nano-sized airborne particulate pollutants we performed fluorescence spectroscopic investigations of their relevant emission properties. Here, we present first results from studies of soot particles from synthetic aerosols deposited on PTFE membranes. T2 - EMPIR 18HLT02 AeroTox M9 meeting CY - London, UK DA - 29.01.2020 KW - Aaerosol particles KW - Airborne particulate pollutants KW - Fluorescence spectroscopy PY - 2020 AN - OPUS4-50511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Plarre, Rüdiger ED - Trematerra, P. ED - Conti, B. T1 - Uninvited and welcomed guests in museums – biological management of clothes moths and woodworms N2 - In museums and historic houses clothes, moths (Tineola bisselliella, Tinea pellionella) and the furniture beetle (Anobium punctatum) are the most economically important pests on textiles or wooden artifacts, respectively. Their management is essential to protect cultural ethnological heritage and natural history collections for future generations. Pest management strategies have changed over time. Today, intensive knowledge on pest biology and overall material science are key cornerstones in IPM concepts - also for the Museum environment. The important first steps for sustainable pest management are risk assessment, early pest detection and identification of pathways of infestation. These steps are followed by physical and biological means of control, which have lately gained more importance than applying biocides. Several potentially effective biological enemies of clothes moths and woodworm have been known for a long time, but their promotion for pest control in Museums and historic houses is just beginning. This short review summarizes current concepts of pest life cycle interruption by applying good quarantine and very specific biological measures. The lessons learned from recent faunistic surveys, life-history studies as well as behavioral observations of parasitoids and predators of clothes moths and woodworm may supplement the pest management tool box. The need for further research in this field is addressed. T2 - Working Group Meeting "Integrated Protection of Stored Products" CY - Pisa, Italy DA - 03.09.2019 KW - Corynetes caeruleus KW - Biological control KW - Museum pests KW - Tineola bisselliella KW - Anobium punctatum KW - Apanteles carpatus KW - Baryscapus tineivorus PY - 2020 SN - 978-92-9067-333-0 VL - 148 SP - 266 EP - 273 AN - OPUS4-50543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von der Au, Marcus A1 - Metzger, M. A1 - Meermann, Björn T1 - SPE HR-CS GF MAS – A New Sum Parameter Method for Extractable Organically Bound Fluorine (EOF) in Surface Water N2 - Introducing fluorine into organic molecules leads to new chemical/physical properties. Up to now, the OECD identified and categorized 4730 per- and polyfluoroalkyl substances-related CAS numbers. Especially in the field of technical applications (e.g. surface coatings, fire extinguishing foams) as well as pharmaceuticals, fluorinated substances gain in importance. Thus, an increasing release of fluorinated compounds into the environment is expected. The high environmental persistence of perfluorinated compounds leads to the risk of bioaccumulation. Partially fluorinated substances (polyfluorinated compounds) undergo degradation; thus, further possible fluorine species occur, which may exhibit different toxic/chemical properties. However, current target methods (e.g., HPLC/MS-MS) are not applicable for a comprehensive screening as well as assessment of pollution. Thus, the poster presents a new sum parameter method for quantitative determination of extractable organically bound fluorine (EOF) in surface water samples. The method is based on solid-phase extraction (SPE) for fluorinated compounds as well as quantitative separation of interfering inorganic fluoride in combination with high-resolution-continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) for quantitative analysis. By means of this technique, the detection of high resolution molecular absorption spectra (MAS) is enabled upon the addition of a modifier and the formation of a diatomic molecule (e.g. GaF) After successful optimization of the SPE procedure (maximum concentration of extractable organic fluorine), enrichment factors of about 1000 were achieved, allowing for highly sensitive fluorine detection. Next to a species-unspecific response, limits of detection in the low nanogram per liter range were achieved and real surface water samples were analyzed. EOF values in the range of about 50-300 ng/L were detected. The developed method allows for a fast and sensitive as well as selective screening of organically bound fluorine (EOF) in surface water samples, helping to elucidate pollution hotspots as well as discharge routes. T2 - 2020 Winter Conference on Plasma Spectrochemistry CY - Tucson, AZ, USA DA - 12.01.2020 KW - SPE HR-CS GF MAS KW - Sum parameter KW - Fluorine Detection PY - 2020 AN - OPUS4-50352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Gerrits, Ruben T1 - Data of "An experimental study of fungal olivine weathering" N2 - This file contains all the data used for the figures shown in the Dissertation of Ruben Gerrits with the title "An experimental study of fungal olivine weathering". In this study, the weathering-affecting, rock-inhabiting fungus, Knufia petricola A95 and the Fe-bearing olivine (Fe0.2Mg1.8SiO4) were selected to investigate fungi-induced effects on mineral dissolution. The availability of a melanin-deficient mutant (ΔKppks) of K. petricola A95, that produced more extracellular polymeric substances (EPS) than the wild type (WT), enabled comparative studies of the role of melanin and EPS in weathering processes. KW - Olivine KW - Weathering KW - Fungus PY - 2019 DO - https://doi.org/10.26272/opus4-48770 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-48770 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -