TY - THES A1 - Ecke, Alexander T1 - Integrated Diagnostics of Pharmaceutical Contaminants in Water Supply and Management Systems N2 - The contamination of drinking water with pharmaceuticals represents a severe health risk. In order to monitor the drinking water quality continuously and enable quick countermeasures in case of contamination, novel sensors are required. Here, immunoanalytical methods based on the binding of the analyte to highly selective antibodies can be helpful. In this work, magnetic bead-based immunoassays (MBBAs) have been developed for the detection of two relevant contaminants of drinking water: diclofenac (DCF) and amoxicillin (AMX). In case of the latter, not only the parent drug is of interest in the risk assessment but also its hydrolysis products (HPs). In a comprehensive study, the influence of external factors and intrinsic properties of the water on the rate of hydrolysis was investigated. As the hydrolysis of AMX further impacts the recognition by the antibody, a strategy to analyze samples with unknown hydrolysis degree of AMX was established employing the enzyme β-lactamase in sample preparation. For both analytes, the MBBAs enable the fast quantification with results obtained in less than one hour which represents a major improvement over conventional immunoassays like the enzyme-linked immunosorbent assay (ELISA). Compared to the respective ELISAs with the same antibodies, the MBBAs further exhibit improved analytical parameters such as a broader measurement range and lower limits of detection. Due to the magnetic properties of the beads that serve as a platform for the assays, they are suitable for the mobile and automated detection at the point-of-care. An integrated diagnostic system was designed in which electrochemical detection with chronoamperometry on a microfluidic chip allows for further miniaturization of the system to enable monitoring of the drinking water quality online in water supply pipes at waterworks. N2 - Die Kontamination von Trinkwasser mit Arzneimitteln stellt eine ernste Gesundheitsgefahr dar. Um die Trinkwasserqualität kontinuierlich überwachen und im Falle einer Verunreinigung zeitnah reagieren zu können, sind neuartige Sensoren erforderlich. Hier können immunanalytische Methoden, die auf der Bindung des Analyten an hochselektive Antikörper beruhen, hilfreich sein. In dieser Arbeit wurden magnetpartikelbasierte Immunoassays (MBBAs) für zwei relevante Kontaminanten des Trinkwassers entwickelt: Diclofenac (DCF) und Amoxicillin (AMX). Bei letzterem erwiesen sich neben der Ausgangsverbindung auch dessen Hydrolyseprodukte (HPs) als relevant für die Gefährdungsbeurteilung. In einer umfassenden Studie wurde der Einfluss von externen Faktoren und intrinsischen Eigenschaften des Wassers auf die Hydrolysegeschwindigkeit untersucht. Da die Hydrolyse von AMX auch die Erkennung durch den Antikörper beeinflusst, wurde eine Strategie zur Analyse von Proben mit unbekanntem Hydrolysegrad von AMX unter Verwendung des Enzyms β-Lactamase in der Probenvorbereitung entwickelt. Für beide Analyten ermöglichen die MBBAs eine schnelle Quantifizierung mit Ergebnissen in weniger als einer Stunde, was eine wesentliche Verbesserung gegenüber herkömmlichen Immunoassays wie dem Enzyme-linked Immunosorbent Assay (ELISA) darstellt. Im Vergleich zu den entsprechenden ELISAs mit denselben Antikörpern weisen die MBBAs zudem verbesserte analytische Parameter auf, wie einen breiteren Messbereich und niedrigere Nachweisgrenzen. Aufgrund der magnetischen Eigenschaften der Partikel, die als Plattform für die Assays dienen, eignen sie sich für den mobilen und automatisierten Einsatz vor Ort. Ein integriertes Diagnosesystem, bei dem die elektrochemische Detektion mittels Chronoamperometrie auf einem mikrofluidischen Chip eine weitere Miniaturisierung des Systems ermöglicht, wurde entworfen, um die Überwachung der Trinkwasserqualität online in Wasserwerken zu ermöglichen. KW - Antibiotics KW - Immunoassay KW - Amoxicillin KW - Diclofenac KW - Biosensor KW - Antibodies PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-591901 DO - https://doi.org/10.18452/25853 SP - 1 EP - 129 CY - Berlin AN - OPUS4-59190 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Schmidt, Selina T1 - Effects of biocides on processes underlying resistance evolution N2 - Antimicrobial resistance (AMR) is a global health problem. It is well known that antibiotics can drive evolutionary processes that underlie antimicrobial resistance (AMR) evolution and spread in clinical and environmental settings. In contrast, less is known about the effects of antimicrobial substances that are used as biocides (i.e. disinfectants and preservatives) on AMR evolution and spread. Biocides are present in various settings, interacting with diverse microbial communities. Therefore, it is crucial to evaluate their role in the evolution and dissemination of antimicrobial resistance. Biocides occur in a wide range of concentrations in various environmental settings. By examining how the various concentrations affect selection mechanisms, we gain insights into potential developments related to antimicrobial resistance. The aim of this PhD thesis is to investigate the effects of biocides on processes underlying resistance evolution. Specifically, the work focused on key mechanisms for resistance spread, resistance evolution, and the effect of selection pressures on evolved resistance mechanisms. The thesis is structured around three major objectives: (i) to determine the effect of biocides on the evolution of resistance by affecting the rate of occurrence of de novo mutations, (ii) to determine the effect of biocides on the spread of resistance genes by modifying the rate of horizontal gene transfer (HGT) processes, and (iii) to investigate the selective drivers of the emergence of antimicrobial resistance in adaptive laboratory evolution (ALE) experiments. De-novo mutations are spontaneous mutations that occur at a certain rate in microorganisms. The effect of biocides at subinhibitory environmentally relevant concentrations on the mutation rate in Acinetobacer baylyi, Bacillus subtilis and Escherichia coli was assessed with the fluctuation assay. The results showed that biocides affected mutation rates in a species and substance dependent matter. The bisbiguanide chlorhexidine digluconate, the quaternary ammonium compound didecyldimethylammonium chloride, the metal copper, the pyrethroid-insecticide permethrin, and the azole-fungicide propiconazole increase mutation rates in E. coli, whereas no increases were identified for B. subtilis and A. baylyi. Horizontal gene transfer refers to diverse mechanisms that mediate the transfer of mobile genetic elements between microorganisms. This work focused on conjugation and transformation. Conjugation is a process whereby a conjugative plasmid is transferred from a donor cell to a recipient cell. Transformation is a process whereby exogenous donor DNA is taken up into a recipient cell and integrated into the recipient’s’ genome. The effects of subinhibitory environmentally relevant biocide concentrations on the conjugation rate of E. coli and the transformation rate of the naturally competent organisms A. baylyi in were assessed. The results showed that benzalkonium chloride (BAC), chlorhexidine and permethrin increased conjugation in E. coli, while none of the biocides increased transformation rates in A. baylyi. To further understand the molecular mechanisms underlying the effects on mutation and conjugation rates, I investigated the induction of the RpoS-mediated general stress and the RecA-linked SOS response upon biocide exposure. The results show a link between the general stress and the SOS response with increased rates of mutation and conjugation, but not for all biocides. One major approach to study the evolutionary response of bacteria to antimicrobials are ALE experiments with growth at subinhibitory concentrations linked to serial subculturing over many generations. Such experiments have been used to study resistance evolution to antibiotics and biocides. However, previous work showed that adaptation to biocide stress may be mediated by different evolutionary drivers. Here, I investigated the contributions of evolution for increased survival as opposed to improved growth in ALE experiments with E. coli exposed to subinhibitory BAC concentrations. Two distinct evolutionary treatments selecting for survival only or survival and growth led to specific evolutionary adaptations apparent in the phenotypes and genotypes of the evolved populations. Populations growing in the presence of BAC evolved increased fitness in the presence of BAC associated with higher resistance to BAC and cross-resistance to antibiotics, while this was not the case for populations evolving for increased survival only. Genotypic characterization by whole genome sequencing of the evolved populations revealed parallelism in mutated genes among replicate populations and distinct differences across treatments. Treatments selecting for survival and growth showed mutations in stress response related genes (hslO and tufA), while selection for survival led to mutations in genes for metabolic regulation (cyaA) and cellular structure (flagella fliJ). In summary, this thesis shows that biocides affect AMR evolution and emphasizes the importance of understanding of how biocides impact the molecular and evolutionary process that underlie AMR evolution. KW - Biocides KW - Antimicrobial resistances KW - Microbial survival mechanisms PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:188-refubium-43383-9 SP - 1 EP - 101 PB - Freie Universität CY - Berlin AN - OPUS4-60678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Dümichen, Erik T1 - Einsatz neuer thermoanalytischer Verfahren zur Untersuchung thermischer und thermo-oxidativer Degradationsmechanismen sowie dem Netzwerkaufbau von Polymeren N2 - Die Anwendung thermoanalytischer Methoden für die Polymercharakterisierung hat aufgrund der makromolekularen Struktur von Polymere Vorteile. Es wurden zwei neue thermoanalyti-sche Verfahren entwickelt und deren Einsatz anhand von Anendungsbeispielen demons-triert, sowie mit etablierten, thermoanalytischen Methoden verglichen. Für die thermische- und thermo-oxidative Zersetzungsgasanalytik wurde die Thermogravi-metrie (TGA) gekoppelt mit der Thermodesoptions-Gaschromatographie-Massenspektrometrie (TDS-GC-MS). Die Zersetzungsgase der TGA wurden dafür über ei-nen Festphasenadsorber geleitet, auf dem eine repräsentative Auswahl von polymerspezifi-schen Analyten adsorbiert wurde. Die thermische Extraktion der Analyten erfolgte in der TDS-GC-MS. Dies ermöglichte die Trennung der Analyten sowie die eindeutige Identifizie-rung mittels charakteristischer Massenfragmentmuster. Sie wurde als TED-GC-MS bezeichnet. Es stellte sich heraus, dass sie sich besonders für die Analyse von komplexen Kohlen-wasserstoffgemischen mit Molmassen von mehr als 100 g/mol eignet. In Kombination mit anderen Kopplungstechniken wie beispielsweise die TGA-FTIR/MS, die speziell für die Ana-lyse von kleineren Molekülen verwendet wurde, konnten neue grundlegende Zersetzungs-mechanismen entwickelt werden. Es wurde beispielsweise sichtbar, dass sowohl bei der thermischen als auch bei der thermo-oxidativen Degradation von Polyamid 66 (PA 66) Kon-densationsreaktionen eine wichtige Rolle spielen. Die Methode erwies sich darüber hinaus als besonders geeignet für die Identifizierung und Quantifizierung von Polymeren in Umweltproben. Es entstand dazu eine erste grundlegende Arbeit für die quantitative Bestimmung von Polyethylen (PE) Mikroplastik in Umweltproben. Im zweiten Teil der Arbeit wurde eine steuerbare beheizbare Zelle eingeführt. Mit ihr war es möglich, mit Hilfe der Nahinfrarotspektroskopie (NIR), sich verändernde Netzwerkstrukturen während der Härtung sichtbar zu machen. Vergleichend dazu wurden etablierte, kalorische Messungen durchgeführt. Somit konnten für verschiedene Epoxidsysteme die Aushärtegrade während der Härtung mit variablen Heizraten bestimmt werden. Dadurch konnten Aushär-tungskinetiken erstellt werden, die durch isotherme und komplexe Aushärtungsszenarien validiert wurden. KW - Thermische Methoden KW - Polymer KW - Analytik PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:188-fudissthesis000000100982-9 UR - http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000100982 SP - 1 EP - 65 PB - FU Berlin CY - Berlin AN - OPUS4-42171 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Herzel, Hannes T1 - Phase reaction during thermochemical treatment of sewage sludge and biomass ashes with alkali compounds to increase nutrient plant availability N2 - Das Element Phosphor ist für Pflanzen, Tiere und Menschen essenziell. Um die Phosphorversorgung für Pflanzen in der Landwirtschaft zu gewährleisten, werden Phosphordünger eingesetzt. Die Nährstoffe werden hauptsächlich durch Wirtschaftsdünger (Gülle, Jauche, Stallmist) zurückgeführt. Zusätzlich werden in der konventionellen Landwirtschaft mineralische Phosphordünger eingesetzt, die vorwiegend aus dem fossilen Rohstoff Phosphorit gewonnen werden. Um die Abhängigkeit von fossilen Rohstoffen zu reduzieren, sollen nährstoffhaltige Rest- und Abfallstoffe zur Phosphordünger aufbereitet werden. In Abwasserkläranlagen fällt phosphorreicher Klärschlamm als Abfallstoff an. Der größte Anteil des Klärschlammes wird in Steinkohlekraftwerken, Zementwerken oder in Monoklärschlammverbrennungsanlagen verbrannt. Die Klärschlammaschen aus den Monoverbrennungsanlagen enthalten bis zu 12 Gew.-% Phosphor und sind daher für die Düngerherstellung geeignet. Ein geeignetes Verfahren zur Aufbereitung der Klärschlammaschen ist die thermochemische Behandlung im Drehrohrofen. Mit dem sogenannten AshDec®-Prozess, kann ein Phosphordünger hergestellt werden. Aktuell wird eine großtechnische Anlage in Altenstadt (Bayern) geplant, die im Jahr 2023 den Betrieb aufnehmen soll. Der zentrale Bestandteil ist die Phasenumwandlung von schlecht pflanzenverfügbaren Phosphaten in der Klärschlammasche (vorwiegend das Calciumphosphat Whitlockit und Aluminiumphosphat) zu gut pflanzenverfügbaren Calciumalkaliphosphaten im Produkt. Um dies zu erzielen, werden die Aschen mit Natrium- und/oder Kalium-Verbindungen gemischt und einer thermochemischen Behandlung bei 800-1000 °C zugeführt. Um die Pflanzenverfügbarkeit und Düngewirkung von Phosphaten abschätzen zu können, ist die chemische Extraktionsmethode mit neutraler Ammoniumcitratlösung geeignet. In der Dissertation werden die (Phosphor-)Phasenreaktionen und die Prozessbedingungen des thermochemischen Verfahrens untersucht, um das Verfahren gezielt zu modifizieren und die Wirtschaftlichkeit zu steigern. Die Zielphasen der thermochemischen Behandlung sind die Calciumalkaliphosphate CaNaPO4 und CaKPO4, und deren Mischphasen Ca(Na,K)PO4, welche in der Publikation 3.1 synthetisiert wurden. Für diese Calciumalkaliphosphate wurden die thermodynamischen Daten der Standardbildungsenthalpie, Standardentropie, Wärmekapazität und die Wärmemenge der Phasenumwandlung bestimmt (Publikation 3.1). Bei der thermochemischen Behandlung von Klärschlammaschen wurden als Additive Natrium- und Kaliumsulfat bei verschiedenen Temperaturen getestet. Der Einsatz von Kaliumadditiven ist erwünscht, um den Marktwert des Produktes durch die Produktion eines Phosphor-Kalium-Düngers zu erhöhen. Zusätzlich wird eine möglichst geringe Prozesstemperatur angestrebt, bei der die erwünschten Calciumalkaliphosphate gebildet werden. In den Publikationen 3.2 und 3.3 wird gezeigt, dass für Klärschlammaschen eine komplette Phasenumwandlung zu Calciumnatriumphosphaten ab 875 °C in Laborversuchen (Korundtiegel) mit dem Additiv Natriumsulfat erzielt werden kann. Der Einsatz von Kaliumsulfat erforderte notwendige Reaktionstemperaturen von über 1100 °C. Diese unterschiedlichen Reaktionstemperaturen hängen mit den Schmelzpunkten von Natriumsulfat (890 °C) und Kaliumsulfat (1070 °C) zusammen. Um Kaliumsulfat in den Prozess bei niedrigen Temperaturen zu integrieren, wurden Natriumsulfat und Kaliumsulfat vor der Behandlung gemischt. Dies führte zu einer Schmelzpunkterniedrigung und resultierte in Reaktionstemperaturen zwischen 900 °C bis 1000 °C für die untersuchten Mischungen von Natrium- und Kaliumsulfat (Publikation 3.3). Die Zusammensetzung der Calciumalkaliphosphate Ca(Na,K)PO4 war anders als erwartet. Bei der Phasenanalytik stellte sich heraus, dass bei geringem und mittlerem Anteil von Kaliumsulfat im Alkali-Additiv nur Calciumnatriumphosphate mit sehr geringen Kaliumgehalten gebildet wurden. Erst bei einem hohen Anteil von Kaliumsulfat in der Mischung der Alkalisulfate konnten kaliumhaltige Calciumalkaliphosphate nachgewiesen werden (u.a. (Ca0.9Mg0.1)(Na0.6K0.4)PO4). Dieser geringere Einbau von Kalium in die Calciumalkaliphosphate hängt mit den zusätzlich stattfindenden Reaktionen zwischen den Alkalien und den Silikaten zusammen. Es ist bekannt, dass die zugegebenen Alkalisulfate zuerst mit Silikaten und anschließend mit den Phosphaten reagieren. Silikate bauen bevorzugt Kalium ein, deswegen konnten erst kaliumhaltige Phosphate gebildet werden, wenn die Reaktion mit den Silikaten abgeschlossen war. Dies führte zu einem geringeren Kaliumanteil in den gebildeten Phosphaten im Vergleich zum Kaliumanteil der verwendeten Alkaliadditive. Das in Silikaten gebundene Kalium ist wahrscheinlich schlecht für die Pflanzen verfügbar. Dies könnte den Einsatz der produzierten Phosphor-Kalium-Dünger einschränken. Der bevorzugte Kaliumeinbau in Silikaten konnte auch in Kalkulationen mit den thermodynamischen Daten aus der Publikation 3.1 gezeigt werden. Mittels Phasenanalytik vor und nach der chemischen Extraktion, konnte die Zugehörigkeit zu verschiedenen Modifikationen der Calciumalkaliphosphaten sicher bestimmt werden und eine ungefähre Zusammensetzung dieser Calciumalkaliphosphate abgeschätzt werden. So konnte nachgewiesen werden, dass die Modifikation vom CaNaPO4 ungefähr 10 % Magnesium einbauen kann. Wenn mehr Magnesium eingebaut wird, bildet sich die Phase (Ca,Mg)NaPO4, die eine vergleichbare Struktur wie die bekannte Phase (Ca0.72Mg0.28)NaPO4 aufweist. Dieses magnesiumreiche Calciumnatriumphosphat entstand vermutlich, wenn entweder erhöhte Anteile an Kalium eingebaut wurden (Ca0.8Mg0.2)(Na0.85K0.15)PO4 (Publikation 3.3) oder die Phasenumwandlung vom Calciumphosphat Whitlockit zum Calciumalkaliphosphat CaNaPO4 noch nicht abgeschlossen war (Publikation 3.2). Wenn mehr Kalium eingebaut wird, dann entsteht eine Phase (u.a. (Ca0.9Mg0.1)(Na0.6K0.4)PO4) ähnlich zu den Mischphasen aus der Publikation 3.1. In den Publikationen 3.4 und 3.5 wurden keine Klärschlammaschen untersucht, sondern Biokohlen aus Modellklärschlämmen (Publikation 3.5) und Biomasseaschen (Publikation 3.4) aus der Vergasung oder Verbrennung einer Mischung aus Zuckerrohrbagasse und Hühnertrockenkot. Die thermochemischen Produkte der Biokohlen bzw. Biomasseaschen enthielten das gewünschte CaNaPO4 und hatten eine hohe Düngewirkung in Pflanzenwachstumsversuchen mit Sojapflanzen bzw. Gräsern. KW - AshDec KW - Recycling fertilizer KW - Calcium alkali phosphate PY - 2020 SP - 1 EP - 186 CY - Jena AN - OPUS4-54724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -