TY - GEN A1 - Babutzka, Martin A1 - et al., T1 - Exposure Site Catalogue - Catalogue of atmospheric corrosion field exposure sites in Europe N2 - Exposure sites and outdoor exposure have always been a part of atmospheric corrosion research providing the “final answer”, although at the cost of long exposure times. Individual exposure programs such as ISOCORRAG, MICAT and ICP Materials have resulted in collaborative networks of exposure sites. So far, however, there has been no collective effort to put together currently active sites in a comprehensive manner and across programs and nations. The information collected in the catalogue is possible thanks to the work of all individual site managers listed as contact persons, efforts of members of Working Party 25 (WP25) Atmospheric Corrosion of the European Federation of Corrosion (EFC) and financial support of the EFC. With this Catalogue you can both get a general overview of what is available and be guided if you are looking for a particular environment with certain characteristics. KW - Atmospheric Corrosion KW - Atmosphärische Korrosion KW - Corrosion KW - Korrosion KW - Exposure KW - Auslagerungsversuche PY - 2022 UR - https://efcweb.org/Scientific+Groups/WP25_+Atmospheric+Corrosion/Current+Activities/_/Exposure%20site%20catalogue%20EFC%20lores.pdf SP - 1 EP - 56 PB - European Federation of Corrosion, EFC AN - OPUS4-55284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schoknecht, Ute T1 - The Impact of Weather Conditions on Biocides in Paints N2 - Aim. The European biocidal products regulation requires environmental risk assessments for biocidal products under service conditions. This is only possible, if processes that lead to biocide emissions into the environment are understood and can be reasonably predicted. Actual emissions due to leaching result from different processes that are affected by material properties and environmental conditions. Transformation of biocides can affect emissions considerably. Leaching and possible transformation of the film preservatives carbendazim, diuron, OIT and terbutryn in paints was observed under laboratory and field conditons in order to investigate the influence of different factors, e.g. water contact and radiation on biocide emissions. The paints contained either white titanium dioxide or a red iron oxide pigment to check whether pigments affect leaching processes. Methods. Test specimens of a water-based styrene acrylic dispersion paint on glass were exposed to UVA-radiation in a UV weathering device and/or exposed to water contact by immersion events on the basis of the European standard EN 16105. Plywood panels were coated and exposed to natural weather conditions in a semi-field experiment. Concentrations of biocides and transformation products were analysed in leachates from laboratory tests, runoff samples and remaining coatings. Results. The impact of weathering conditions on transformation processes differs for the investigated active substances. Water contact, radiation as well as pigments in the paints determine the pattern and amount of transformation products on coatings, leachates and runoff water. Observations from laboratory and field experiments were compared. It proved that results from laboratory tests support understanding of data from field experiments. Detailed knowledge on the fate of active substances under environmental conditions supports manufacturers to develop safe applications of film preservatives and authorities to evaluate its environmental impact. T2 - European Technical Coatings Congress 2022 CY - Kraków, Poland DA - 12.07.2022 KW - Paints KW - Biocides KW - Transformation KW - Emission PY - 2022 AN - OPUS4-55274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schoknecht, Ute A1 - Kalbe, Ute A1 - Happel, O. T1 - Combination of leaching tests with ecotoxicity and chemical analysis – lessons learnt N2 - The presentation describes analytical methods to characterize eluates from leaching tests and identify organic substances in leachates. Chances to obtain complementary information from ecotoxtests and chemical analysis are discussed. T2 - Workshop: Ecotoxicological evaluation of construction products – test results, implementation in Guidance, Technical Standards and Ecolabelling CY - Online meeting DA - 21.03.2022 KW - Leaching KW - Ecotoxicity KW - Construction products PY - 2022 AN - OPUS4-55276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia T1 - Light-dependent development in Botrytis cinerea N2 - Sunlight is an important environmental factor is almost all ecosystems by being a source of energy, information, and stress. All organisms must protect themselves from the harmful effects of light such as UV radiation, ROS accumulation, heat, and desiccation. Finally, light qualities and quantities can be used for decision making, timing and as guide for directed growth when they are sensed and transduced into intracellular signals. Botrytis cinerea and other plant pathogens infecting the sun-exposed parts of the plant must cope with the high light conditions the host plant seeks. Further they experience an altered light spectrum (‘green gap’) when they colonize shaded parts of the plant; it is depleted for blue and red light that is absorbed by the plant chlorophyll and enriched for green and far-red light that is reflected or transmitted by the plant tissue. As these ambient light conditions trigger the shade avoidance response in the plant, the pathogens may trigger their own ‘shading response’ such as the upregulation of virulence determinants and inoculum production. B. cinerea maintains a highly sophisticated light signaling machinery that senses different light qualities to trigger a variety of responses, that are protection, morphogenesis, positive and negative tropisms, and entrainment. These characteristics render B. cinerea a valuable model to enlighten the role of light in parasitic fungus-plant interactions and beyond. The vegetative mycelium – the core of all infection and developmental programs – is not visibly pigmented and thus considered to be sensitive to biotic and abiotic stresses. However, the vegetative hyphae have a very limited half-life and are usually restricted to the invasive growth phase in which they are protected from light by the plant tissue. Fast colonization of host tissues and by this proper nutrient acquisition enables the rapid formation of long-lasting reproduction structures (melanized conidiophores with conidia, sclerotia) on the surfaces of rotted plant tissues. Depending on the light and temperature conditions, conidiation or sclerotial development is initiated. Taken together, B. cinerea uses light-regulated signaling networks to avoid light whenever possible; for example, by minimizing the half-life of sensitive cells that are hiding in plant tissues and by scheduling critical steps such as conidiogenesis, conidial germination and penetration of plant tissues for the night. T2 - BotrySclero2022 CY - Avignon, France DA - 13.06.2022 KW - Fungus KW - Light KW - Stress KW - Melanin PY - 2022 AN - OPUS4-55248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia T1 - Fungi in extreme habitats: Lessons from the microcolonial black fungus Knufia petricola N2 - Fungi that share light-flooded habitats with phototrophs may profit from their excess photosynthetic products. But to cope with sunlight-associated stresses [e.g. high temperatures, UV radiation with associated DNA damage, accumulation of reactive oxygen species (ROS), desiccation and osmotic stresses] it is important for fungi to accurately sense and respond to changes in light. The genomes of black [dihydroxynaphthalene (DHN) melanin-containing] fungi from phyllosphere and exposed solid surfaces contain multiple photoreceptors (PRs). The plant pathogen Botrytis cinerea (Leotiomycetes) has a highly sophisticated photosensory and signalling system that helps to avoid light and to locate susceptible hosts. Rock-inhabiting Dothideomycetes and Eurotiomycetes including Knufia petricola possess equal numbers of PRs along with the same set of protective pigments. This similarity between black fungi from plant and rock surfaces suggests that photoperception and -regulation are important for fungi that receive nutrients through cooperation with phototrophs. T2 - Gordon Research Conference "Cellular and Molecular Fungal Biology" CY - Holderness, NH, USA DA - 26.06.2022 KW - Light KW - Stress KW - Photoperception KW - Pigments PY - 2022 AN - OPUS4-55249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winkler, Nicolas P. A1 - Neumann, Patrick P. A1 - Kohlhoff, Harald A1 - Säämänen, A. A1 - Kangas, A. A1 - Poikkimäki, M. A1 - Schaffernicht, E. A1 - Lilienthal, A. J. T1 - RASEM - Robot-Assisted Environmental Monitoring for Air Quality Assessment N2 - This presentation was held at the SAF€RA symposium and gives an overview to the research project RASEM and its results. T2 - 2022 SAF€RA Symposium CY - Rome, Italy DA - 19.05.2022 KW - Air Pollution KW - Air Quality KW - Environmental Monitoring KW - Mobile Robot Olfaction KW - Wireless Sensor Network PY - 2022 AN - OPUS4-54953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sichler, Theresa A1 - Herzel, Hannes A1 - Adam, Christian T1 - European Sewage Sludge Ash Monitoring N2 - For the European sewage sludge ash monitoring ash samples from sewage sludge incineration plants were requested from all over Europe. First results of the received samples regarding main and trace element contents were presented at ESPC4. Moreover, a list of all known European facilities for sewage sludge monoincineration was presented. T2 - European Sustainable Phosphorus Conference 4 CY - Vienna, Austria DA - 20.06.2022 KW - Sewage sludge ash KW - Sewage sludge incineration KW - Phosphorus recovery PY - 2022 AN - OPUS4-55145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kirsch, Klemens A1 - Matschiavelli, N. A1 - Koerdt, Andrea A1 - Stumpf, T. T1 - Microbiologically Influenced Corrosion of Cast Iron Containers for High-Level Nuclear Waste Disposal N2 - Ductile and corrosion resistant cast iron is investigated as a potential container material to store high-level nuclear waste (HLW) in deep geological repositories (DGR) in claystone bedrock. The dynamic corrosion process is dependent on the conditions present in the DGR which are influenced and/or controlled by geochemical parameters (e.g., redox potential, pH, presence of and ionic concentration in (pore-)water), physical parameters (e.g., pressure), and the influence of metabolically active microorganisms. Cast iron corrosion will occur at the intersection of container and its decontaminable coating with the bentonite backfill material which contains natural microbial populations. The conditions in a DGR are simulated in microcosm experiments to investigate the impact of microbiologically influenced corrosion (MIC); the microcosms contain: B27 bentonite, synthetic pore water, N2 or N2-CO2 atmosphere, cast iron coupons, as well as the bacterium Desulfosporosinus burensis (isolated from repository depth in Buré, France). Three coupon configurations will be used: untreated, coated with decontaminable coating, and coated with decontaminable coating which has been damaged to simulate possible damages. The microcosms will be examined for bio- and geochemical parameters, such as pH, redox potential, mineral phases, sulphate concentration, Fe(II):Fe(III), changes in microbial populations, and the corrosion process for formation of corrosion products, and potential microbial influence, after a 270-day incubation period at 25°C under anaerobic conditions. In subsequent experiments, the sorption behavior of lanthanides and actinides onto the membranes of viable cells and spores of D. burensis, as well as the surface of corroded cast iron coupons will be investigated. T2 - 8th International Workshop on Long-term Prediction of Corrosion in Nuclear Waste Systems 2022 CY - Baden, Switzerland DA - 21.06.2022 KW - Microbiologically influenced corrosion (MIC) KW - Cast iron KW - Nuclear waste disposal PY - 2022 AN - OPUS4-55154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Plarre, Rüdiger A1 - Busweiler, Sabine A1 - Haustein, V A1 - von Laar, C. A1 - Haustein, T ED - Bueno-Mari, R ED - Montalvo, T ED - Robinson, W H T1 - Korynetes caeruleus (coleoptera: cleridae) for biological control of anobium punctatum (coleoptera, ptinidae) T2 - Proceedings of the 10th International Conference on Urban Pests N2 - Larvae and adults of Korynetes caeruleus (de Geer 1775) (Coleoptera: Cleridae) were collected from old churches and reared in the laboratory on Anobium punctatum (de Geer 1774) (Coleoptera, Ptinidea, formerly Anobiidae). Breeding success of K. caeruleus was low, but basic parameters of this species’ developmental cycle were identified. At 21 °C and 75 % relative humidity and a four-month cold period at 4 °C, the development of K. caeruleus from egg to adult appearance lasted 2 years. The pupal stage may be reached and completed after one and a half years. Feeding on larvae of A. punctatum by larvae of K. caeruleus was observed and consisted of a combination of sucking haemolymph and consuming body parts. The sickle-like mandibles of larvae of K. caeruleus penetrate the cuticle of prey larvae followed by pumping and sucking body movements. Adult beetles of A. punctatum were not attacked by K. caeruleus larvae. Feeding behavior of adult K. caeruleus was not investigated. T2 - 10th International Conference on Urban Pests CY - Barcelona, Spain DA - 26.06.2022 KW - Cultural heritage KW - Biological pest control KW - Life history data KW - Wood protection PY - 2022 SN - 978-84-09-41424-6 SP - 34 EP - 44 AN - OPUS4-55170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klewe, Tim A1 - Völker, Tobias A1 - Landmann, M. A1 - Wilsch, Gerd A1 - Kruschwitz, Sabine T1 - Laser-based sorting of construction and demolition waste for the circular economy N2 - Closed material cycles and unmixed material fractions are required to achieve high recovery and recycling rates in the building industry. The growing diversity of construction and demolition waste is leading to increasing difficulties in separating the individual materials. Manual sorting involves many risks and dangers for the executing staff and is merely based on obvious, visually detectable differences for separation. An automated, sensor-based sorting of these building materials could complement or replace this practice to improve processing speed, recycling rates, sorting quality, and prevailing health conditions. A joint project of partners from industry and research institutions approaches this task by investigating and testing the combination of laser-induced breakdown spectroscopy (LIBS) and visual (VIS)/ near-infrared (NIR) spectroscopy. Joint processing of information (data fusion) is expected to significantly improve the sorting quality of various materials like concrete, main masonry building materials, organic components, etc., and may enable the detection and separation of impurities such as SO3-containing building materials (gypsum, aerated concrete, etc.). Focusing on Berlin as an example, the entire value chain will be analyzed to minimize economic/technological barriers and obstacles at the cluster level and to sustainably increase recovery and recycling rates. First LIBS measurements show promising results in distinguishing various material types. A meaningful validation shall be achieved with further practical samples. Future works will investigate the combination of LIBS and VIS/NIR spectroscopy in a fully automated measurement setup with conveyor belt speeds of 3 m/s. T2 - 6th fib Congress 2022 CY - Oslo, Norway DA - 12.06.2022 KW - LIBS KW - Recycling KW - Construction and demolition waste KW - Sorting PY - 2022 AN - OPUS4-55120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Winkler, Nicolas P. A1 - Schugardt, Jan T1 - Remote Drone-to-Drone Gas Sensing: A Feasibility Study N2 - Remote gas sensors mounted on mobile robots enable the mapping of gas distributions in large or poorly accessible areas. A challenging task however, is the generation of three-dimensional distribution maps from these spatially sparse gas measurements. To obtain high-quality reconstructions, the choice of optimal measuring poses is of great importance. Remote gas sensors, that are commonly used in Robot Assisted Gas Tomography (RAGT), require reflecting surfaces within the sensor’s range, limiting the possible sensing geometries, regardless of whether the robots are ground-based or airborne. By combining ground and aerial robots into a heterogeneous swarm whose agents are equipped with reflectors and remote gas sensors, remote inter-robot gas measurements become available, taking RAGT to the next dimension – releasing those constraints. In this paper, we demonstrate the feasibility of drone-to-drone measurements under realistic conditions and highlight the resulting opportunities. T2 - 19th International Symposium on Olfaction and Electronic Nose CY - Aveiro, Portugal DA - 29.05.2022 KW - Aerial robot KW - TDLAS KW - Inter-robot measurements KW - Gas tomography KW - Plume PY - 2022 AN - OPUS4-54927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Anja A1 - Buchberger, G. A1 - Stifter, D. A1 - Duchoslav, J. A1 - Hertwig, Andreas A1 - Bonse, Jörn A1 - Heitz, J. A1 - Schwibbert, Karin T1 - Reducing Escherichia coli adhesion to PET by modulating spatial periods of laser-induced surface nanoripples N2 - Using nanofiber-like cell appendages, secreted proteins and sugars, bacteria can establish initial surface contact followed by irreversible adhesion and the formation of multicellular biofilms. Here, the stabilizing extracellular biofilm matrix together with physiological changes on the single cell level leads to an increased resilience towards harsh environmental conditions, antimicrobials, the host immune response and established cleaning procedures. Persistent microbial adhesion on e.g., medical implants, in water supply networks or food-processing industry is often associated with chronic inflammation, nosocomial and foodborne infections, enhanced biofouling and product contamination. To prevent persistent microbial colonization, antibacterial surface strategies often target the initial steps of biofilm formation and impede adhesion of single cells before a mature biofilm is being formed. While chemical coatings have been widely used, their restricted biocompatibility for eukaryotic cells and attenuated antibacterial-effects due to compound release limit their areas of application and alternative strategies focus on modified surfaces topographies to impede bacterial adhesion. In this work, we used ns-UV laser treatment (wavelength 248 nm and a pulse duration of 20 ns) to generate laser-induced periodic surface structures (LIPSS) with different submicrometric periods ranging from ~210 to ~610 nm on commercial poly(ethylene terephthalate) (PET) foils. Following structurally and chemically analyses, PET samples were subjected to bacterial colonization studies with Escherichia coli TG1, a bacterial test strain with a strong biofilm formation capacity due to the formation of nanofiber-like cell-appendages (pili). Bacterial adhesion tests revealed that E. coli repellence decisively depends on the spatial periods of the LIPSS with the strongest reduction (~91%) in cell adhesion observed for LIPSS periods of 214 nm. Scanning electron microscopy and additional biofilm studies using a pili-deficient E. coli TG1 strain revealed the importance of extracellular appendages in the bacterial repellence observed here, thus, pointing out new antibiotics-free strategies for antibacterial surfaces by impeding nanofiber-mediated bacterial adhesion. T2 - E-MRS Spring Meeting 2022 CY - Online meeting DA - 30.05.2022 KW - Laser-induced periodic surface structures (LIPSS) KW - Bacterial adhesion tests KW - Bacteria repellent surfaces KW - Polymer foils KW - E. coli PY - 2022 AN - OPUS4-54930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erning, Johann Wilhelm ED - Stojanovic, I. T1 - Hygienic assessment of SLM-printed stainless steel T2 - Proceedings 25th International conference of materials protection and industrial finish N2 - Electrochemical measurements for the hygienic assessment of additively manufactured products are discussed. The Assessment and details of the material are described, examples for the application are given. N2 - Elektrochemische Messungen zur hygienischen Bewertung additiv gefertigter Bauteile werden diskutiert. Die Bewertung und Details des Werkstoffs werden beschrieben, Anwendungsbeispiele gezeigt. T2 - Kormat 2022 CY - Online meeting DA - 26.04.2022 KW - Korrosion KW - Trinkwasser KW - Hygienische Bewertung KW - Additive Fertigung PY - 2022 SN - 1848-4255 SP - 21 EP - 25 PB - Proceedings of the Croatian Society for Material Protection CY - Zagreb AN - OPUS4-54932 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Biocides Used as Material Preservatives Modify Rates of de novo Mutation and Horizontal Gene Transfer in Bacteria N2 - Biocides used as material preservatives are in contact with various environments during direct application or passive leaching from protected materials. Antimicrobial resistance (AMR) is a global health problem and the environment is an important compartment for the evolution and transmission of AMR. Soil is an environment with a large reservoir of natural microbial communities and antimicrobial resistance (AMR) genes. Those natural microbial communities are frequently exposed to biocides used as material preservatives. Previous studies have shown that antibiotics, metals and pesticides affect the underlying processes of resistance evolution and spread; namely de novo mutagenesis and horizontal gene transfer by conjugation and transformation in microbial communities. However, it is unknown if active substances used in material preservatives are involved in these processes. We show that biocides used as material preservatives affect rates of mutation and conjugation in microorganism in a species- and substance-dependent manner, while rates of transformation are not directly affected. Our data highlights the importance of assessing the contribution of material preservatives on AMR evolution and spread in the environment. T2 - Microbiome Network Meeting CY - Berlin, Germany DA - 20.07.2022 KW - Biocides KW - Horizontal gene transfer KW - Mutation rate PY - 2022 AN - OPUS4-55263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbrich, Adelina-Elisa A1 - An Stepec, Biwen Annie A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Deciphering microbiological influenced corrosion processes on steel with single cell-ICP-ToF-MS N2 - Microbiologically influenced corrosion (MIC) is a highly unpredictable process dictated by the environment, microorganisms, and the respective electron source. Interaction pathways between cells and the metal surface remain unclear. The development of this novel single cell-inductively coupled plasma-time of flight-mass spectrometry analytical method and a MIC-specific staining procedure facilitate the investigation of steel-MIC interactions. With this it is possible to analyze the multi-elemental fingerprint of individual cells. The detection method revealed elemental selectivity for the corrosive methanogenic archaeal strain Methanobacterium-affiliated IM1. The interface between material and environmental analysis thus receives special attention, e.g., when considering MIC on solid steel. Hence, the possible uptake of individual elements from different steel samples is investigated. Results showed the cells responded at a single-cell level to the different types of supplemented elements and displayed the abilities to interact with chromium, vanadium, titanium, cobalt, and molybdenum from solid metal surfaces. The information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts, thus combining modern methods of analytical sciences with materials research. T2 - Adlershofer Forschungsforum 2022 CY - Berlin, Germany DA - 11.11.2022 KW - Single cell KW - Microbiological influenced corrosion MIC KW - Sc-ICP-ToF-MS KW - Method development PY - 2022 AN - OPUS4-56250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Biocide resistance risk assessment N2 - This presentation details the current status of biocide resistance risk assessment. T2 - Risk assessment of biocide and antibiotic resistance CY - Online meeting DA - 09.03.2022 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Standardization KW - Biocides KW - Risk assessment PY - 2022 UR - https://www.gu.se/en/biocide/risk-assessment-of-biocide-and-antibiotic-resistance AN - OPUS4-56235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz A1 - Van Driessche, A. T1 - Particle-mediated origins of mesocrystalline disorder in calcium sulfate single crystals N2 - Calcium sulfate minerals are abundant in natural and engineered environments and they exist in the form of three hydrates: gypsum (CaSO4·2H2O), bassanite (CaSO4·0.5H2O), and anhydrite (CaSO4). Due to their relevance in natural and industrial processes, the formation pathways of these calcium sulfate phases from aqueous solution have been the subject of intensive research1. The state-of-the-art of the calcium sulfate formation mechanisms builds upon and goes beyond what we have come to appreciate in the astounding intricacy of other mineral formation processes from ions in aqueous solutions. The original, and rather naive, 'textbook' image of these phenomena, stemming from the adaptation of classical nucleation and growth theories, has increased in complexity due to the discovery of a variety of precursor and intermediate species2. These include solute clusters (e.g. prenucleation clusters, PNCs), liquid(-like) phases, as well as amorphous and nanocrystalline solids etc.. In this context, a number of studies have already revealed that nucleation in the CaSO4-H2O system is non-classical, where the formation of the different crystalline phases involves several steps including a common amorphous precursor1, 3, 4. In this contribution we show that the formation of the amorphous phase involves the aggregation of small primary particles into larger disordered aggregates exhibiting a "brick-in-the-wall" structure5, 6. The actual crystallization occurs by the restructuring and coalescence of the particles ("bricks") into a given calcium sulfate phase depending on the physicochemical conditions of the solution. Importantly, the rearrangement process does not continue until a (nearly-)perfect homogeneous single crystal is obtained. Instead it comes to a stop, or at least significantly slows down. Such a process thus yields a final imperfect mesocrystal, composed of smaller domains rather than a continuous crystal structure, within which the domains are separated by an amorphous (i.e. less ordered) calcium sulfate phase. Hence, the non-classical crystallization process of CaSO4 yields a final imperfect mesocrystal with an overall morphology resembling that of a single crystal, yet composed of smaller nano-domains. Importantly, these observations reveal that organic-free calcium sulfate mesocrystals grown by a particle mediated-pathway preserve in the final crystal structure a “memory” or “imprint” of their non-classical nucleation process, something that has been overlooked until now. Furthermore, the nano-scale misalignment of the structural sub-units within these crystals can propagate through the length-scales, and be expressed macroscopically as misaligned zones/domains in large single crystals. Indeed, by considering large anhydrite crystals from the famous Naica Mine (“Cueva de los cristales”) we observed a suite of correlated self-similar void defects spanning multiple length-scales7. These flaws, in the macroscopic crystal, stem from “seeds of imperfection” originating from a particle-mediated nucleation pathway. Hence, building a crystal could be viewed as Nature stacking blocks in a game of Tetris, whilst slowly forgetting the games core concept and failing to fill rows completely. T2 - ECCG: European Conference on Crystal Growth 7 CY - Paris, France DA - 25.07.2022 KW - Anhydrite KW - SAXS KW - Single crystal KW - Mesocrystal PY - 2022 AN - OPUS4-56276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Frenzel, Olivia A1 - Piechotta, Christian T1 - Identification of Metabolites and Transformation Products of Bisphenols N2 - Bisphenol A (BPA) is widely used in Polycarbonate (PC), Polyacrylic resins (PAR), Polysulfones (PSU), Epoxy resins (ER), and Polyetherimides (PEI). It is also used in recycled Polyvinyl chloride (PVC) [1–3]. These BPA-containing materials have a wide area of application, especially outside. All outdoor applications are exposed to a variety of environmental impacts, like temperature, solar radiation (physical influences), chemical influences (rain or ozone), biological influences (microorganisms), and mechanical influences (hail, sand). These impacts are damaging and aging the material which can be followed by leaching or migration of pollutants like Bisphenol A into the environment. Understanding the fate and behavior of the released pollutants is very important. Therefore, different transformation products of selected Bisphenols will be generated and analyzed. T2 - 33rd International Symposium on Chromatography – ISC 2022 CY - Budapest, Hungary DA - 18.09.2022 KW - Environment KW - Transformation products KW - Bisphenols KW - Metabolites KW - Wastewater PY - 2022 AN - OPUS4-56202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Frenzel, Olivia A1 - Piechotta, Christian T1 - Identification of transformation products and metabolites of selected Bisphenols N2 - Bisphenol A (BPA) is widely used in many Polymers. Many outdoor applications are made from BPA-based materials which are exposed to a variety of environmental impacts, like temperature, solar radiation, rain, and others. This could lead to damaging and aging of the material which might cause leaching or migration of pollutants into the environment. To understand the fate and behavior different transformation products of selected Bisphenols will be generated and analyzed. T2 - Umwelt2022 CY - Emden, Germany DA - 05.09.2022 KW - Environment KW - Bisphenols KW - Transformation products KW - Metabolites KW - Wastewater PY - 2022 AN - OPUS4-56203 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Biocides As Drivers For Antimicrobial Resistance Evolution In The Environment N2 - Antimicrobial resistance (AMR) is a global health problem with the environment being an important compartment for the evolution, selection and transmission of AMR. These processes are impacted by pollution with antibiotics. However, biocides used as disinfectants and material preservatives are major pollutants by far excceding the market for antibiotics in terms of mass. Our work shows that biocides have the potential to affect evolutionary processes towards AMR by increasing the rates of de-novo mutation and conjugation. These effects depend on the species and biocidal substance. Importantly, chlorhexidine and quaternary ammonium compounds (QACs) affect rates of mutation and conjugation at environmentally relevant concentrations in E. coli. Moreover, our results show a connection between the RpoS-mediated general stress and the RecA-linked SOS response with increased rates of mutation and conjugation, but not for all biocides. Furthermore, our work highlights the potential of biocides to contribute to selection and transmission of AMR. We show that the application of biocides, especially QAC disinfectants, leads to the rapid evolution of tolerance (i.e. increased survival) in adaptive laboratory evolution (ALE) experiments. The evolved tolerant strains have a selective advantage in the presence of environmentally-relevant concentrations of antibiotics, which could lead to the stabilization of biocide tolerance in environments where biocides and antibiotics co-occur (e.g. wastewater, animal stables). ALE experiments with biocide tolerant strains indicate a decreased evolvability of resistance to antibiotics. Taken together, our work shows the importance of assessing the contribution of biocides on evolution, selection and transmission of AMR in the environment. T2 - 6th Environmental Dimension of Antibiotic Resistance (EDAR6) CY - Gothenburg, Sweden DA - 22.09.2022 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Biofilms KW - Biocides KW - Risk assessment PY - 2022 AN - OPUS4-56262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Biocide Resistance - Road to Risk Assessment N2 - This presentation details the current status of biocide resistance risk assessment and provides a roadmap for future activities. T2 - OECD, 6th Meeting of the Working Party on Biocides CY - Paris, France DA - 28.09.2022 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Standardization KW - Biocides KW - Risk assessment PY - 2022 AN - OPUS4-56263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - BIOCIDE N2 - This presentation gives an overview about the BIOCIDE project performed with the Aquatic Pollutants joint call. T2 - Aquatic Pollutants TransNet workshop CY - Online meeting DA - 09.11.2022 KW - Antimicrobial resistance KW - Bacteria KW - Biofilms KW - Biocides KW - Risk assessment KW - Wastewater PY - 2022 AN - OPUS4-56265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haratsu, T. A1 - Neumann, Patrick P. A1 - Sakaue, M. A1 - Matsukura, H. A1 - Ishida, H. T1 - Simulating a Gas Source Localization Algorithm with Gas Dispersion Produced by Recorded Outdoor Wind N2 - This presentation reports the use of the first gas dispersion simulator capable of generating large wind fluctuation, to test a modification to a gas source localization algorithm and study how the change affects it. Gas source localization at an outdoor environment is a challenging task mainly due to the complexity of the spreading gas caused by the unpredictable nature of constantly changing wind. Therefore, a novel use of outdoor wind in developing a gas source localization system by simulation will be shared. To consider the characteristic of sudden but large and unpredictable changes in wind direction, recorded outdoor wind was used to simulate a realistic outdoor gas dispersion which has been done for the first time. With the use of this simulator, a modification to a mobile robot-based gas source localization algorithm was evaluated. Multiple simulations of the modified and the original algorithm were done to study the effect of the tested modification. The results showed that a small difference in the algorithm can greatly impact the results. From this study, we consider the use of simulation consisting of the necessary traits to evaluate outdoor gas source localization, has the potential to accelerate the development of a reliable localization system. T2 - ROBOT2022: Fifth Iberian Robotics Conference CY - Zaragoza, Spain DA - 23.11.2022 KW - Gas Dispersion Simulator KW - Gas Source Localization KW - Mobile Robot Olfaction KW - Particle Filter PY - 2022 AN - OPUS4-56413 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Herzel, Hannes T1 - Phase reaction during thermochemical treatment of sewage sludge and biomass ashes with alkali compounds to increase nutrient plant availability N2 - Das Element Phosphor ist für Pflanzen, Tiere und Menschen essenziell. Um die Phosphorversorgung für Pflanzen in der Landwirtschaft zu gewährleisten, werden Phosphordünger eingesetzt. Die Nährstoffe werden hauptsächlich durch Wirtschaftsdünger (Gülle, Jauche, Stallmist) zurückgeführt. Zusätzlich werden in der konventionellen Landwirtschaft mineralische Phosphordünger eingesetzt, die vorwiegend aus dem fossilen Rohstoff Phosphorit gewonnen werden. Um die Abhängigkeit von fossilen Rohstoffen zu reduzieren, sollen nährstoffhaltige Rest- und Abfallstoffe zur Phosphordünger aufbereitet werden. In Abwasserkläranlagen fällt phosphorreicher Klärschlamm als Abfallstoff an. Der größte Anteil des Klärschlammes wird in Steinkohlekraftwerken, Zementwerken oder in Monoklärschlammverbrennungsanlagen verbrannt. Die Klärschlammaschen aus den Monoverbrennungsanlagen enthalten bis zu 12 Gew.-% Phosphor und sind daher für die Düngerherstellung geeignet. Ein geeignetes Verfahren zur Aufbereitung der Klärschlammaschen ist die thermochemische Behandlung im Drehrohrofen. Mit dem sogenannten AshDec®-Prozess, kann ein Phosphordünger hergestellt werden. Aktuell wird eine großtechnische Anlage in Altenstadt (Bayern) geplant, die im Jahr 2023 den Betrieb aufnehmen soll. Der zentrale Bestandteil ist die Phasenumwandlung von schlecht pflanzenverfügbaren Phosphaten in der Klärschlammasche (vorwiegend das Calciumphosphat Whitlockit und Aluminiumphosphat) zu gut pflanzenverfügbaren Calciumalkaliphosphaten im Produkt. Um dies zu erzielen, werden die Aschen mit Natrium- und/oder Kalium-Verbindungen gemischt und einer thermochemischen Behandlung bei 800-1000 °C zugeführt. Um die Pflanzenverfügbarkeit und Düngewirkung von Phosphaten abschätzen zu können, ist die chemische Extraktionsmethode mit neutraler Ammoniumcitratlösung geeignet. In der Dissertation werden die (Phosphor-)Phasenreaktionen und die Prozessbedingungen des thermochemischen Verfahrens untersucht, um das Verfahren gezielt zu modifizieren und die Wirtschaftlichkeit zu steigern. Die Zielphasen der thermochemischen Behandlung sind die Calciumalkaliphosphate CaNaPO4 und CaKPO4, und deren Mischphasen Ca(Na,K)PO4, welche in der Publikation 3.1 synthetisiert wurden. Für diese Calciumalkaliphosphate wurden die thermodynamischen Daten der Standardbildungsenthalpie, Standardentropie, Wärmekapazität und die Wärmemenge der Phasenumwandlung bestimmt (Publikation 3.1). Bei der thermochemischen Behandlung von Klärschlammaschen wurden als Additive Natrium- und Kaliumsulfat bei verschiedenen Temperaturen getestet. Der Einsatz von Kaliumadditiven ist erwünscht, um den Marktwert des Produktes durch die Produktion eines Phosphor-Kalium-Düngers zu erhöhen. Zusätzlich wird eine möglichst geringe Prozesstemperatur angestrebt, bei der die erwünschten Calciumalkaliphosphate gebildet werden. In den Publikationen 3.2 und 3.3 wird gezeigt, dass für Klärschlammaschen eine komplette Phasenumwandlung zu Calciumnatriumphosphaten ab 875 °C in Laborversuchen (Korundtiegel) mit dem Additiv Natriumsulfat erzielt werden kann. Der Einsatz von Kaliumsulfat erforderte notwendige Reaktionstemperaturen von über 1100 °C. Diese unterschiedlichen Reaktionstemperaturen hängen mit den Schmelzpunkten von Natriumsulfat (890 °C) und Kaliumsulfat (1070 °C) zusammen. Um Kaliumsulfat in den Prozess bei niedrigen Temperaturen zu integrieren, wurden Natriumsulfat und Kaliumsulfat vor der Behandlung gemischt. Dies führte zu einer Schmelzpunkterniedrigung und resultierte in Reaktionstemperaturen zwischen 900 °C bis 1000 °C für die untersuchten Mischungen von Natrium- und Kaliumsulfat (Publikation 3.3). Die Zusammensetzung der Calciumalkaliphosphate Ca(Na,K)PO4 war anders als erwartet. Bei der Phasenanalytik stellte sich heraus, dass bei geringem und mittlerem Anteil von Kaliumsulfat im Alkali-Additiv nur Calciumnatriumphosphate mit sehr geringen Kaliumgehalten gebildet wurden. Erst bei einem hohen Anteil von Kaliumsulfat in der Mischung der Alkalisulfate konnten kaliumhaltige Calciumalkaliphosphate nachgewiesen werden (u.a. (Ca0.9Mg0.1)(Na0.6K0.4)PO4). Dieser geringere Einbau von Kalium in die Calciumalkaliphosphate hängt mit den zusätzlich stattfindenden Reaktionen zwischen den Alkalien und den Silikaten zusammen. Es ist bekannt, dass die zugegebenen Alkalisulfate zuerst mit Silikaten und anschließend mit den Phosphaten reagieren. Silikate bauen bevorzugt Kalium ein, deswegen konnten erst kaliumhaltige Phosphate gebildet werden, wenn die Reaktion mit den Silikaten abgeschlossen war. Dies führte zu einem geringeren Kaliumanteil in den gebildeten Phosphaten im Vergleich zum Kaliumanteil der verwendeten Alkaliadditive. Das in Silikaten gebundene Kalium ist wahrscheinlich schlecht für die Pflanzen verfügbar. Dies könnte den Einsatz der produzierten Phosphor-Kalium-Dünger einschränken. Der bevorzugte Kaliumeinbau in Silikaten konnte auch in Kalkulationen mit den thermodynamischen Daten aus der Publikation 3.1 gezeigt werden. Mittels Phasenanalytik vor und nach der chemischen Extraktion, konnte die Zugehörigkeit zu verschiedenen Modifikationen der Calciumalkaliphosphaten sicher bestimmt werden und eine ungefähre Zusammensetzung dieser Calciumalkaliphosphate abgeschätzt werden. So konnte nachgewiesen werden, dass die Modifikation vom CaNaPO4 ungefähr 10 % Magnesium einbauen kann. Wenn mehr Magnesium eingebaut wird, bildet sich die Phase (Ca,Mg)NaPO4, die eine vergleichbare Struktur wie die bekannte Phase (Ca0.72Mg0.28)NaPO4 aufweist. Dieses magnesiumreiche Calciumnatriumphosphat entstand vermutlich, wenn entweder erhöhte Anteile an Kalium eingebaut wurden (Ca0.8Mg0.2)(Na0.85K0.15)PO4 (Publikation 3.3) oder die Phasenumwandlung vom Calciumphosphat Whitlockit zum Calciumalkaliphosphat CaNaPO4 noch nicht abgeschlossen war (Publikation 3.2). Wenn mehr Kalium eingebaut wird, dann entsteht eine Phase (u.a. (Ca0.9Mg0.1)(Na0.6K0.4)PO4) ähnlich zu den Mischphasen aus der Publikation 3.1. In den Publikationen 3.4 und 3.5 wurden keine Klärschlammaschen untersucht, sondern Biokohlen aus Modellklärschlämmen (Publikation 3.5) und Biomasseaschen (Publikation 3.4) aus der Vergasung oder Verbrennung einer Mischung aus Zuckerrohrbagasse und Hühnertrockenkot. Die thermochemischen Produkte der Biokohlen bzw. Biomasseaschen enthielten das gewünschte CaNaPO4 und hatten eine hohe Düngewirkung in Pflanzenwachstumsversuchen mit Sojapflanzen bzw. Gräsern. KW - AshDec KW - Recycling fertilizer KW - Calcium alkali phosphate PY - 2020 SP - 1 EP - 186 CY - Jena AN - OPUS4-54724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herzel, Hannes A1 - Adam, Christian A1 - Schaaf, T. A1 - Künstler, J. T1 - Thermochemical P recycling from ash by AshDec ® process N2 - Klärschlammaschen können eine hohe Phosphatkonzentration aufweisen und stellen damit einen geeigneten Sekundärrohstoff für die Produktion von Phosphatdüngemitteln dar. Bisher wird dieses Potential der Klärschlammaschen für die Phosphor-Rückgewinnung jedoch kaum genutzt, da die in den Aschen enthaltenen Phosphate für Pflanzen kaum verfügbar und die Aschen teilweise mit toxischen Schwermetallen belastet sind. Im AshDec®-Verfahren wird die Klärschlammaschen im Drehrohrofen im Temperaturbereich 800-1000°C unter Zugabe von Alkali-Additiven (bsp. Na2CO3) thermochemisch behandelt, um ein wirksames und schadstoffarmes Phosphatdüngemittel herzustellen. Aktuell bereitet die Firma Emter GmbH den Bau der ersten großtechnischen AshDec®-Anlage mit einer Kapazität von 30.000 Jahrestonnen Klärschlammasche am Standort ihrer Klärschlammverbrennungsanlage (Altenstadt / Oberbayern) vor. Die erste Ausbaustufe dieser Anlage wird durch das BMBF-Projekt R-Rhenania im Rahmen der Förderinitiative RePhoR begleitet. T2 - Wastewater, Water and Resource Recovery (Workshop) CY - Online meeting DA - 11.04.2022 KW - Phosphorus recovery KW - Heavy metal removal KW - Ashdec PY - 2022 AN - OPUS4-54727 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Plarre, Rüdiger A1 - Cabral, U. A1 - Querner, P. ED - Ryder, S. ED - Crossman, A. T1 - Screening of two plant-derived extracts from Sri Lanka for their potential to control the subterranean termite Coptotermes formosanus T2 - Integrated Pest management for Collection, Proceedings of 2021: A Pest Odyssey, The Next Generation N2 - The tropical environment of Sri Lanka accelerates bio-deterioration of cultural objects. Termites are one of the most damaging insect pests destroying the cellulose components of historical artifacts. Herbal extracts obtained from resin of Vateria copallifera (Retzius) Alston and seeds of Madhuca longifolia (Konig) Macbride have been used for centuries to preserve e.g. palm leaf manuscripts from insect attack. Herbal extractions of these traditional products for palm leaf manuscript were tested for their effect against the termite species Coptotermes formosanus Shiraki, 1909. Natural and artificial aged herbal extractions were tested to obtain a repellent index. Resin oil of V. copallifera caused slightly higher repellencies than M. longifolia. Artificially aged samples produced lower repellencies than naturally aged samples. The results indicate that the active ingredients are volatile. The potential for barrier treatment was tested only with V. copallifera. Tunnelling-behavior of C. formosanus workers through sand in the presence of V. copallifera resin oil was largely reduced. T2 - Pest Odyssey The Next Generation CY - Online meeting DA - 20.09.2021 KW - IPM in museums KW - Termite control KW - Essential oils KW - Library pests PY - 2022 SN - 978-1-909492-83-7 SP - 56 EP - 62 PB - Archetyp Publication LTD CY - London AN - OPUS4-54736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schraut, Katharina A1 - Adamczyk, Burkart A1 - Simon, Sebastian A1 - von Werder, Julia A1 - Meng, Birgit A1 - Stephan, Dietmar A1 - Adam, Christian T1 - Formation and hydraulic reactivity of an alite rich material from post treated basic oxygen furnace slag N2 - Basic oxygen furnace slag (BOFS) is a by-product of steelmaking of which about 10.4 Mt are produced annually in the EU. BOFS is mostly used in road construction, earthwork and hydraulic engineering. However, in this use, the iron bound in BOFS is lost and the opportunity to produce higher value products from BOFS is forgone. In recent decades, many researchers have investigated a thermochemical process to reduce iron oxides to metallic iron in molten BOFS. The metallic iron formed separates from the reduced slag due to its higher density and can be recovered. An advantage of this process is that simultaneously the chemical composition of the reduced slag is adapted to that of the Portland cement clinker and the hydraulic reactive mineral alite is formed. In this study, BOFS was reduced in a small-scale electric arc furnace using petrol coke as reducing agent, and the hydraulic properties of the reduced, low-iron BOFS were investigated. Despite a chemical and mineralogical composition similar to that of Portland cement clinker, the reduced BOFS produced less heat of hydration, and its reaction was delayed compared to Portland cement. However, the addition of gypsum, as is also done in cement production from Portland cement clinker, has been found to accelerate the hydration rate of reduced BOFS. Further research to improve the hydraulic properties of the reduced slag is essential. If successful, the production of a hydraulic binder and crude iron from BOFS could have economic and ecological benefits for both the cement and steel industry. T2 - GeoMin Köln 2022 CY - Cologne, Germany DA - 11.09.2022 KW - BOFS KW - Portland Cement KW - Hydraulic reactivity PY - 2022 AN - OPUS4-56080 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schraut, Katharina A1 - Adamczyk, Burkart A1 - Adam, Christian T1 - Reductive treatment of steel making slags to produce a hydraulic binder and crude iron N2 - Steelmaking slags are a by-product of steel production, that are currently used primarily in road construction, earthwork, and hydraulic engineering. In this use, the iron bound in the steelmaking slags (< 30 wt.%) is lost. Recovery of iron from steelmaking slags is possible by thermochemical reductive treatment. The reductive treatment of liquid steelmaking slags causes iron oxides to be reduced to metallic iron, which separates from the mineral phase due to its higher density. The chemical composition of the mineral phase is thus adapted to that of the Portland cement clinker and the mineral alite, the most important component of Portland cement, is formed. This way, crude iron can be recovered, and at the same time a hydraulic binder can be produced. This process, however, is uneconomical due to the high temperatures required (~1800 °C). In the current project, the process is to be adapted so that the reduction of liquid steelmaking slag can be carried out at ~1600 °C. The chemical composition is to be modified in such a way that the melting temperature of the slags as well as their viscosity are in a technically suitable range and still a product with good cementitious properties is obtained. T2 - LithiumDays CY - Online meeting DA - 06.12.2021 KW - BOFS KW - Portland Cement KW - Hydraulic reactivity PY - 2021 AN - OPUS4-56081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Aristia, G. T1 - A Coating System for Corrosion Protection of Carbon Steel as an Alternative for High Alloyed Materials N2 - The screening of coatings shows that the modification by adding individual pigment was not sufficient to protect carbon steel even during a short-term exposure, indicated by the discoloration after only seven days of exposure. Electrochemical tests indicated that the coating cathodically protects carbon steel or slows down the corrosion reaction. A long-term exposure test confirmed that the PANI/SiO2 modified coating successfully protects the carbon steel in the Sibayak artificial geothermal water at 150 °C for 6 months. T2 - European Geothermal Congress CY - Berlin, Germany DA - 17.10.22 KW - Corrosion KW - Geothermal KW - Coatings KW - Polyaniniline KW - Silicate PY - 2022 AN - OPUS4-56084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawlitza, Kornelia A1 - Kimani, Martha A1 - Kislenko, Evgeniia A1 - Rurack, Knut T1 - Fluorescent molecularly imprinted polymer particles for direct detection of glyphosate in organic solvents and water N2 - Glyphosate (GPS) is the most widely used pesticide in the world whose use increased dramatically after the introduction of genetically modified crops engineered to resist its herbicidal action during application. In recent years, there have been growing concerns over its toxicity following its classification by the International Agency for Research on Cancer (IARC) as a probable carcinogen as well as reports of its ecotoxicological effects. This resulted in increased efforts to develop quick and sensitive detection methods. In this work, molecular imprinting was combined with direct fluorescence detection of GPS by improving its solubility in organic solvents using tetrabutylammonium (TBA+) and tetrahexylammonium (THA+) as counterions. To achieve fluorescence detection, a fluorescent crosslinker containing urea binding motifs was used as a probe for GPS-TBA and GPS-THA salts in chloroform, generating stable complexes through hydrogen bond formation. The GPS/fluorescent dye complexes were imprinted into 2–3 nm molecularly imprinted polymer (MIP) shells on the surface of sub-micron silica particles. Thus, the MIP binding behavior could be easily evaluated by fluorescence titrations in suspension to monitor the spectral changes upon addition of the GPS analytes. While MIPs prepared with GPS-TBA and GPS-THA both displayed satisfactory imprinting following titration with the corresponding analytes in chloroform, GPS-THA MIPs displayed better selectivity against competing molecules. Moreover, the THA+ counterion was found to be a more powerful phase transfer agent than TBA+, enabling the direct fluorescence detection and quantification of GPS in water in a biphasic assay. A limit of detection of 1.45 µM and a linear range of 5–55 µM, which matches well with WHO guidelines for the acceptable daily intake of GPS in water (5.32 µM), have been obtained. The assay can be further optimized to allow miniaturization into microfluidic devices and shows potential for on-field applications by untrained personnel. T2 - 36th European Colloid & Interface Society Conference CY - Chania, Greece DA - 04.09.2022 KW - Glyphosate KW - Molecular Imprinting KW - Core-Shell Particles KW - Fluorescent Urea Receptors PY - 2022 AN - OPUS4-56311 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steinhäuser, Lorin A1 - Piechotta, Christian A1 - Westphalen, Tanja A1 - Kaminski, Katja T1 - Evaluation, comparison and combination of molecularly imprinted polymer solid phase extraction and classical solid phase extraction for the preconcentration of endocrine disrupting chemicals from representative whole water samples JF - Talanta Open N2 - Estrogens are endocrine disrupting chemicals and of high concerns due to demonstrated harmful effects on the environment and low effect levels. For monitoring and risk assessment, several estrogens were included in the "watch list" of the EU Water Framework Directive which sets very low environmental quality standard (EQS) levels for Estrone (E1) and 17β-Estradiol (E2) of 0.4 ng L−1 and for 17α-Ethinylestradiol (EE2) of 0.035 ng L−1 requiring sensitive detection methods, as well as extensive sample preparation. A sensitive, derivatization-free, isotope dilution calibration HPLC-MS/MS method for a panel of 5 selected estrogens (including the 3 estrogens of the EU WFD watchlist), and a procedure for the reproducible preparation of a representative whole water matrix including mineral water, humic acids and solid particulate matter are presented. These are used in a diligent comparison of classical solid phase extraction (SPE) on hydrophilic-lipophilic balanced (HLB) phase to SPE on an estrogen-specific molecularly imprinted polymer phase (MISPE) for ultra-trace levels of the analytes (1–10 ng L−1). Additionally, a two-step procedure combining HLB SPE disks followed by MISPE is evaluated. The tow-step procedure provides superior enrichment, matrix removal and sample throughput while maintaining comparable recovery rates to simple cartridge SPE. Estimated method quantification limits (MQLs) range from 0.109–0.184 ng L−1 and thus meet EQS-levels for E1 and E2, but not EE2. The representative whole water matrix provides a reproducible comparison of sample preparation methods and lays the foundation for a certified reference material for estrogen analysis. The presented method will serve as the basis for an extended validation study to assess its use for estrogen monitoring in the environment. KW - Estrogens KW - Whole water samples KW - Molecular imprinted polymers KW - EU-WFD PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563547 DO - https://doi.org/10.1016/j.talo.2022.100163 SN - 2666-8319 VL - 6 SP - 1 EP - 5 PB - Elsevier B.V. CY - Amsterdam, Niederlande AN - OPUS4-56354 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbrich, Adelina-Elisa A1 - An Stepec, Biwen Annie A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Material vs. Environment: Uncovering microbiological influenced corrosion processes on steel with single cell-ICP-ToF-MS N2 - Microbiologically influenced corrosion (MIC) is a highly unpredictable process dictated by the environment, microorganisms, and the respective electron source. Interaction pathways between cells and the metal surface remain unclear. The development of this novel single cell-inductively coupled plasma-time of flight-mass spectrometry analytical method and a MIC-specific staining procedure facilitate the investigation of steel-MIC interactions. With this it is possible to analyze the multi-elemental fingerprint of individual cells. The detection method revealed elemental selectivity for the corrosive methanogenic archaeal strain Methanobacterium-affiliated IM1. The interface between material and environmental analysis thus receives special attention, e.g., when considering MIC on solid steel. Hence, the possible uptake of individual elements from different steel samples is investigated. Results showed the cells responded at a single-cell level to the different types of supplemented elements and displayed the abilities to interact with chromium, vanadium, titanium, cobalt, and molybdenum from solid metal surfaces. The information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts, thus combining modern methods of analytical sciences with materials research. T2 - ToFcon 2022 CY - Online meeting DA - 17.11.2022 KW - Single cell KW - Microbiological influenced corrosion MIC KW - Sc-ICP-ToF-MS KW - Method development KW - Ir DNA staining approach KW - Carbon steel corrosion PY - 2022 AN - OPUS4-56355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schuehle, Florian A1 - Richter, Matthias T1 - Quality assured uptake rates for passive sampling of indoor air VOCs N2 - Generation of experimental uptake rates (UR) for > 70 VOCs (7d /100 μg m-3) Application in German Environmental Survey – VOC exposure assessment Assurance of transparency concerning UR generation and uncertainty creates basis for decision making and comparability of measurement results. Exemplarily the uncertainty u(UR) of toluene UR was modelled and determined statistically with own laboratory data (relative standard deviation of actively sampled test gas atmosphere – RSDa and n = 5 exposed passive samplers – RSDp) in line with EN 838 as well as from variation of literature UR – RSD UR,lit. T2 - Airmon 2022, 10th International Symposium on modern principles of air monitoring and biomonitoring CY - Bristol, UK DA - 06.11.2022 KW - IAQ KW - VOC KW - Diffusive sampling KW - Uptake rate PY - 2022 AN - OPUS4-56583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Olbrich, Adelina-Elisa A1 - An Stepec, Biwen Annie A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Deciphering microbiological influenced corrosion processes on steel with single cell-ICP-ToF-MS N2 - Microbiologically influenced corrosion (MIC) is a highly unpredictable process dictated by the environment, microorganisms, and the respective electron source. Interaction pathways between cells and the metal surface remain unclear. The development of this novel single cell-inductively coupled plasma-time of flight-mass spectrometry analytical method and a MIC-specific staining procedure facilitate the investigation of steel-MIC interactions. With this it is possible to analyze the multi-elemental fingerprint of individual cells. The detection method revealed elemental selectivity for the corrosive methanogenic archaeal strain Methanobacterium-affiliated IM1. The interface between material and environmental analysis thus receives special attention, e.g., when considering MIC on solid steel. Hence, the possible uptake of individual elements from different steel samples is investigated. Results showed the cells responded at a single-cell level to the different types of supplemented elements and displayed the abilities to interact with chromium, vanadium, titanium, cobalt, and molybdenum from solid metal surfaces. The information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts, thus combining modern methods of analytical sciences with materials research. References. T2 - Future WiNS CY - Berlin, Germany DA - 07.12.2022 KW - Single cell KW - Microbiological influenced corrosion MIC KW - Sc-ICP-ToF-MS KW - Method development KW - Ir DNA staining approach KW - Carbon steel corrosion PY - 2022 AN - OPUS4-56567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meermann, Björn T1 - Single cell ICP-ToF-MS as a powerful tool in environmental and material research N2 - Materials are key for our modern communities. In particular metals play important roles in all areas of our daily life - from building materials to high tech products. Due to the increasing consumption of metals and corresponding waste production, an elevated release into the environment takes place. Furthermore, metals in direct contact with the environment undergo corrosion leading to a release into the (aquatic) environment. Thus, lifespan of products/buildings are substantially reduced – hence unnecessary economic costs arise. Thus, research in this regard is needed within the force field of metal/material - environment. Evaluating the environmental impact of materials as well as developing “safe” materials, new analytical methods are highly needed. One promising powerful tool is single cell-ICP-ToF-MS for multi-elemental analysis on a single cell/organism level. Within this presentation the concept, strength as well as challenge of single cell-ICP-MS are briefly introduced. Two application examples are presented: (i) assessing the environmental impact of metals and (ii) the impact of the environment on metal-based materials and the derivation of potential environmental-friendly material protection strategies. These applications highlight the strength of new analytical approaches to explore the durability and safety of newly developed materials. Thus, analytical chemistry is one corner stone to transformation of modern society into circular economy (CEco). (i) Diatoms are located at the bottom of the food chain. Thus, toxicological relevant metals taken up by diatoms possibly accumulate within the food web causing harmful effects. Diatoms are common test system in ecotoxicology. To investigate potential metal uptake and effects, we developed an on-line single cell-ICP-ToF-MS approach for multi-elemental diatom analysis. Our approach is a new potential tool in ecotoxicological testing for metal-based materials. (ii) Next to classical corrosion processes, microorganisms are responsible for so called microbially influenced corrosion (MIC). MIC is a highly unpredictable process relying on interaction pathways between cells and the metal surface. Sheding light on MIC processes and derivate potential protection strategies, we applied single cell-ICP-ToF-MS for MIC research on a single bacteria/archaea level. It turned out that microorganism are taking up particular metals from alloys - thus, single bacteria-ICP-ToF-MS will enable development of corrosion protection strategies. T2 - SCIX 2022 CY - Cincinnati, OH, USA DA - 02.10.2022 KW - Single cell-ICP-ToF-MS KW - Algae KW - MIC PY - 2022 AN - OPUS4-56542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Effect of biocides on the evolution and spread of resistance N2 - Biocides used as material preservatives are in contact with various environments during direct application or passive leaching from protected materials. Antimicrobial resistance (AMR) is a global health problem and the environment is an important compartment for the evolution and transmission of AMR. Soil is an environment with a large reservoir of natural microbial communities and antimicrobial resistance (AMR) genes. Those natural microbial communities are frequently exposed to biocides used as material preservatives. Previous studies have shown that antibiotics, metals and pesticides affect the underlying processes of resistance evolution and spread; namely de novo mutagenesis and horizontal gene transfer by conjugation and transformation in microbial communities. However, it is unknown if active substances used in material preservatives are involved in these processes. We show that biocides used as material preservatives affect rates of mutation and conjugation in microorganism in a species- and substance-dependent manner, while rates of transformation are not directly affected. Our data highlights the importance of assessing the contribution of material preservatives on AMR evolution and spread in the environment. T2 - Microbiome Network Meeting CY - Berlin, Germany DA - 20.07.2022 KW - Biocides KW - Antimicrobial resistance KW - Horizontal gene transfer KW - Mutation rate PY - 2022 AN - OPUS4-56426 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schumacher, Julia ED - Scott, B. ED - Mesarich, C. T1 - Role of light in the life cycle of Botrytis cinerea T2 - Plant Relationships. The Mycota N2 - The fungus Botrytis cinerea (Botryotinia fuckeliana) infects more than 500 plant species and causes a wide range of symptoms: soft rots, accompanied by collapse and water-soaking of tissues followed by the appearance of gray masses of conidia on leaves and soft fruits (gray mold), and spots that may turn brown to full-scale soft rotting on flower petals (Botrytis blight). In general, B. cinerea is responsible for severe economic losses that are either due to the damage of growing plants in the field or the rot of harvested fruits, flowers, and vegetables during storage under cold and humid conditions. B. cinerea has adapted to the plant host and its environment by evolving strategies to use plant tissues for proliferation in terms of a necrotrophic lifestyle, and to survive biotic stresses (host responses) as well as abiotic factors of the host’s environment such as sunlight and concomitant stresses. B. cinerea maintains a complex regulatory network of light-sensitive proteins and signal transduction pathways to use light for coordinating stress responses, virulence, and reproduction. Different light-controlled reproduction cycles enable B. cinerea to live in moderate climate zones by infecting and propagating in summer and resting in winter when green host tissues are unavailable. KW - Gray mold fungus KW - Plant pathogen KW - Light KW - Photoreceptors KW - Development PY - 2023 DO - https://doi.org/10.1007/978-3-031-16503-0_14 VL - 5 SP - 329 EP - 346 PB - Springer, Cham AN - OPUS4-56724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Selina A1 - Schreiber, Frank T1 - Biocides Used as Material Preservatives Modify Rates of De Novo Mutation And Horizontal Gene Transfer in Bacteria N2 - Antimicrobial resistance (AMR) is an important global health problem. The environment has been regocnized as an improtant compartment for the occurance, evolution and transmission of AMR. Biocides used as material preservatives are in contact with the environment and natural microbial communities through direct application and passive leaching from protected materials. It has been shown that environmental contaminants, such as antibiotics, metals and pesticides, can affect resistance evolution and spread by modifying the underlying processes of de novo mutagenesis, horizontal gene transfer and selection. However, it is unknown if material preservatives are involved in these processes and thereby can also drive AMR in the environment. Here, we investigate the effect of material preservatives on rates of de novo mutation and horizontal gene transfer (HGT) in Escherichia coli and the model soil microorganisms Acinetobacter baylyi and Bacillus subtilis. To this end, we determined the effects of material preservatives on the mutation rates and HGT with the Luria-Delbrück fluctuation assay and a conjugation assay with the broad host-range plasmid pKJK5 and a transformation assay. Our data shows that the quaternary ammonium compound DDAC, copper, the pyrethroid insecticide permethrin and the azole fungicide propiconazole significantly increase mutation rates in E. coli, whereas A. baylyi and B. subtilis are not significantly affected. Moreover, we show that the carbamate IPBC and the insecticide permethrin affect HGT in a concentration dependent manner. Investigations with reporter strains for bacterial stress response pathways show that induction of the general stress response (rpoS) and components of the SOS response (recA) underlie the effects of most biocides on mutation rates and HGT. Taken together, our data is important for assessing the contribution of biocides on AMR evolution and spread in the environment. T2 - World Microbe Forum (ASM, FEMS) CY - Online meeting DA - 20.06.2021 KW - Biocides KW - Horizontal gene transfer KW - Mutation rate PY - 2021 UR - https://www.abstractsonline.com/pp8/#!/9286/presentation/11692 AN - OPUS4-54211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Microspectroscopy reveals dust-derived apatite grains in highly-weathered soils from the Kohala climosequence on Hawaii N2 - Dust deposition is an important source of phosphorus (P) to many ecosystems. However, there is little evidence of dust-derived P-containing minerals in soils. Here we studied P forms along a well-described climatic gradient on Hawaii, which is also a dust deposition gradient. Soil mineralogy and soil P forms from six sites along the climatic gradient were analyzed with bulk (X-ray diffraction and P K-edge X-ray absorption near edge structure) and microscale (X-ray fluorescence, P K-edge X-ray absorption near edge structure, and Raman) analysis methods. In the wettest soils, apatite grains ranging from 5 to 30 μm in size were co-located at the micro-scale with quartz, a known continental dust indicator suggesting recent atmospheric deposition. In addition to colocation with quartz, further evidence of dust-derived P included backward trajectory modeling indicating that dust particles could be brought to Hawaii from the major global dust-loading areas in central Asia and northern Africa. Although it is not certain whether the individual observed apatite grains were derived from long-distance transport of dust, or from local dust sources such as volcanic ash or windblown fertilizer, these observations offer direct evidence that P-containing minerals have reached surface layers of highly-weathered grassland soils through atmospheric deposition. T2 - BESSY Science Seminar CY - Online meeting DA - 01.04.2022 KW - Phosphorus KW - Soil KW - X-ray diffraction KW - X-ray absorption near-edge structure (XANES) spectroscopy KW - Fertilizer KW - Raman spectroscopy KW - infrared spectroscopy PY - 2022 AN - OPUS4-54584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia A1 - Breitenbach, Romy A1 - Erdmann, Eileen A1 - Gerrits, Ruben A1 - Heeger, Felix A1 - Nitsche, Sarah A1 - Tonon, Chiara A1 - Voigt, Oliver A1 - Gorbushina, Anna T1 - Knufia petricola – a model for exploring the biology of black rock-inhabiting fungi N2 - Black fungi also called black yeasts, rock-inhabiting fungi or microcolonial fungi are a group of Ascomycetes [Eurotiomycetes, Arthoniomycetes and Dothideomycetes] that exhibit high stress tolerance, yeast‑like or meristematic growth, and constitutive 1,8-dihydroxynaphthalene (DHN) melanin formation. They dominate a range of hostile natural and man‑made environments – from desert rocks and salterns to dishwashers, roofs, and solar panels. Due to their slow growth and the lack of sexual cycles and genetic tools, the underlying mechanisms of black fungi’s phenotypic traits have remained largely unexplored. We consider the rock inhabitant K. petricola [Eurotiomycetes, Chaetothyriales] a suitable model for studying the phenotypic characteristics of black fungi. With K. petricola the regulation of pigment synthesis, general stress responses and the unusual modes of cell division can be dissected by advanced reverse and forward genetics approaches. The genome of K. petricola strain A95 was sequenced using a combination of short high quality Illumina reads and long PacBio reads. The final assembly consists of twelve contigs: five complete chromosomes and six contigs with one telomer each. Gene annotation supported by transcriptomics and proteomics data was manually curated. Recently, we developed a set of genetic tools to manipulate the genome for analyzing gene functions and studying the cell biology. This set includes CRISPR/Cas9-based genome editing and live-cell imaging using genetically encoded fluorescent proteins, as well as protocols for -omics approaches and for simulation of mineral weathering in the laboratory. Mutants defective in DHN melanogenesis, carotenogenesis or both processes are currently studied to elucidate the role of these protective pigments in tolerance of natural and man-made stresses, weathering of olivine, penetration of marble, and adhesion to surfaces. Further, the established protocols and knowledge gained from K. petricola form a starting point for making other extremotolerant black fungi accessible to genetic manipulation. T2 - 31st Fungal Genetics Conference CY - USA, CA, Pacific Grove DA - 15.03.2022 KW - Black fungi KW - Melanin KW - Genome editing PY - 2022 AN - OPUS4-54585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erdmann, Eileen A1 - Nitsche, Sarah A1 - Gorbushina, Anna A1 - Schumacher, Julia T1 - Tools for Knufia petricola: new techniques for CRISPR/Cas9-based genome editing N2 - Black microcolonial fungi represent a group of ascomycetes with similar adaptations for existing in natural and anthropogenically created extreme habitats. They exhibit slow yeast-like or meristematic growth, do not form specialized reproduction structures and accumulate the black pigment 1,8-dihydroxynaphthalene (DHN) in the multilayered cell walls. We chose the rock inhabitant Knufia petricola of the Chaetothyriales as a representative for developing methods for genetic manipulation, simulation of mineral weathering and study of symbiotic interactions. Here, we report on the expansion of the genetic toolkit by more efficient multiplex CRISPR/Cas9 using a plasmid-based system for expression of Cas9 and multiple sgRNAs and three additional resistance selection markers. The targeted integration of expression constructs by replacement of essential genes for pigment synthesis allows for an additional color screening of the transformants. The black-pink screening due to the elimination of pks1 (melanin) was applied for promoter studies using GFP fluorescence as reporter, while the black-white screening due to the concurrent elimination of pks1 (melanin) and phs1 (carotenoids) was used to identify transformants that contain the two expression constructs for co-localization or bimolecular fluorescence complementation (BiFC) studies. In addition, two intergenic regions (igr1, igr2) were identified in which expression constructs can be inserted without causing obvious phenotypes. Plasmids of the pNXR-XXX series (Schumacher, 2012) and new compatible entry plasmids were used for fast and easy generation of expression constructs and are suitable for use in other fungal systems as well. T2 - 31st Fungal Genetics Conference CY - USA, CA, Pacific Grove DA - 15.03.2022 KW - Microcolonial fungi KW - Genetic engineering KW - Fluorescent proteins PY - 2022 AN - OPUS4-54586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erning, Johann Wilhelm T1 - Materials in contact with drinking water and regulatory issues N2 - The state of play in regard to regulations of materials in contact with drinking water in europe is discussed T2 - Kormat 2022 CY - Online meeting DA - 26.04.2022 KW - Korrosion KW - Trinkwasser KW - Hygiene KW - Risikobewertung PY - 2022 AN - OPUS4-54710 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stohl, Leonie A1 - von Werder, Julia T1 - Bioreceptivity of Concrete Facades N2 - In recent years, the demand for new and sustainable products has been constantly rising. Especially cementitious materials are known for their high carbon footprint and novel approaches will be needed to counterbalance that. The BAM departments 7.1 (building materials) and 4.0 (Material and the environment) try to improve the sustainability of concrete panels by establishing a biofilm on the weather protection layer. Using an ultra-high-performance-concrete allows the production of very thin facade tiles with a small carbon footprint. Furthermore, the durability of these tiles is expected to surpass the one of “normal” concrete facades and offer the possibility of modular renewing of defective tiles instead of a wall, or even remodeling a whole building. The controlled application of biofilms on facades aims to improve biodiversity, microclimate, and air quality in cities. Furthermore, the greening of typically gray surfaces could improve the mental health of the residents. The project focuses on testing a multiplicity of concrete samples, varying e.g., in roughness or pH. The bioreceptivity is analyzed via laboratory tests, as well as in perennial outdoor experiments. T2 - Biology versus building materials: from biocides to bio-receptivity CY - Online meeting DA - 08.02.2022 KW - Bioreceptivity KW - Algea KW - Concrete KW - Biofilm PY - 2022 AN - OPUS4-54470 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph T1 - Evaluation of Corrosion Resistance of Metallic Materials in Geothermal Applications N2 - Evaluation of corrosion resistance of metallic materials is essential to assure safe and reliable operation of geothermal sites. One need to be aware that corrosion is not a material's but a system property, determined by medium, material and construction aspects. Various corrosion types have to be evaluated. Conditions in laboratory shall reflect on-site reality. Depending on brine composition and temperature suitability of metallic materials can be ranked. Most important outcome of the research is that highly saline geothermal brines require high alloyed materials, for safe long-term operation. T2 - Geothermal Essentials - Moving Geothermal Forward in Canada: Scaling and Corrosion (Surface Facilities) CY - Online Webinar DA - 16.03.2022 KW - Corrosion KW - Geothermal KW - Steel PY - 2022 AN - OPUS4-54482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Winkler, Nicolas P. A1 - Kohlhoff, Harald A1 - Bartholmai, Matthias A1 - Hirschberger, Paul A1 - Bennetts, V. H. A1 - Lilienthal, A. J. T1 - Aerial Robot Olfaction - An Overview of Research @BAM N2 - This presentation gives an introduction to the gas-sensitive aerial robots developed at BAM, including various application examples in the field of mobile robot olfaction: gas source localization, gas distribution mapping, and trial following. T2 - The 6th Meeting of the Investigation Committee on Measurement of Odors and Applications of Their Psychological/Physiological Effects CY - Online meeting DA - 21.01.2022 KW - Mobile Robot Olfaction KW - Gas Tomography KW - Tunable Diode Laser Absorption Spectroscopy (TDLAS) KW - Gas Source Localization KW - Gas Distribution Mapping KW - Trial Following PY - 2022 AN - OPUS4-54241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winkler, Nicolas P. A1 - Neumann, Patrick P. A1 - Kohlhoff, Harald A1 - Säämänen, A. A1 - Schaffernicht, E. A1 - Lilienthal, A. J. T1 - Robot-Assisted Air Quality Monitoring N2 - This presentation gives an introduction to robot-assisted air quality monitoring based and shows results of the research project RASEM. T2 - The 6th Meeting of the Investigation Committee on Measurement of Odors and Applications of Their Psychological/Physiological Effects CY - Online meeting DA - 21.01.2022 KW - Environmental Monitoring KW - Air Pollution KW - Air Quality KW - Wireless Sensor Network KW - Mobile Robot Olfaction PY - 2022 AN - OPUS4-54251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abdallah, Khaled A1 - Stock, S. C. A1 - Heeger, Felix A1 - Koester, M. A1 - Nájera, F. A1 - Merino, C. A1 - Spielvogel, S. A1 - Gorbushina, Anna A1 - Kuzyakov, Y. A1 - Dippold, M. A. T1 - Nitrogen Gain and Loss Along an Ecosystem Sequence: From Semi-desert to Rainforest JF - Frontiers in Soil Science N2 - Plants and microorganisms, besides the climate, drive nitrogen (N) cycling in ecosystems. Our objective was to investigate N losses and N acquisition strategies along a unique ecosystem-sequence (ecosequence) ranging from arid shrubland through Mediterranean woodland to temperate rainforest. These ecosystems differ in mean annual precipitation, mean annual temperate, and vegetation cover, but developed on similar granitoid soil parent material, were addressed using a combination of molecular biology and soil biogeochemical tools. Soil N and carbon (C) contents, δ15N signatures, activities of N acquiring extracellular enzymes as well as the abundance of soil bacteria and fungi, and diazotrophs in bulk topsoil and rhizosphere were determined. Relative fungal abundance in the rhizosphere was higher under woodland and forest than under shrubland. This indicates toward plants' higher C investment into fungi in the Mediterranean and temperate rainforest sites than in the arid site. Fungi are likely to decompose lignified forest litter for efficient recycling of litter-derived N and further nutrients. Rhizosphere—a hotspot for the N fixation—was enriched in diazotrophs (factor 8 to 16 in comparison to bulk topsoil) emphasizing the general importance of root/microbe association in N cycle. These results show that the temperate rainforest is an N acquiring ecosystem, whereas N in the arid shrubland is strongly recycled. Simultaneously, the strongest 15N enrichment with decreasing N content with depth was detected in the Mediterranean woodland, indicating that N mineralization and loss is highest (and likely the fastest) in the woodland across the continental transect. Higher relative aminopeptidase activities in the woodland than in the forest enabled a fast N mineralization. Relative aminopeptidase activities were highest in the arid shrubland. The highest absolute chitinase activities were observed in the forest. This likely demonstrates that (a) plants and microorganisms in the arid shrubland invest largely into mobilization and reutilization of organically bound N by exoenzymes, and (b) that the ecosystem N nutrition shifts from a peptide-based N in the arid shrubland to a peptide- and chitin-based N nutrition in the temperate rainforest, where the high N demand is complemented by intensive N fixation in the rhizosphere. KW - Nitrogen KW - Rhizosphere KW - Microbial abundance KW - Natural abundance of 15N KW - Nitrogen fixation KW - Nitrogen uptake PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543708 DO - https://doi.org/10.3389/fsoil.2022.817641 SN - 2673-8619 VL - 2 SP - 1 EP - 14 PB - Frontiers Media CY - Lausanne AN - OPUS4-54370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schühle, Florian A1 - Richter, Matthias T1 - Determination and classification of seven-day uptake rates for indoor air VOCs into tube type diffusive samplers with Tenax® TA N2 - Axial passive sampling of VOCs with Tenax® TA and thermal desorption GC-MS analysis is an accepted alternative to active sampling in occupational hygiene. In theory, the uptake into the passive sampler is only dependent on the diffusion coefficient of the analyte in air and the geometry of the sampler (ideal adsorption). For characterization, the uptake rate (UR) is used defined as the ratio of the mass adsorbed and the product of ambient concentration and exposure time. Various reported effective uptake rates (UR,eff) differ to an increasing degree from ideal values (UR,id) with increasing exposure doses (denominator of the given definition of UR), (Tolnai, 2001). In national and international standards, uptake rates are essentially sorted by the applicable exposure time, while detailed information about the corresponding concentration range is lacking. Moreover, especially for long exposure periods as applied in indoor air monitoring, the number of itemized substances is limited. Therefore it is the aim of this contribution to review and expand uptake rate data by comparison of literature and own laboratory values of assured quality. Passive samplers were exposed to nine single compound atmospheres of known concentrations for seven days. Concentrations were checked twice a day via active sampling.The determined uptake rates are considered accurate in terms of RSD and comparability to literature values and can be recommended for exposure times of seven days at 50 – 100 μg m-3 (approximately 100 – 300 ppm min). Seven-day uptake rates in ISO16017-2 and ASTM D6196 are not generally suited for this purpose, as has been exemplarily shown for benzene. Thus, it is crucial for optimization of the method to produce more reliable uptake rate data, including specific information about applicable exposure times and concentrations, which will be promoted in the course of this ongoing study. T2 - Healthy Buildings America 2021 CY - Online meeting DA - 18.01.2022 KW - Diffusive sampling KW - Volatile organic compounds (VOC) KW - Effective uptake rate PY - 2022 UR - https://www.isiaq.org/docs/HB2021America262.pdf AN - OPUS4-54372 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hirschberger, Paul A1 - Bartholmai, Matthias T1 - Flying Ant Robot – Aerial Chemical Trail Detection and Localization N2 - This poster presents first advances in the area of aerial chemical trail following. For that purpose, we equipped a palm-size aerial robot, based on the Crazyflie 2.0 quadrocopter, with a small lightweight metal oxide gas sensor for measuring evaporated ethanol from chemical trails. To detect and localize the chemical trail, a novel detection criterion was developed that uses only relative changes in the transient phase of the sensor response, making it more robust in its application. We tested our setup in first crossing-trail experiments showing that our flying ant robot is able to correlate an odor hit with the chemical trail within 0.14 m. Principally, this could enable aerial chemical trail following in the future. T2 - IEEE Sensors 2021 CY - Online meeting DA - 31.10.2021 KW - Nano aerial robot KW - Trail following KW - Trail detection KW - Localization PY - 2021 AN - OPUS4-53934 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Deland, Eric A1 - An, Biwen Annie A1 - Sobol, Oded A1 - Yao, J. A1 - Skovhus, T. L. A1 - Koerdt, Andrea T1 - Environmental conditions affect the corrosion product composition of Methanogen induced microbiologically influenced corrosion (Mi-MIC) N2 - Corrosion is a very expensive and serious problem in the different industry sectors, eg. Petroleum-, On- and off-shore, infrastructure. It is estimated that 20% of all corrosion damage is caused by microorganisms or microbiologically influenced corrosion (MIC). Several microorganisms are known to cause corrosion, including sulfate-reducing bacteria, nitrate-reducing bacteria, methanogens etc. For several years, methanogens were regarded as a mild corroder (~0.065 mm/yr), largely due to a lack of detailed investigation on the corrosion mechanism under real-environment simulated conditions. Resulting in the common belief that siderite, a non-conductive compound, is the sole corrosion product (CP) of methanogen-induced MIC (Mi-MIC). To simulate natural environmental conditions, we developed and introduced the multiport flow column system (MFC), a multi-sectional corrosion flow-cell. Using the MFC, we obtained ten times higher corrosion rates than previously reported. With a combination of several analytical techniques, such as ToF-SIMS, SEM-EDS and FIB-SEM, we found strong indication that siderite is not the sole corrosion product of Mi-MIC. The corrosion layers contained phosphorus, oxygen, magnesium, calcium and iron. The differences in the CP between static and dynamic environments demonstrated the impact of testing procedures on the corrosive potential of methanogens. To further verify and deepen our understanding of Mi-MIC, we are currently studying the influence of additional environmental parameters (e.g. pH, salinity, flow rate) on Mi-MIC. Overall, results of this study will expand the current understanding of MIC from both analytical and mechanistic points of view, thus aiding the development of different mitigation strategies for various industry sectors. T2 - ISMOS-8 CY - Online meeting DA - 08.06.2021 KW - Methanogen-induced microbiologically influenced corrosion KW - Carbon steel KW - ToF-SIMS KW - Modelling studies PY - 2021 AN - OPUS4-54041 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Deland, Eric A1 - Kleinbub, Sherin A1 - An, Biwen Annie A1 - Sobol, Oded A1 - Yao, J. A1 - Skovhus, T. L. A1 - Koerdt, Andrea T1 - Is Methanogen-induced microbiologically influenced corrosion (Mi-MIC) underestimated? N2 - The role of methanogens in microbiologically influenced corrosion (Mi-MIC) is often neglected, due to 1) low reported corrosion rates and 2) the suspected corrosion product siderite, which is electrically non-conductive. Typically, MIC corrosion studies are carried out using batch cultures, which did not represent the dynamic conditions, i.e. pipeline and provide insufficient information on the overall corrosion potential. We established a unique approach, a multiport flow column (MFC), to simulate pipeline conditions and obtained 10-times higher corrosion rates than previously published. Our result showed that testing procedures have a large impact on the corrosive potential of methanogens. We found strong indications with a combination of ToF-SIMS, SEM-EDS and FIB-SEM analyses that siderite is not the sole corrosion product. The corrosion layers contain phosphorus, oxygen, magnesium, calcium and iron. To verify and deepen our understanding of Mi-MIC, we are currently studying the influence of other environmental parameters (e.g. pH) on Mi-MIC. T2 - VAAM 2021 CY - Online meeting DA - 18.03.2021 KW - Methanogen-induced microbiologically influenced corrosion KW - Carbon steel KW - MIC Island PY - 2021 AN - OPUS4-54042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Deland, Eric A1 - An, Biwen Annie A1 - Sobol, Oded A1 - Yao, J. A1 - Skovhus, T. L. A1 - Koerdt, Andrea T1 - Environmental conditions impact the corrosion layer composition of Methanogen induced microbiologically influenced corrosion (Mi-MIC) N2 - Microbiologically influenced corrosion (MIC) is a now well-known challenge and affects industry, society and infrastructure. For a long time, the impact of methanogen-induced MIC (Mi-MIC) was underestimated. This was mainly due to the rather low published corrosion rates and the presumed corrosion product siderite, which is not electrically conductive. In our laboratory, we were able to show that this trivialization or underestimation of Mi-MIC was due to the nature of the testing. The static systems used so far do not provide environmentally relevant information about the corrosion rate and the corrosion product, especially for methanogens To further illustrate the importance of the environment on the MIC process, we established a multiport flow column (MFC), to simulate the natural environment. With this method, and in contrast to published results using the static conditions, we obtained ten times higher corrosion rates. We analyzed the corrosion products with a combination of techniques, like ToF-SIMS, SEM-EDS and FIB-SEM, and found strong evidence that siderite is not the sole corrosion product of Mi-MIC. The corrosion layers contain phosphorus, oxygen, magnesium, calcium and iron and lacked on carbon-related species. It is hypothesized that methanogens may have influenced the nucleation process of siderite, converting bicarbonate into carbon dioxide for methanogenesis. This results in increased localized corrosion and reduced siderite formation. To verify and deepen our understanding of Mi-MIC, we are currently studying the influence of additional environmental parameters (e.g. pH, salinity, flow rate etc.) on Mi-MIC and the subsequent impacts on corrosion rates and the corrosion products. Overall, results of this study will expand the current understanding of MIC from both analytical and mechanistic points of view, thus aiding the development of different mitigation strategies for various industry sectors. T2 - Eurocorr 2021 CY - Online meeting DA - 20.09.2021 KW - Methanogen-induced microbiologically influenced corrosion KW - Carbon steel KW - SEM-EDS KW - Modelling studies PY - 2021 AN - OPUS4-54043 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian T1 - Application of Diffusive Gradients in Thin-films (DGT) and spectroscopic techniques to analyze phosphorus in soils N2 - A wide range of analytical methods are used to estimate the plant-availability of soil phosphorus (P). Previous investigations showed that analytical methods based on the Diffusive Gradients in Thin films (DGT) technique provide a very good correlations to the amount of bioavailable nutrients and pollutants in environmental samples (Davison 2016, Vogel et al. 2017). However, the DGT results do not identify which P compound of the soil has the high bioavailability. But there are various spectroscopic techniques (infrared, Raman, P K-edge and L-edge XANES and P NMR spectroscopy) available to characterize P species in soils. Therefore, spectroscopic investigation of DGT binding layers after deployment allow us to determine the specific compounds. Nutrients such as phosphorus and nitrogen are often, together with other elements, present as molecules in the environment. These ions are detectable and distinguishable by infrared, P K- and L-edge X-ray absorption near-edge structure (XANES) and NMR spectroscopy, respectively. Additionally, microspectroscopic techniques make it also possible to analyze P compounds on the DGT binding layer with a lateral resolution down to 1 μm2. Therefore, species of elements and compounds of e.g. a spatial soil segment (e.g. rhizosphere) can be mapped and analyzed, providing valuable insight to understand the dynamics of nutrients in the environment. T2 - SPP1685 Closing Conference: New Approaches to Ecosystem Nutrition - Phosphorus and Beyond CY - Freiburg, Germany DA - 25.10.2021 KW - Phosphorus KW - Diffusive gradients in thin-films (DGT) KW - Passive sampling PY - 2021 AN - OPUS4-53641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Selection of resistance by antimicrobials used in coatings N2 - Antimicrobial surfaces have broad use in multiple settings including touch surfaces in hospitals, implanted devices, or consumer products. Their aim is to support existing hygiene procedures, and to help combat the increasing threat of antimicrobial resistance. However, concerns have been raised over the potential selection pressure exerted by such surfaces, which might drive the evolution and spread of antimicrobial resistance. In my presentation, I will highlight the risks and knowledge gaps associated with resistance on antimicrobial surfaces by different processes including evolution by de novo mutations and horizontal gene transfer, and species sorting of inherently resistant bacteria dispersed onto antimicrobial surfaces. The latter process has the potential to select for antibiotic resistance via cross-resistance between traits that confer resistance to both the antimicrobial surface coating and antibiotics. Conditions in which antibiotics and antimicrobial coatings are present simultaneously (e.g. implants) will lead to more complex interactions that can either result in the selection for or against antibiotic resistance. We mapped these interactions between several antimicrobials and antibiotics on growth and selection of Pseudomonas aeruginosa. We find prevalent physiological (i.e. synergy and antagonism) and evolutionary (i.e. cross-resistance and collateral sensitivity) combination effects. Understanding these interactions opens the door to tailor therapeutic interventions to select against resistance. In additions, we need new methods and translational studies that investigate resistance development to antimicrobial surfaces under realistic conditions. Therefore, I will present recent developments in our lab on the development of such a method based on existing efficacy standards. T2 - 2021 Fall Meeting of the European Materials Research Society (E-MRS) CY - Online meeting DA - 20.09.2021 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Biofilms KW - Biocides PY - 2021 AN - OPUS4-53645 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Huang, L. T1 - Ammonium and nitrate in agricultural soils analyzed with the Diffusive Gradients in Thin-films technique N2 - The aim of this study was to investigate the passive sampler method Diffusive Gradients in Thin-films (DGT) for ammonium and nitrate in amended soils. Therefore, we used soils from a pot experiment with maize where nitrogen (N) was supplied as ammonium sulfate nitrate (ASN), without and with a nitrification inhibitor (NI). The additional use of a NI can delay the nitrification in the soil and making the ammonium available for a longer period in the soil solution after its application. Homogenized soil samples were collected directly from each pot after one week of incubation before sowing and after harvesting the maize. Nitrate and ammonium in these soil samples were extracted using DGT devices equipped with a Putolite A520E (for nitrate) and Microlite PrCH (for ammonium) binding layer. Ammonium DGT which determined the mobile and labile ammonium forms based on diffusion and the resupplies from the solid soil phase, only showed a significantly higher amount of extractable ammonium with NI compared to that without NI for some samples. However, significantly lower values were found for nitrate of treatments with NI compared to without NI after harvest. Thus, the lower nitrate amounts for treatments with NI compared to the treatments without NI after harvest indicated the delay of the nitrification process by the NI. Furthermore, we compared also the ammonium and nitrate DGT results to chemical extraction with KCl solutions. The results demonstrated that the trends of DGT results and chemical extraction were complimentary through all the treatments. T2 - International Passive Sampling Workshop (IPSW) 2021 virtual CY - Online meeting DA - 04.11.2021 KW - Phosphorus KW - Diffusive gradients in thin-films (DGT) KW - Ammonium KW - Nitrate PY - 2021 AN - OPUS4-53698 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Krüger, O. A1 - Gentzmann, Marie A1 - Adam, Christian T1 - Can we use passive samplers for the determination of chromium(VI) in phosphorus fertilizers? N2 - Phosphorus (P) fertilizers from secondary resources became increasingly important in the last years. However, these novel P-fertilizers can also contain toxic pollutants. Chromium in its hexavalent state (Cr(VI)) is regulated with low limit values for agricultural products due to its high toxicity, but the determination of Cr(VI) in these novel fertilizer matrices can be hampered by redox processes that lead to false results. Thus, we applied the passive sampler technique Diffusive Gradients in Thin-films (DGT) for the determination of Cr(VI) in fertilizers and compared the results with the standard wet chemical extraction method (German norm DIN EN 15192) and Cr K-edge X-ray absorption near-edge structure (XANES) spectroscopy. We determined an overall good correlation between the wet chemical extraction and the DGT method. DGT was very sensitive and in most cases selective for the analysis of Cr(VI) in P-fertilizers. However, hardly soluble Cr(VI) compounds cannot be detected with the DGT method since only mobile Cr(VI) is analyzed. Furthermore, Cr K-edge XANES spectroscopy showed that the DGT binding layer also adsorbs small amounts of mobile Cr(III) compounds which leads to overestimated Cr(VI) values. The results of certain types of P-fertilizers containing mobile Cr(III) or partly immobile Cr(VI), showed that optimization of the DGT method is required to avoid over- or underestimation of Cr(VI). T2 - International Passive Sampling Workshop (IPSW) 2021 virtual CY - Online meeting DA - 04.11.2021 KW - Phosphorus KW - Sewage sludge KW - Chromium KW - Fertilizer PY - 2021 AN - OPUS4-53699 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Even, Morgane A1 - Juritsch, Elevtheria A1 - Richter, Matthias T1 - Development of an efficient procedure for the analysis of the emissions of very volatile organic compounds (VVOCs) in emission measurements from construction products and in the indoor air N2 - The ISO 16000-6 standard describes a method for the determination of volatile organic compounds (VOCs) in indoor and test chamber air by sorbent-based active sampling, thermal desorption and gas chromatography coupled with mass spectrometry (GC/MS). It also gives directions to adapt this methodology to very volatile organic compounds (VVOCs). Indeed, toxicologically based guideline values are being implemented for these compounds and it becomes necessary to measure them. But a comprehensive and robust measurement method is lacking. Investigations on the use of gaseous standards, the suitability of chromatography columns, the suitable sorbent combinations and the water removal are required. The talk will highlight the points that need to be explored towards the standardisation of a suitable procedure and provide appropriate preliminary results. T2 - Emissions and Odours from Materials 2021, Certech CY - Online meeting DA - 07.10.2021 KW - VVOCs KW - Analytical method KW - ISO 16000-6 KW - Thermal desorption KW - Gas chromatography PY - 2021 AN - OPUS4-53485 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Buchheim, Janine A1 - Recknagel, Christoph A1 - Wolter, Patrick A1 - Kittler-Packmor, Kai T1 - A new approach towards scientific evaluation and performance-related design of bituminous joint sealing materials and constructions T2 - Proceedings of the RILEM International Symposium on Bituminous Materials - ISBM Lyon 2020 N2 - While there is a permanent improvement of concrete pavement mixtures and pavement construction types over the last decades, the state-of-the-art joint sealing materials and joint constructions seem to stagnate on an antiquated empirical level. This status has been reaffirmed in the latest European standard. The consequences in the motorway network due to unsatisfying capability and durabilty of joint sealing systems are unacceptable. In addition, inadequate traffic performance (noise emissions, roll-over comfort) and traffic safety losses in the joint area of concrete pavements are existing challenges. These deficits and weaknesses reflect a demand for joint sealing materials and constructions whose approval requirements take functional aspects into account. Furthermore a sufficient analysis of decisive loads and a practice-oriented method to evaluate the requirements towards performance and durability is still missed. In this contribution decisive loads to German highways are analyzed. The design of test specimen for representative functional testing of joint sealing systems is discussed. The focus is on the geometry of the test specimens and the used concrete mixture. Finally, a new approach for a function-orientated test concept that considers representative load functions is presented. The potential of this approach to validate the durability and capability of various joint sealing systems is also presented using an example. T2 - RILEM International Symposium on Bituminous Materials CY - Online meeting DA - 08.06.2020 KW - Joint sealing KW - Expansion joint KW - Performance testing KW - Capability KW - Durability PY - 2020 SN - 978-3-030-46454-7 VL - 27 SP - 1 EP - 6 PB - Springer Nature AN - OPUS4-53488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Adam, Christian A1 - Schaaf, T. A1 - Kugler, Stefan A1 - Ulbrich, J. A1 - Schmidt, S. A1 - Pavinato, P. A1 - Burkhardt, J. A1 - Arnold, U. A1 - Conzelmann, L. A1 - Kraus, F. T1 - Cloop - Closing the global nutrient loop N2 - Recycled fertilizers produced using processes for the recovery of phosphate from residual materials such as wastewater, sewage sludge and sewage sludge ashes show very good bioavailability, but it is still a product largely unknown to the market. The aim of CLOOP is therefore to document the properties and effects of such fertilizers through chemical, mineralogical and ecological analyses as well as analytical method development and pot and field plant growth trials. Outotec focused on 3 points in CLOOP: Experimental campaigns, process simulations as well as economic analyses with focus on the AshDec process, respectively the design of a large-scale AshDec plant for phosphorus recovery. The laboratory scale trials as well as the semi-industrial scale campaign provided valuable insights into the operating parameters of the process and the plant. As a result, for example, the temperature range could be significantly lowered, and the additive addition reduced by approx. 20 %. They have further shown that the AshDec process is not susceptible to operating fluctuations and that the product can be consistently produced at high quality. With the selection of suitable operating parameters, heavy metals (As, Pb, Cd, (Zn)) can be removed. Within the campaign, about 1.5 t of fertilizer for the plant trials in CLOOP could be produced. An AshDec plant process was digitally created in simulation software, allowing valuable process parameters to be simulated at various operating parameters. On this basis, a full-scale plant was designed. The data obtained in the project were used for a detailed economic analysis including a sensitivity analysis. It was possible to show under which conditions this plant can be operated economically. At BAM, the AshDec fertilizer was synthesized with different additives and then applied to plant experiments at Uni Bonn. The goal hereby was to check differences in plant uptake. Because of the promising results of AshDec synthesized with sodium-carbonate and because this AshDec version does not require special off gas treatment for sulfur recovery (compared to AshDec synthesized with sodium-sulfate), all project partners agreed on continuing working with this AshDec variation. It was then used as a raw P-source for formulating it into NPK-fertilizers, by granulation with ammonium-sulfate and straw ash as potassium source. These recycling fertilizers were applied to plant- and field experiments by project partners in Brazil (University of Sao Paulo) and Australia (University of Queensland). Furthermore, in leaching experiments, the solubility of phosphorus in AshDec was compared to triple super phosphate. The experiments were carried out on soils with a varying phosphorus buffering index. Results show, that the phosphorus form in AshDec is way less soluble in water. This indicates that AshDec has the potential for a so-called next generation fertilizer – a fertilizer which’s nutrients remain in the soil and supply the plant according to its needs. At the moment, this behavior gets examined more in depth in lysimeter experiments in cooperation with University of Technology Berlin. The focus of KWB is the Life Cycle Assessment (LCA) of different NextGen fertilizers to evaluate the entire process chain from recovery to fertilizer application. The NextGen fertilizer is credited by the amount of plant available nutrients in the product, which replace nutrients from conventional fertilizer. The LCA covers N-struvite precipitation from municipal wastewater, K-struvite precipitation from industrial wastewater and the AshDec-product from sewage sludge. The LCA task is almost complete. It could be shown that struvite precipitation has comprehensive environmental benefits, mainly since positive side effects occur in sewage sludge treatment (e.g. reduced sludge volume). In principle, the energetic and ecological profile of the AshDec process compared to direct use of sewage sludge ash cannot be assessed as being generally beneficial or negative. Regarding the global warming potential, the Ashdec process shows that the expenses (e.g. energy, chemicals) cannot be covered by the P fertilizer credit. In contrast, the impact categories “terrestrial acidification potential”, and “freshwater eutrophication potential” show positive results as the credits for conventional fertilizer are higher than the burdens for the process. At University Bonn, the standardized pot experiments were conducted with several AshDec variations, using ryegrass, soybean, and spinach on a slightly acidic sandy soil and an organic-free standard substrate. P-uptake and biomass production of different AshDec variations were generally like those of triple super phosphate and struvite, and clearly outperformed untreated sewage sludge ash and rock phosphate. Field trials in Australia and Brazil with sugarcane on acidic soils are still ongoing and results are expected by the end of 2021. T2 - PLANT 2030 Status Seminar 2021 (BMBF) CY - Online meeting DA - 10.03.2021 KW - Recycling fertiliser KW - Phosphorus recovery PY - 2021 AN - OPUS4-52251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schraut, Katharina A1 - Adamczyk, Burkart A1 - Simon, Sebastian A1 - von Werder, Julia A1 - Meng, Birgit A1 - Stephan, Dietmar A1 - Adam, Christian T1 - Hydraulic reactivity of alite rich material from post-treated basic oxygen furnace slags N2 - Basic oxygen furnace slags (BOFS) are a by-product of steel production. In 2016, 10.4 Mt of BOFS were produced in the European Union (EU). The main part of BOFS is used in road construction, earthwork and hydraulic engineering. A smaller part is returned to the metallurgical circle, used as fertilizer or landfilled. However, it is also possible to produce higher value products from BOFS. For example, many researchers have investigated the possibility of producing Portland cement clinker and crude iron from BOFS by a carbothermal post-treatment. In this study, German BOFS was reduced in a small-scale electric arc furnace using petrol coke as reducing agent. The carbothermal treatment reduces the iron oxides in the BOFS to metallic iron, which accumulates at the bottom of the furnace by density separation. In addition to metallic iron, the process generates a mineral product rich in the tricalcium silicate solid solution alite. As the main constituent of Portland cement clinker, the hydraulic reactive mineral alite is of high economic importance. In previous studies, the hydraulic reactivity of the mineral product was investigated by testing the compressive strength of blends with 70 wt.% ordinary Portland cement (OPC). Recent investigations focused on the hydraulic properties of the pure mineral product from the reduced BOFS. The heat of hydration of the mineral product was measured by isothermal calorimetry and compared with the heat of hydration of a synthetic low-iron slag and OPC. In addition, the formation of hydration products was investigated with differential scanning calorimetry (DSC) and x-ray diffraction analysis (XRD) on freeze-dried samples after defined curing times. The results of the calorimetric measurements indicate that the mineral product produced less heat of hydration and its reaction was delayed compared to the synthetic low-iron slag and OPC. Hydration products such as portlandite and calcium silicate hydrates (C-S-H) formed later and in lower amounts. The production of a hydraulic material from BOFS by reductive treatment is of great interest to both the cement and steel industries. The substitution of cement clinker in OPC with a hydraulic material such as reduced BOFS leads to a reduction in greenhouse gas emissions from cement production. The steel industry benefits from an application for its by-products that avoids cost expensive landfilling and may even bring economic advantages. Furthermore, it may be possible to return the recovered crude iron to production. T2 - 3rd European Mineralogical Conference CY - Cracow, Poland DA - 30.08.2021 KW - BOFS KW - Calcium silicate KW - Hydraulic reactivity PY - 2021 AN - OPUS4-53473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schraut, Katharina A1 - Adamczyk, Burkart A1 - Simon, Sebastian A1 - von Werder, Julia A1 - Meng, Birgit A1 - Stephan, Dietmar A1 - Adam, Christian T1 - Portland cement clinker from reduced basic oxygen furnace slag N2 - Basic oxygen furnace slag (BOFS) is a by-product of the steelmaking process, of which about 10.4 Mt are produced annually in the European Union. Besides its predominant use in road construction, earthwork, and hydraulic engineering, it is also possible to use BOFS as a source material for Portland cement clinker. The main difference in the chemical composition of BOFS from the chemical composition of Portland cement clinker is its high content of iron oxides (7-50 wt.%). In recent decades, many researchers have investigated the production of both Portland cement clinker and crude iron from BOFS via thermochemical reductive treatment. Carbothermal treatment of liquid BOFS causes reduction of iron oxides to metallic iron, which separates from the mineral phase due to its higher density. In this study, German BOFS was reduced in a small-scale electric arc furnace using petrol coke as reducing agent. The produced low-iron mineral product was chemically similar to Portland cement clinker and contained the most important Portland cement mineral alite (Ca3SiO5) as main component. Besides alite, the mineral product contained other Portland cement clinker constituents such as belite (β-Ca2SiO4) and tricalcium aluminate (Ca3Al2O6). The production of Portland cement clinker and crude iron from BOFS has economic and ecological benefits for both the cement and steel industry. Cement clinker from reduced BOFS may be used as a substitute for cement clinker from conventional cement production, thereby CO2 emissions will be reduced. The steel industry benefits from a high-value application for its by-products that avoids cost expensive landfilling and may even bring economic advantages. However, reductive treatment requires high temperatures and, for economic reasons, has to be carried out immediately after casting of the liquid BOFS, which is a logistical challenge for most steel plants. A cost-benefit analysis is therefore essential. T2 - European Congress and Exhibition on Advanced Materials and Processes CY - Online meeting DA - 13.09.2021 KW - BOFS KW - Portland Cement KW - Hydraulic reactivity PY - 2021 AN - OPUS4-53475 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - COST-Action - EURO-MIC (CA20130) European MIC Network - New paths for science, sustainability and standards N2 - Microbiologically Influenced Corrosion (MIC) is a phenomenon that is increasingly becoming a problem for the society. MIC describes the negative effects a material can experience due to the presence of microorganisms. In Europe, several research groups/ other industrial stakeholders are already dealing with MIC. Unfortunately, the discussions are fragmented and the exchange of information is limited. A true transdisciplinary approach is hardly ever experienced, although this would be logical for this material/biology related challenge. USA, Canada and Australia have strong networks, and develop methods, prevention measures and standards, which Europe is forced to use, since nothing similar exists for a network and combined knowledge to design them according to european standards. This makes Europe extremely dependent and, in some cases, the potential measures or standards cannot been used because the suggested solutions are prohibited by European laws (e.g. use of biocides). Therefore, it is important to initiate a new European MIC-network. Europe needs to combine the efforts as experts in different fields and develop prevention measures according to the European rules, in close cooperation with industry and plant operators and owners of critical infrastructure. This COST Action will provide the necessary interaction and communication, knowledge sharing, training of personnel and of researchers of different disciplines. This will bring Europe to a leading role in this process, bringing ideas on an equal level with other nations, considering the values which are important for Europe and attitudes (e.g.environmental protection) and representing greater protection for people, property and the environment. The main aim and objective of the Action is to , in the context of MIC-research/control, encourage a fluent/synergistic collaboration/communication, closing the gap between materials scientists, engineers, microbiologists, chemists and integrity managers to encourage sufficient interaction between academia and industry. This Action will create a common MIC-Network, including the important stakeholders. T2 - EuroCorr CY - Online meeting DA - 19.09.2021 KW - COST Action KW - MIC KW - Interdisciplinary KW - Stakeholder KW - Academia PY - 2021 AN - OPUS4-53382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hirschberger, Paul A1 - Bartholmai, Matthias ED - Holl, H. T1 - Aerial Chemical-Trail Detection and Localization T2 - 37th Danubia - Adria Symposium on Advances in Experimental Mechanics: Extendet abstracts N2 - This paper presents first advances in the area of aerial chemical trail following. For that purpose, we equipped a palm-size aerial robot, based on the Crazyflie 2.0 quadrocopter, with a small lightweight metal oxide gas sensor for measuring evaporated ethanol from chemical trails. To detect and localize the chemical trail, a novel detection criterion was developed that uses only relative changes in the transient phase of the sensor response, making it more robust in its application. We tested our setup in first crossing-trail experiments showing that our flying ant robot is able to correlate an odor hit with the chemical trail within 0.14 m. Principally, this could enable aerial chemical trail following in the future. T2 - 37th Danubia - Adria Symposium on Advances in Experimental Mechanics CY - Linz, Austria DA - 21.09.2021 KW - Nano aerial robot KW - Trail following KW - Trail detection KW - Localization PY - 2021 SN - 978-3-9504997-0-4 VL - 2021 SP - 39 EP - 40 AN - OPUS4-53409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hirschberger, Paul A1 - Bartholmai, Matthias T1 - Aerial Chemical-Trail Detection and Localization N2 - This poster presentation presents first advances in the area of aerial chemical trail following. For that purpose, we equipped a palm-size aerial robot, based on the Crazyflie 2.0 quadrocopter, with a small lightweight metal oxide gas sensor for measuring evaporated ethanol from chemical trails. To detect and localize the chemical trail, a novel detection criterion was developed that uses only relative changes in the transient phase of the sensor response, making it more robust in its application. We tested our setup in first crossing-trail experiments showing that our flying ant robot is able to correlate an odor hit with the chemical trail within 0.14 m. Principally, this could enable aerial chemical trail following in the future. T2 - 37th Danubia - Adria Symposium on Advances in Experimental Mechanics CY - Linz, Austria DA - 21.09.2021 KW - Nano aerial robot KW - Trail following KW - Trail detection KW - Localization PY - 2021 AN - OPUS4-53411 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schlögel, Kai A1 - Loose, Florian A1 - Hee, Johann A1 - Quicker, Peter A1 - Adam, Christian T1 - Enhancing the Sustainability of Carbon Fibre Reinforced Polymers (CFRP Strategies for Effective Feedstock Recycling as Reducing Agents in Pyrometallurgy N2 - Despite its contribution to tackling climate change by lightweight design, growing CFRP production also results in a global waste generation of 62 kt/a. Accordingly, the energy-intensive production process of carbon fibers (CF) necessitates sustainable recycling solutions. Herein we will give an overview of current recycling processes, discuss their limitations and present a novel approach for safe treatment of CF unsuitable for material recovery . Our project CF Pyro examines feedstock recycling in pyrometallurgical processes, focusing on reactivity of CF, process stability and prevention of hazardous WHO fiber release. Besides fundamental experimental breakthroughs, their broader impact on circular economy will be presented. T2 - CU Online Forum „Composites and Sustainability“ CY - Online meeting DA - 29.06.2021 KW - Carbon Fibers KW - Recycling KW - Electric Arc Furnace KW - CFRP KW - Pyrometallurgy KW - Steelmaking PY - 2021 AN - OPUS4-52920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mezera, Marek A1 - Mirabella, Francesca A1 - Wasmuth, Karsten A1 - Richter, Anja A1 - Schwibbert, Karin A1 - Bennet, Francesca A1 - Krüger, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Bonse, Jörn T1 - Influence of the pulse repetition rate on the chemical and morphological properties of laser generated surface structures N2 - Inter-pulse accumulation of heat could affect the chemical and morphological properties of the laser processed material surface. Hence, the laser pulse repetition rate may restrict the processing parameters for specific laser-induced surface structures. In this study, the evolution of various types of laser-induced micro- and nanostructures at various laser fluence levels, effective number of pulses and at different pulse repetition rates (1 – 400 kHz) are studied for common metals/alloys (e.g. steel or titanium alloy) irradiated by near-infrared ultrashort laser pulses (925 fs, 1030 nm) in air environment. The processed surfaces were characterized by optical and scanning electron microscopy (OM, SEM), energy dispersive X-ray spectroscopy (EDX) as well as time of flight secondary ion mass spectrometry (TOF-SIMS). The results show that not only the surface morphology could change at different laser pulse repetition rates and comparable laser fluence levels and effective number of pulses, but also the surface chemistry is altered. Consequences for medical applications are outlined. T2 - European Materials Research Society Spring 2021 Meeting CY - Online meeting DA - 31.05.2021 KW - Laser-induced pariodic surface structures KW - LIPSS PY - 2021 AN - OPUS4-52778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Törne, Wipert A1 - Piechotta, Christian T1 - Structural Insights on Transformation Products of the Anticoagulant Drug Warfarin N2 - Herein, we present liquid and gas chromatographic methods coupled with (high-resolution) mass spectrometry for the analysis of warfarin’s TPs. Methodologies such as UV-irradiation, ozonation, and chlorination were utilized to simulate primarily technical water treatment, as well as, abiotic transformation processes. Examination of resulting compounds by numerous analytical methods has provided first insights into a multitude of formed substances. Moreover, the oxidative phase I metabolism was mimicked by an electrochemical flow cell with the aim to synthesize and confirm major metabolic products via a nonbiologically mediated process. The further aim is the toxicological assessment of relevant TPs, as well as, the quantification of warfarin and its TPs under environmentally relevant conditions employing the introduced methodologies. T2 - Goldschmidt 2021 CY - Online meeting DA - 04.07.2021 KW - Warfarin PY - 2021 AN - OPUS4-52962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steinhaeuser, Lorin A1 - Lardy-Fontan, S. A1 - Piechotta, Christian A1 - Heath, E. A1 - Perkola, N. A1 - Balzamo, S. A1 - Cotman, M. A1 - Gökcen, T. A1 - Gardia-Parège, C. A1 - Budzinski, H. A1 - Lalère, B. T1 - EDC-WFD: A project to deliver reliable measurements of estrogens for better monitoring survey and risks assessments N2 - Monitoring programs should generate high-quality data on the concentrations of substances and other pollutants in the aquatic environment to enable reliable risk assessment. Furthermore, the need for comparability over space and time is critical for analysis of trends and evaluation of restoration of natural environment. Additionally, research work and exercises at the European level have highlighted that reliable measurements of estrogenic substances at the PNEC level are still challenging to achieve. The project EDC-WFD Metrology for monitoring endocrine disrupting compounds under the EU Water Framework Directive aims to develop traceable analytical methods for determining endocrine disrupting compounds and their effects, with a specific focus on three estrogens of the first watch list (17-beta-estradiol (17βE2), 17-alpha-ethinylestradiol (EE2), and estrone (E1)). Estrogens 17-alpha-estradiol (17αE2) and estriol (E3) will be included to demonstrate the reliability of the developed methods and to support the requirements of Directive 2013/39/EC, Directive 2009/90/EC and Commission Implementation Decision (EU) 2018/840, hence improving the comparability and compatibility of measurement results within Europe. During the EDC-WFD project four selected effect-based methods (EBM) will be deeply investigated in order to improve their rationale use and their support in water quality assessment. In particular, the EBM sensitivity, specificity and accuracy on reference materials with single or mixture solutions of the five substances at a concentration of EQS values will be explored. This project (18NMR01) has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme. T2 - 23rd JCF Frühjahrssymposium 2021 CY - Online meeting DA - 29.03.2021 KW - EDC PY - 2021 AN - OPUS4-52963 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steinhäuser, Lorin A1 - Piechotta, Christian A1 - Lardy-Fontan, S. A1 - Heath, E. A1 - Balzamo, S. A1 - Gardia-Parège, C. A1 - Gökcen, T. A1 - Budzinski, H. T1 - Metrology for Monitoring of Endocrine Disrupting Chemicals Under the EU Water Framework Directive N2 - Monitoring programs should generate high-quality data on the concentrations of substances and other pollutants in the aquatic environment to enable reliable risk assessment. Furthermore, the need for comparability over space and time is critical for analysis of trends and evaluation of restoration of natural environment. Additionally, research work and exercises at the European level have highlighted that reliable measurements of estrogenic substances especially three estrogens of the first watch list (17-beta-estradiol (17βE2), 17-alpha-ethinylestradiol (EE2), and estrone (E1))at the PNEC level are still challenging to achieve.With respects to their physicochemical properties, the 3 substances have the potential to disseminate within aquatic environments, to enter the food chain and to bioaccumulate, Chemical monitoring relies on a succession of actions: sampling, storage and preservation of representative samples; pre-treatment of a sample portion for quantification, calibration, final determination, calculation of results, uncertainty estimation and final expression of results. Throughout this chain of operations, the guarantee of the stability of the analyte is a key issue that has to be addressed to correctly qualify and discuss monitoring data. The project EDC-WFD aims to develop traceable analytical methods for determining endocrine disrupting compounds and their effects, with a specific focus on three estrogens of the first watch. Environmental quality standards (EQS) for these compounds are at the ultra-trace level (EQS EE2 = 35 pg/L, EQS E2 = 400 pg/L, EQS E1 = 3600 pg/L) and pose a significant challenge to analytical methods. Estrogens 17-alpha-estradiol (17αE2) and estriol (E3) will be included to demonstrate the reliability of the developed methods and to support the requirements of Directive 2013/39/EC, Directive 2009/90/EC and Commission Implementation Decision (EU) 2018/840, hence improving the comparability and compatibility of measurement results within Europe. The project will also evaluate the interaction and partitioning of the 5 estrogenic compounds between water samples and suspended particulate matter (SPM) and the capability of developed methods to address the different fractions of matrix (whole water and dissolved concentrations of estrogens). This contribution will present the objectives and methods applied within the EDC-WFD project that could support a better comprehension of the biogeochemical cycle of selected estrogenic substances in aquatic system Funding: This project (18NMR01) has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme T2 - Goldschmidt Virtual 2021 CY - Online meeting DA - 04.07.2021 KW - EDC PY - 2021 AN - OPUS4-52964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia T1 - Photoperception in plant- and rock-associated black fungi N2 - Fungi that share light-flooded habitats with phototrophs may profit from their excess photosynthetic products. Sunlight-associated stresses are however multiple: high temperatures, UV radiation with associated DNA damage, accumulation of reactive oxygen species (ROS), desiccation and osmotic stresses. Ascomycota dominating light-flooded habitats accurately sense and respond to changes in light using it as a cue to coordinate growth, stress responses as well as to establish pathogenic or symbiotic relationships. Two species from two light-flooded habitats – phyllosphere and sun-exposed solid surfaces – were analysed for their photoreceptor distribution. In both habitats phototroph-associated and black [dihydroxynaphthalene (DHN) melanin-containing] fungi are prevalent. This diversity was sampled with the plant-associated fungus Botrytis cinerea (Leotiomycetes), while Knufia petricola (Eurotiomycetes) was included as a typical biofilm-former on sun-exposed solid surfaces e.g. rocks, building facades, roofs, and solar panels. The analysis has shown that genomes of black fungi contain more photoreceptors than animal pathogens and saprophytes such as Aspergillus nidulans and Neurospora crassa1,2. B. cinerea that causes the grey mould disease by infecting the above-ground parts of more than 200 dicots has a highly sophisticated photosensory and signalling system that helps to avoid light and to locate susceptible hosts1. Rock-inhabiting Dothideomycetes and Eurotiomycetes including Knufia petricola possess equal numbers of photoreceptors along with the same set of protective metabolites i.e. melanin, carotenoids and mycosporines2. This similarity between black fungi from plant and rock surfaces suggests that photoperception and -regulation are important for sun-stressed fungi that receive nutrients through cooperation with phototrophs. CRISPR/Cas9-based genetic tools for manipulating K. petricola were established3 and are currently used for elucidating the functions of the different photoreceptors in the biology of rock-inhabiting fungi. This work was supported by the grant SCHU 2833/4-1 from the German Research Foundation (DFG) and internal funds of the BAM. T2 - 19th Congress of the European Society for Photobiology CY - Online meeting DA - 30.08.2021 KW - Fungi KW - Light KW - Extreme environments PY - 2021 AN - OPUS4-53191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Roesch, Philipp A1 - Wittwer, Philipp T1 - Current challenges on PFAS analytics N2 - Several thousand PFAS are in circulation and the current challenge lies in detection of these compounds. Wheter environmental contamination occurs via industrial emission or direct PFAS exposure, as through the use of AFFF fire fighting foams. Wheter PFAS need to be detected in consumer products or agricultral soil, or wheter human and wildlife exposure to PFSA needs to be evaluated, suitable analytical methods are required to identifiy the target class within a hugh variety of matrices. At the same time it is critical to detect trace amounts of compounds within various matrices, we want to make sure that we consider very volatile and mobile species, simultaneously want to assure that we do not overlook less and insoluble compounds. We require methods that allow both single and multi target analysis and want to have an ideal overview with the help of sum parameters. T2 - Workshop - Advancements of Analytical Techniques for Per- and Polyfluoroalkyl Substances (PFAS) CY - Online meeting DA - 01.09.2021 KW - PFAS KW - PFAS analytics KW - EOF/AOF PY - 2021 AN - OPUS4-53196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Physiological and evolutionary consequences of exposing Pseudomonas aeruginosa to biocide-antibiotic combinations N2 - Antimicrobials can exert specific physiological effects when used in combination that are different from those when applied alone. These effects include physiological effects (i.e. synergy, antagonism and suppression) as well as evolutionary effects on the selection of resistant strains (i.e. cross-resistance and collateral sensitivity). While combination effects have been extensively mapped for antibiotic-antibiotic combinations, the combination effects of antibiotics with antimicrobials used as biocides or antiseptics have not been systematically investigated. Here, we investigated the physiological and evolutionary consequences of combinations of antibiotics (meropenem, gentamicin and ciprofloxacin) and substances used as biocides or antiseptics (octenidine, benzalkonium chloride, cetrimonium bromide, chlorhexidine, povidone-iodine, silver) on growth and selection of Pseudomonas aeruginosa. We find prevalent physiological combination effects with synergy occurring 6 times and antagonism occurring 10 times. The effects are specific to the antibiotic-biocide combination with meropenem showing a tendency for antagonism with biocides (6 of 7), while gentamicin has a tendency for synergy (5 of 7). A particular strong antagonism is apparent for the meropenem-chlorhexidine combination, for which we conducted an in-depth study on the underlying molecular mechanism using RNASeq. Moreover, we find widespread effects of the biocide-antibiotic combinations on selection of P. aeruginosa strains resistant to the antibiotics, including cross-resistance and collateral sensitivity. In conclusion, antibiotics and biocides or antiseptics exert physiological and evolutionary combination effects on the pathogen P. aeruginosa. These effects have consequences for the efficacy of both types of substances and for the selection of antimicrobial resistant strains in clinical applications with combined exposure (e.g. wound care, coated biomaterials). T2 - Antimicrobial Resistance in Biofilms and on Biomaterials CY - Online meeting DA - 10.06.2021 KW - Antimicrobial resistance KW - Antimicrobial coating KW - Biofilms PY - 2021 AN - OPUS4-53162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Anja A1 - Mezera, Marek A1 - Buchberger, G. A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Heitz, J. A1 - Schwibbert, Karin T1 - Laser-processing – a tool to direct biofilm formation N2 - Using nanofiber-like cell appendages, secreted proteins and sugars, bacteria can establish initial surface contact followed by irreversible adhesion and the formation of multicellular biofilms, often with enhanced resistance towards antimicrobial treatment and established cleaning procedures. On e.g. medical implants, in water supply networks or food-processing industry, biofilms can be a fertile source of bacterial pathogens and are repeatedly associated with persisting, nosocomial and foodborne infections. Nowadays, the emergence of resistances because of extensive usage of antibiotics and biocides in medicine, agriculture and private households have become one of the most important medical challenges with considerable economic consequences. In addition, aggravated biofilm eradication and prolonged cell-surface interaction can lead to increased biodeterioration and undesired modification of industrial and medical surface materials. Various strategies are currently developed, tested, and improved to realize anti-bacterial surface properties through surface functionalization steps avoiding antibiotics. In this study, contact-less and aseptic large-area short or ultrashort laser processing is employed to generate different surface structures in the nanometer- to micrometer-scale on technical materials such as titanium-alloy and polyethylene terephthalate (PET). The laser processed surfaces were subjected to bacterial colonization studies with Escherichia coli test strains and analyzed with reflected-light and epi-fluorescence microscopy. Depending on the investigated surfaces, different bacterial adhesion patterns were found, ranging from bacterial-repellent to bacterial-attractant effects. The results suggest an influence of size, shape and cell appendages of the bacteria and – above all – the laser-processed nanostructure of the surface itself, emphasizing the potential of laser-processing as a versatile tool to control bacterial surface adhesion. T2 - International Biodeterioration & Biodegradation Symposium 2021 CY - Online meeting DA - 06.09.2021 KW - Bacterial adhesion KW - Biofilm formation KW - Laser-induced periodic surface structueres (LIPPS) KW - Laser processing PY - 2021 UR - https://www.ibbs18.org/programme AN - OPUS4-53223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawlitza, Kornelia A1 - Johann, Sergej A1 - Mansurova, Maria A1 - Kohlhoff, Harald A1 - Tiebe, Carlo A1 - Bell, Jérémy A1 - Bartholmai, Matthias A1 - Rurack, Knut T1 - Semi-automatic Measurement Device for Long-Term Monitoring of Ammonia in Gas Phase T2 - SMSI 2021 Proceedings N2 - In the present paper the development of a semi-automated device for long-term monitoring of gaseous ammonia is described. A sensor material was produced that changes its optical properties in the pres-ence of low concentrations of ammonia in air. The implementation into an electronic device enables precise, simple, economic and fast monitoring of low concentrations of harmful gases, like ammonia, and hence can help to improve the climate monitoring in livestock housing, barns or stables. T2 - SMSI 2021 CY - Online meeting DA - 03.05.2021 KW - Spectroscopy KW - Embedded sensor KW - Environment KW - Air quality PY - 2021 SP - 133 EP - 134 AN - OPUS4-52576 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Seher, Julia T1 - Lightweight Aggregates - Recycling of Construction and Demolition Waste N2 - A brief introduction into the production of lightweight aggregates from construction and demolition waste and some results of the project HYTEGRA. T2 - Postdoc Symposium: BAM Focus Area Material CY - Online meeting DA - 28.04.2021 KW - Leichte Gesteinskörnung KW - Rohstoffliches Recycling KW - Reststoffe KW - Mauerwerkbruch KW - Papierasche KW - Speichermaterial PY - 2021 AN - OPUS4-52606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winkler, Nicolas P. A1 - Neumann, Patrick P. A1 - Kohlhoff, Harald A1 - Erdmann, Jessica A1 - Schaffernicht, Erik A1 - Lilienthal, Achim J. T1 - Development of a Low-Cost Sensing Node with Active Ventilation Fan for Air Pollution Monitoring T2 - SMSI 2021 Proceedings N2 - A fully designed low-cost sensing node for air pollution monitoring and calibration results for several low-cost gas sensors are presented. As the state of the art is lacking information on the importance of an active ventilation system, the effect of an active fan is compared to the passive ventilation of a lamellar structured casing. Measurements obtained in an urban outdoor environment show that readings of the low-cost dust sensor (Sharp GP2Y1010AU0F) are distorted by the active ventilation system. While this behavior requires further research, a correlation with temperature and humidity inside the node shown. T2 - SMSI 2021 Conference: Sensor and Measurement Science International CY - Online meeting DA - 03.05.2021 KW - Wireless sensing node KW - Air pollution KW - Sensor network KW - Environmental monitoring PY - 2021 DO - https://doi.org/10.5162/SMSI2021/D3.5 VL - 2021 SP - 260 EP - 261 AN - OPUS4-52607 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Winkler, Nicolas P. A1 - Neumann, Patrick P. A1 - Kohlhoff, Harald A1 - Erdmann, Jessica A1 - Schaffernicht, Erik A1 - Lilienthal, Achim J. T1 - Development of a Low-Cost Sensing Node with Active Ventilation Fan for Air Pollution Monitoring N2 - A fully designed low-cost sensing node for air pollution monitoring and calibration results for several low-cost gas sensors are presented. As the state of the art is lacking information on the importance of an active ventilation system, the effect of an active fan is compared to the passive ventilation of a lamellar structured casing. Measurements obtained in an urban outdoor environment show that readings of the low-cost dust sensor (Sharp GP2Y1010AU0F) are distorted by the active ventilation system. While this behavior requires further research, a correlation with temperature and humidity inside the node shown. T2 - SMSI 2021 Conference: Sensor and Measurement Science International CY - Online meeting DA - 03.05.2021 KW - Wireless sensing node KW - Air pollution KW - Environmental monitoring PY - 2021 AN - OPUS4-52609 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Anja A1 - Mezera, Marek A1 - Thiele, Dorothea A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Schwibbert, Karin T1 - Bacterial adhesion on ultrashort laser processed surfaces N2 - Bacterial biofilms are multicellular communities adhering to surfaces and embedded in a self-produced extracellular matrix. Due to physiological adaptations and the protective biofilm matrix itself, biofilm cells show enhanced resistance towards antimicrobial treatment. In medical and industrial settings, biofilms on e.g. for implants or for surfaces in food-processing industry can be a fertile source of bacterial pathogens and are repeatedly associated with persisting, nosocomial and foodborne infections. As extensive usage of antibiotics and biocides can lead to the emergence of resistances, various strategies are currently developed, tested and improved to realize anti-bacterial surface properties through surface functionalization steps avoiding antibiotics. In this study, contact-less and aseptic large-area ultrashort laser scan processing is employed to generate different surface structures in the nanometer- to micrometer-scale on technical materials, i.e. titanium-alloy, steel, and polymer. The processed surfaces were characterized by optical and scanning electron microscopy and subjected to bacterial colonization studies with Escherichia coli test strains. For each material, biofilm results of the fs-laser treated surfaces are compared to that obtained on polished (non-irradiated) surfaces as a reference. Depending on the investigated surfaces, different bacterial adhesion patterns were found, suggesting an influence of geometrical size, shape and cell appendages of the bacteria and – above all – the laser-processed nanostructure of the surface itself. T2 - European Materials Research Society Spring Meeting 2021 CY - Online Meeting DA - 31.05.2021 KW - Bacterial adhesion KW - Biofilm formation KW - Ultrashort laser processing KW - Laser-induced periodic surface structures (LIPSS) PY - 2021 UR - https://www.european-mrs.com/laser-material-processing-fundamental-interactions-innovative-applications-emrs AN - OPUS4-52765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Seneschal-Merz, Karine A1 - Bücker, Michael A1 - Wachtendorf, Volker A1 - Heidrich, Christa A1 - Sander, Christoph T1 - New UV-protective glazing for the conservation of cultural assets N2 - For centuries, churches, secular buildings and museums have been furnished with valuable works of art. Many works of art are UV- and light-sensitive. It is well known that especially UV radiation causes damage and discoloration in paintings, textiles, plastics, wood and other materials. In particular, the wavelengths between 280 and 410 nm cause color changes, embrittlement or destruction of e.g. plastics over time. Therefore, strongly UV-absorbing glasses are advantageous for architecture and are necessary for the protection of cultural assets. As restorers in all disciplines become more and more aware, the demands placed on buildings and their furnishings in terms of climate are becoming increasingly detailed and precise. The aim in each case is to preserve the valuable artwork. For some years now, the industry has been offering the protection of cultural objects by installing special UV-protective glasses. Currently, UV protection for church buildings is realized by laminated safety glass equipped with appropriate UV-protective plastic films. Technically, this always means a second pane of glass in front of the windows, which is installed outside the building. This creates climatic gaps that are difficult to control and deterioration due to ageing effects can be expected. At the same time, this protective glazing is not invisible and has a considerable aesthetic influence on the interior and exterior appearance of the building. Meanwhile, the preservation of historical monuments accepts such aesthetic cuts on buildings in order to protect the artwork in the interior from UV light. To this day, however, the long-term durability of UV protection provided by inserted plastic films is still controversial. To date the only available alternative on the market is a mouth-blown UV protection glass which uses a so-called overlay to provide UV protection. This shows that UV protection can also be achieved by glasses without plastic films thus realizing an exclusive inorganic protection which normally is more stable than a polymeric one. So far there are not enough studies to prove long-term durability. The aim of this project is to provide existing glazing or new glazing to be created with a highly transparent layer that ensures this UV-protective filter function below 400 nm. The glass coating is to be applied to the glass over a large area and fired into the surface like a classic ceramic enamel paint with the same technics. In addition, it should be long-term durable in its function. It means, that the glass has to be fused at temperatures below 630 °C during the firing process, its chemical durability has to be high, its coefficient of thermal expansion has to be as close as the one of the substrate (usually float glass) and the glass has to absorb the UV-radiation within a thin thickness (thinner as 100 µm). In this project, the long-term durability of commercial UV-protective glasses is examined. New low melting glasses containing UV-absorbing ions are being developed. Their UV-absorption as a thin layer is analyzed as well as their chemical durability and their thermal properties. We are grateful to BMWI for the financial support in the frame of the Central Innovation Programme for SMEs (ZIM). T2 - HVG-DGG: 94. Glastechnische Tagung CY - Online meeting DA - 10.05.2021 KW - Glass KW - Low melting KW - Chemical durability KW - Weathering tests KW - Aging test KW - UV absorption KW - UV protection KW - Architecture KW - Optical properties PY - 2021 AN - OPUS4-52648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Johann, Sergej A1 - Tiebe, Carlo A1 - Kohlhoff, Harald A1 - Bartholmai, Matthias T1 - Feasibility Study for Safe Workplaces through automation and digitalization technology with redesigned Smart Sensors and LoRaWAN Monitoring System T2 - SMSI 2021 Proceedings N2 - This project addresses the application of safe and healthy workplaces in offices, chemical laboratories and other workplaces where indoor air quality plays an important role. The LoRaWAN (Long Range Wide Area Network) is used as a communication interface to make sensor data globally accessible. The objectives of the project are to create a sensor node and an online and offline system that collects the data from the sensor nodes and stores it on a local server, in a cloud, and also locally on the node to prevent communication failures. An important point in this project is the development of the sensor nodes and the placement of these in the premises, thus no development work is involved in Building the infrastructure. T2 - SMSI 2021 CY - Online meeting DA - 03.05.2021 KW - Smart sensors KW - Air quality monitoring KW - LoRaWAN KW - VOC KW - Multisensor system PY - 2021 SP - 230 EP - 231 AN - OPUS4-52649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawlitza, Kornelia A1 - Johann, Sergej A1 - Mansurova, Maria A1 - Kohlhoff, Harald A1 - Tiebe, Carlo A1 - Bell, Jérémy A1 - Bartholmai, Matthias A1 - Rurack, Knut T1 - Long-Term Monitoring of Gaseous Ammonia with a Semi-automated Measuring Device N2 - In the present paper the development of a semi-automated device for long-term monitoring of gaseous ammonia is described. A sensor material was produced that changes its optical properties in the pres-ence of low concentrations of ammonia in air. The implementation into an electronic device enables precise, simple, economic and fast monitoring of low concentrations of harmful gases, like ammonia, and hence can help to improve the climate monitoring in livestock housing, barns or stables. T2 - SMSI 2021 CY - Online meeting DA - 03.05.2021 KW - Spectroscopy KW - Embedded sensor KW - Environment KW - Air quality PY - 2021 AN - OPUS4-52575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dinter, Adelina-Elisa A1 - An-Stepec, Biwen A1 - Wurzler, Nina A1 - Özcan Sandikcioglu, Özlem A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Deciphering corrosion processes of MIC organisms - single cell-ICP-ToF-MS analysis of archaea on solid steels N2 - ICP-ToF (time of flight) MS enables the analysis of the multi-element fingerprint of single cells. The single cell ICP-ToF-MS is used in the presented poster for the analysis of archaea involved in microbiologically influenced corrosion (MIC) of steel. By means of sc-ICP-ToF-MS, the possible uptake of individual elements from the respective steel is investigated - the information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts. The work combines modern methods of analytical sciences with materials. T2 - SALSA - Make & Measure 2021 CY - Online meeting DA - 16.09.2021 KW - Sc-ICP-ToF-MS KW - Single cell analysis KW - Microbiologically influenced corrosion KW - Archaea KW - Poster presentation PY - 2021 AN - OPUS4-53337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dinter, Adelina-Elisa A1 - An-Stepec, Biwen A1 - Wurzler, Nina A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Development of a single cell-ICP-ToF-MS-method for multielement analysis of MIC organisms grown on solid steel samples N2 - The latest ICP-MS technology - ICP-ToF (time of flight)-MS – enables the analysis of the multi-element fingerprint of individual cells. The interface between material and environmental analysis thus receives special attention, e.g., when considering corrosion processes. Microbiologically influenced corrosion (MIC) is a highly unpredictable phenomenon due to the influence of the environment, microbial communities involved and the respective electron source. However, the interaction pathway between cells and the metal surface remains unclear. The development of the MIC-specific ICP-ToF-MS analytical method presented here at the single cell level, in combination with the investigation of steel-MIC interactions, contributes significantly to progress in instrumental MIC analysis and will enable clarification of the processes taking place. For this, a MIC-specific staining procedure was developed. It allows the analysis of archaea at a single cell level and provides information about the interaction of the cells with the staining agent which is extremely scarce compared to other well characterized organisms. Additionally, the single cell ICP-ToF-MS is used for the analysis of archaea involved in MIC of steel. Hence, the possible uptake of individual elements from different steel samples is investigated - the information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts, thus combining modern methods of analytical sciences with materials. T2 - DAAS Doktorandenseminar 2021 CY - Online meeting DA - 20.09.2021 KW - Sc-ICP-ToF-MS KW - Single cell analysis KW - Microbiologically influenced corrosion KW - Archaea PY - 2021 AN - OPUS4-53340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gehrenkemper, Lennart A1 - Simon, Fabian A1 - von der Au, Marcus A1 - Meermann, Björn T1 - Detection of PFAS pollution in environmental samples - A Fast & sensitive PFAS sum parameter method using HR CS GFMAS N2 - The substance class of per- and polyfluorinated alkyl substances (PFAS) comprises more than 5300 organic compounds. PFAS are completely fluorinated on at least one carbon atom. They are associated with negative impacts on human and animal health, are extremely persistent in the environment, and bioaccumulate along food chains. Therefore, PFAS are classified as emerging pollutants. At the same time, their physicochemical properties make them attractive for use in diverse technical applications. They are both hydrophobic and lipophobic and show high thermal as well as chemical resistance due to the strong C-F bond. First regulations of some PFAS in combination with the technically excellent properties generated an innovation pressure and led to an enormous increase in the number of fluorinated substitution compounds. Due to the increasing complexity of this substance class, target analysis is not able to cover such a variety and multitude of analytes. Therefore, a suitable PFAS sum parameter method is necessary for an accurate detection of PFAS pollution in the environment, the identification of PFAS hotspots and an evaluation of appropriate remediation measures. Here we provide insights into the current state of PFAS sum parameter development and present our latest results on method development for the quantitative analysis of PFAS as extractable organically bound fluorine (EOF) in environmental samples using high-resolution molecular absorption spectrometry (HR-CS-GFMAS). For this purpose, we optimized the extraction of PFAS from different solid matrices with simultaneous separation of inorganic fluoride. For quantification resulting extracts were measured using a fluorine specific HR-CS-GFMAS method. By adding gallium salt solutions as modifiers in HR-CS-GFMAS, fluorine can be indirectly quantified very selectively by the in situ formation of GaF with low limits of quantification (instrumental LOQ c(F) < 3 µg/L). Here we will show results from real soil samples from sites with and without known contamination. T2 - 6. Doktorandenseminar des Deutschen Arbeitskreises für Analytische Spektroskopie (DAAS) CY - Online meeting DA - 20.09.2021 KW - High resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) KW - Soil KW - Per- and polyfluorinated alkyl substances (PFASs) KW - Extractable organically bound fluorine (EOF) KW - Solid-liquid extraction PY - 2021 AN - OPUS4-53333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piehl, Patrick A1 - Weingart, E. A1 - Adam, Christian T1 - Recovery of zinc from steel mill dusts in the rotary kiln by joint treatment with chloride-containing residues N2 - During iron and steel production, several by-products such as slags, dusts and sludges are generated in addition to pig iron and steel as primary products. While established recycling routes exist for slags, there are still considerable recycling problems for other residual materials, especially for filter dusts and sludges containing zinc and lead from waste gas purification. However, the high heavy metal contents make landfilling these dusts and sludges cost-intensive and ecologically problematic. In addition, the relatively high zinc and iron loads represent a valuable material potential, which can make reprocessing of the material with recovery of the zinc and iron loads as secondary raw materials ecologically as well as economically attractive. Against this background, a process is being developed in a cooperative project between Ferro Duo GmbH and the Federal Institute for Materials Research and Testing (BAM), in which the heavy metals (zinc, lead, cadmium, etc.) contained in the filter dusts and sludges are selectively converted into chlorides in a thermochemical process after the addition of a chlorine donor and evaporated at temperatures between 650 and 1100 °C. This process can be used to recover zinc and iron as secondary raw materials. Experiments to date in a batch reactor show that >99% of the zinc and lead can be removed from the treated material. However, a continuous process is necessary for an economical process, which is why this process is transferred to a rotary kiln and relevant process parameters are identified and optimized. The results of these investigations will be presented here. T2 - European Congress and Exhibition on Advanced Materials and Processes 2021 CY - Online meeting DA - 13.09.2021 KW - Elektroofenstaub KW - Gichtgasschlamm KW - Recycling KW - Ressourcenrückgewinnung KW - Zink PY - 2021 AN - OPUS4-53290 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Kohlhoff, Harald A1 - Johann, Sergej A1 - Erdmann, Jessica A1 - Winkler, Nicolas P. ED - Kourkoulis, S. K. T1 - The RASEM System: A Technical Overview T2 - 38th Danubia-Adria Symposium on Advances in Experimental Mechanics - Extended abstracts N2 - Occupational health is an important topic, especially in industry, where workers are exposed to airborne by-products (e.g., dust particles and gases). Therefore, continuous monitoring of the air quality in industrial environments is crucial to meet safety standards. For practical and economic reasons, high-quality, costly measurements are currently only carried out sparsely, both in time and space, i.e., measurement data are collected in single day campaigns at selected locations only. The project “Robot-assisted Environmental Monitoring for Air Quality Assessment in Industrial Scenarios” (RASEM) addresses this issue by bringing together the benefits of both – low- and high-cost – measuring technologies enabling costefficient long-term air quality monitoring in realtime: A stationary network of low-cost sensors that is augmented by mobile units carrying high-quality sensors. By mapping the distribution of gases and particles in industrial environments with the proposed RASEM system, measures can be identified to improve on-site working conditions much faster than using traditional methods. In this paper, we detail the technical aspects of RASEM and introduce the mobile platforms used. T2 - 38th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Poros, Greece DA - 20.09.2022 KW - RASEM KW - Dust sensor KW - Low-cost KW - Sensor network KW - Ground Robot KW - Aerial Robot PY - 2022 SP - 1 EP - 2 CY - Athens, Greece AN - OPUS4-55915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Kohlhoff, Harald A1 - Johann, Sergej A1 - Erdmann, Jessica A1 - Winkler, Nicolas P. T1 - The RASEM System: A Technical Overview N2 - Occupational health is an important topic, especially in industry, where workers are exposed to airborne by-products (e.g., dust particles and gases). Therefore, continuous monitoring of the air quality in industrial environments is crucial to meet safety standards. For practical and economic reasons, high-quality, costly measurements are currently only carried out sparsely, both in time and space, i.e., measurement data are collected in single day campaigns at selected locations only. The project “Robot-assisted Environmental Monitoring for Air Quality Assessment in Industrial Scenarios” (RASEM) addresses this issue by bringing together the benefits of both – low- and high-cost – measuring technologies enabling cost-efficient long-term air quality monitoring in realtime: A stationary network of low-cost sensors that is augmented by mobile units carrying high-quality sensors. By mapping the distribution of gases and particles in industrial environments with the proposed RASEM system, measures can be identified to improve on-site working conditions much faster than using traditional methods. In this presentation, we detail the technical aspects of RASEM and introduce the mobile platforms used. T2 - 38th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Poros, Greece DA - 20.09.2022 KW - RASEM KW - Dust sensor KW - Low-cost KW - Sensor network KW - Ground Robot KW - Aerial Robot PY - 2022 AN - OPUS4-55916 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dondi, C. A1 - Rey, S. A1 - Scholtz, Lena A1 - Tavernaro, Isabella A1 - Resch-Genger, Ute A1 - Larsson-Callerfelt, A-K. A1 - Shaw, M. T1 - Advances in high-resolution imaging of cell cultures and tissues exposed to airborne particles N2 - High-resolution microscopy techniques are fundamental to our ability to investigate and quantify the toxicological effects of airborne particulate pollutants via imaging of in vitro respiratory models exposed to well-characterised particle suspensions and aerosols. However, all imaging methods are limited in their spatio-temporal resolution, information capacity and suitability for minimally invasive time lapse imaging. Many traditional methods are incompatible with the more complex three-dimensional model systems which have potential for greater correlation between in vitro studies and real-world health effects. New techniques can overcome these limits, increasing our ability to understand and measure biological responses to particulate exposure at subcellular, cellular and multicellular scales. We have investigated a variety of microscopy methods for imaging different respiratory models. T2 - International Aerosol Conference (IAC 2022) CY - Athens, Greece DA - 04.09.2022 KW - In vitro imaging KW - Aerosol particles KW - Fluorescence microscopy KW - High-resolution imaging PY - 2022 AN - OPUS4-55694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meermann, Björn T1 - Teaching an old dog new tricks – molecular absorption spectrometry for fluorine analysis N2 - The introduction of fluorine in organic molecules leads to new chemical/physical properties and up to now more than 6000 fluorinated substances are on the market. Especially in the field of pharmaceuticals, fluorinated organic molecules are becoming more and more popular and at present amount up to 25% of market share, with an upward trend. Highly fluorinated organic substances are also used in technical applications (e.g., coatings, fire-extinguishing agents, textiles). However, next to beneficial aspects of per- and polyfluorinated compounds (PFAS) these substances belong to the class of “emerging contaminants” in particular due to their high persistence and ubiquitous presence in the environment. Due to the large variety of fluorinated substances and increasing production volumes, it is most likely that numerous and up to date unknown fluorine-species are present in the (aquatic) environment. Sum parameter analytical methods to assess the degree of contamination of surface waters with organically bound fluorine are highly needed. Within this presentation the development of a high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) method for PFAS analysis is presented. Fluorine detection is enabled upon the addition of a molecule forming agent – Ga turned out being the most sensitive one. Furthermore, the injection as well as temperature program was optimized, and appropriate solid phase extraction (SPE) phases were identified for PFAS extraction. Our developed HR-CS-GFMAS method turned out as a versatile tool in PFAS analysis in a broad variety of matrices – some recent applications will be highlighted as well. T2 - 20th European Symposium on Fluorine Chemistry CY - Berlin, Germany DA - 14.08.2022 KW - HR-CS-GFMAS KW - PFAS Analysis KW - Coparison study CIC <=> HR-CS-GFMAS PY - 2022 AN - OPUS4-55532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rückschloss, J. A1 - Schischke, K. A1 - Berwald, A. A1 - Schlegel, Moritz-Caspar T1 - Pandemic-related behavioural changes – does EU Ecodesign policy making need to react? T2 - eceee Summer Study Proceedings N2 - The global COVID-19 pandemic has brought far-reaching changes for our society. Suddenly, millions of people spent the majority of their time at home - either due to a lock down or by switching from office to working remotely. This paper offers a literature review regarding pandemic-related behavioural changes and a first mapping of likely consequences for EU Ecodesign regulations. These impacts are considered for product groups that are already regulated by EU Ecodesign or are under discussion for future regulation. Furthermore, potential for smart home applications are analysed exemplarily. We identified which behavioural changes have the potential to become established in the long-term. This might need to result in adaptions for regulations under the Ecodesign Directive and EU-Energy Labelling regulations to better reflect the recently appeared usage profiles. It might require different priority settings regarding the product groups to be regulated and communicated to users, due to online shopping proliferation, to be updated. Changed behaviour can be observed in product groups such as ICT, consumer electronics and household appliances. Examples include the increased use of laptops and tablets for digital teaching, use of gaming devices and office equipment in private households (IT, printing and network devices) and changed cooking behaviour. This resulted in increased sales of some product types. Online sales became even more important than in-store sales, which also means that consumers are increasingly informed online about energy efficiency. More do-it-yourself (DIY) home projects result in more frequent - not yet regulated - DIY power tool use and over the long run might stimulate the need for (semi-)professional tools. The changes in behaviour patterns also offer the opportunity to optimize consumption by means of smart homes and smart products. However, the control of networked household appliances requires additional energy for standby states and data exchange. As an illustrative example, we discuss the conflict between higher energy consumption for smart system components and the possible optimization of consumption in private households. T2 - ECEEE 2022 SUMMER STUDY CY - Hyères, France DA - 06.06.2022 KW - Ecodesign KW - Energy Labelling KW - Circular Economy KW - Pandemic KW - Behavioural change PY - 2022 UR - https://www.eceee.org/static/media/uploads/site-2/summerstudy2022/pdfs_docs/panel8-papers.zip SP - 1237 EP - 1244 AN - OPUS4-55509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Babutzka, Martin A1 - Müller, Thoralf T1 - Field exposure studies under sheltered and unsheltered conditions at different test sites in northern and eastern Germany: Update after 5 years of exposure N2 - A series of field exposure tests according to ISO 9223 up to 9226 was carried out at different locations to determine the corrosivity and the corrosion progress of different test sites throughout northern and eastern Germany. Standard test specimens of steel, zinc, copper and aluminium were exposed to rural, city and marine atmosphere at test sites of the Bundesanstalt für Materialforschung und -prüfung (BAM). Test sites at city atmosphere comprised exposure on a rooftop, next to a highly frequented road and directly at a motorway. Exposure under marine conditions was carried out at Heligoland in the North Sea. The specimens were stored under sheltered and unsheltered conditions on each test site, respectively. Corrosion rates after the first year of field exposure were determined and used for the classification of the atmospheres and the test sites regarding the corrosivity category. Results after the first year of exposure were presented at the EUROCORR 2018 in Cracow. The current presentation will present an update of results of the systematic study after five years of exposure. The corrosion progress and the mass loss of the standard metals steel, zinc, copper and aluminium will be presented and discussed with respect to the atmospheric conditions and the time of wetness at the test sites. In addition, the difference between sheltered and unsheltered conditions will be discussed. T2 - EUROCORR 2022 CY - Berlin, Germany DA - 28.08.2022 KW - Atmospheric Corrosion KW - Atmosphärische Korrosion KW - Korrosionsuntersuchungen KW - Corrosion testing PY - 2022 AN - OPUS4-55602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - Resistance evolution towards biocides and antimicrobial surfaces N2 - Biocides, including disinfectants and antimicrobial surfaces (AMCs), are important to prevent the spread of pathogens and antimicrobial resistant bacteria via surfaces. However, concerns have been raised about the evolution and selection of resistance against disinfectants and AMCs. In turn, resistance against disinfectants and AMCs can be associated to antibiotic resistance due to cross-resistance and co-resistance. We need to understand the mechanisms and risks of disinfectants and AMCs for resistance and cross-resistance evolution to optimize their application and safeguard their long-term efficacy. We used adaptive laboratory evolution (ALE) experiments based on repeated exposure of bacteria to disinfectants. Our results show that repeated disinfection of E. coli with benzalkonium chloride in suspension results in a 2000-fold increase in survival within 5 exposure cycles. Adaption is linked to the initial presence of persister cells highly tolerant to benzalkonium chloride. We used the same approach to develop standardizable ALE experiments to determine resistance evolution to AMCs. The results highlight rapid adaptation of E. coli and P. aeruginosa towards copper surfaces. Moreover, there are multiple situations in the clinic or in the environment in which biocides and antibiotics co-occur and in which combination effects can shape their antimicrobial activity or their selective effects. Our work with P. aeruginosa shows prevalent combination effects of biocides and antibiotics, ranging from synergy to antagonism and resulting in the selection for or against antibiotic resistant strains. The combination effects are dependent on the biofilm mode-of-growth, manifesting in apparent differences in the structural arrangement of antibiotic sensitive and resistant strains in biofilms exposed to combinations. Furthermore, biocides affect rates of mutation and horizontal gene transfer, thereby having a potential facilitating effect on resistance evolution. Taken together, our work shows that the role of biocides as potential drivers of resistance evolution and selection deserves further study and regulative action. T2 - Eurobiofilms 2022 CY - Palma, Spain DA - 31.08.2022 KW - Antimicrobial resistance KW - Bacteria KW - Biofilms KW - Biocides KW - Antimicrobial surfaces PY - 2022 AN - OPUS4-55608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hübler, Daniela A1 - Hinzmann, Daniel A1 - Gradt, Thomas A1 - Uhlmann, Eckardt T1 - Tribological behavior and cutting performance of a NbC-Ni-WC-TiC cermet N2 - The addition of WC and TiC in a nickel bonded NbC cermet was investigated regarding the tribological behavior under dry oscillating sliding at different relative humidities φ and the cutting performance in dry cylindrical turning of C45E at different cutting speeds. NbC-12Ni-12WC-14TiC shows similar coefficient of friction f and wear rate compared to NbC-12Ni at φ = 2 %, but no pronounced decrease in f with increasing humidity. When turning C45E, NbC-12Ni-12WC-14TiC shows lower material removal VW compared to other NbC-based cermets, which can be attributed to inhomogeneities in the cutting material and a low hardness. T2 - 7th World Tribology Congress - WTC 2022 CY - Lyon, France DA - 11.07.2022 KW - Niobium carbide KW - NbC cermets KW - Tribology KW - Dry cylindrical turning PY - 2022 AN - OPUS4-56042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piehl, Patrick A1 - Auer, G. A1 - Kehrmann, A. A1 - Adam, Christian T1 - Thermochemical treatment of steel work dusts and sludges for the recovery of zinc and iron N2 - During iron and steel production, several by-products such as slags, dusts, and sludges are generated in addition to pig iron and steel as primary products. Especially for filter dusts and sludges containing zinc and lead from gas purification, there are still considerable recycling problems. However, the high heavy metal contents make landfilling of these dusts and sludges cost-intensive and ecologically problematic. In addition, the relatively high zinc and iron loads represent a valuable resource, which can make reprocessing of the material with recovery of the zinc and iron loads as secondary raw materials ecologically as well as economically attractive. Nevertheless, established recycling methods like the Waelz process fall short in regaining more than one valuable metal from the dusts and operate only under narrow ranges of material compositions, which makes it problematic to adapt these processes to new dust compositions as are to be formed in future steel work operations. To tackle these problems, the German Federal Institute for Materials Research and Testing (BAM) and Ferro Duo GmbH investigate innovative recycling methods for steelwork dusts and sludges in a joint project. This mainly focusses on regaining valuable metals such as iron as well as zinc from blast furnace sludge (BFS) and electric arc furnace dust (EAFD) by thermochemical treatment. Therefore, mixtures of these materials are heated under inert atmosphere employing the carbon present in BFS as internal reducing agent. During the process, metallic iron is formed in the solid reaction product while zinc and other volatile heavy metals are evaporated. This paves the way for the generation of zinc as well as sponge iron as two separate products valuable for metallurgical processes. The process basically consists of heating a mixture of BFS and EAFD to temperatures between 700 and 1100 °C under inert (e.g., nitrogen) or reducing (e.g., CO) gas flow. When a suitable mixing ratio is applied, the carbon present in the BFS can be effectively used as reducing agent for iron and zinc present in both starting materials generating a solid residue with high metallic iron and low carbon content as well as a gas stream laden with zinc and other volatile heavy metals, that can be regained by off-gas treatment. The project aims at testing this concept as a continuous process in a pilot plant established by Ferro Duo GmbH with BAM supplying comprehensive scientific support by lab- and small scale-experiments. Additionally, considering the necessity to mitigate CO2 emissions and the resulting shift in compositions of steel work dusts and sludges, our research also investigates replacement of carbon present in the sludges by hydrogen as potentially carbon-neutral reducing agent. Here, the use of non-explosive forming gas as reducing agent for EAFD shows potential to give a product high in metallic iron while zinc and other heavy metals are effectively evaporated from the solid material making it possible to regain them from the exhaust gas stream. T2 - 11th European Slag Conference CY - Cologne, Germany DA - 04.10.2022 KW - Elektroofenstaub KW - Gichtgasschlamm KW - Recycling KW - Ressourcenrückgewinnung KW - Zink PY - 2022 AN - OPUS4-55950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schuberth, J. A1 - Ebert, T. A1 - Schlegel, Moritz-Caspar A1 - Rödig, L. A1 - Jepsen, D. T1 - A Front-Runner Approach for EU product policy - Impulse for raising untapped energy saving potentials T2 - Scientific opinion paper N2 - In 2020, the European Commission has announced to propose a Sustainable Product Policy for the EU which shall ensure that the performance of front-runners in sustainability progressively becomes the norm. In addition, the European Commission has re-emphasised the necessity to significantly improve the effectiveness of the current Ecodesign framework for energy-related products. With this paper, we present an initial outline of a policy approach which we call the “EU frontrunner approach”. The approach aims at installing a regulatory framework which enables a semi-automated, progressive adaptation of ecodesign minimum requirements for products. It builds on performance levels of the best products available on the market by aggregating information in a database. The “front-runner approach” could first be applied to progressively adapt product-related minimum energy-efficiency requirements. This way it would serve as a starting point to introduce this conceptto the EU policy arena. While the approach can be applied for energy efficiency, it is neither limited to energy-related products nor to energy-related requirements. It can be applied to the wide range of nonenergy related products within the scope of the upcoming Ecodesign for Sustainable Products Regulation (ESPR) as well as to non-energy-related requirements, such as minimum requirements for durability, reparability, recyclability and recycled content. KW - Ecodesign KW - Energy Labelling KW - Circular Economy KW - Efficiency KW - Policy making PY - 2022 UR - https://www.umweltbundesamt.de/publikationen/a-front-runner-approach-for-eu-product-policy SP - 1 EP - 12 PB - German Environment Agency CY - Dessau-Roßlau AN - OPUS4-55503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Stoljarova, A. A1 - Regenspurg, S. T1 - Influence of brine components on materials performance in geothermal applications N2 - Significant Cu-deposition and ‑precipitation only occurred in combination with carbon steel. High-alloyed materials prevent the disturbing Cu-agglomeration. Pb-deposition and ‑precipitation only occurred in combination with carbon steel. No negative Pb-effect could be observed in combination with high-alloyed steels. High alloyed corrosion resistant alloys are suitable and shall be chosen for future design of the piping system, either in massive or in cladded form, if formation of crevices with non-metallic materials can be excluded! T2 - EUROCORR 2022 CY - Berlin, Germany DA - 28.08.2022 KW - Corrosion KW - Geothermal KW - Copper PY - 2022 AN - OPUS4-55624 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia A1 - Brandhorst, Antonia A1 - Erdmann, Eileen A1 - Nitsche, Sarah A1 - Voigt, Oliver A1 - Gorbushina, Anna T1 - DHN melanin synthesis in the rock inhabitant Knufia petricola N2 - DHN (1,8-dihydroxynaphthalene) melanin is produced by different Ascomycetes via slightly differing biosynthetic routes. The polyketide synthases (PKS) release the heptaketide YWA1, the hexaketide AT4HN or the pentaketide T4HN. The first two products are deacetylated by ‘yellowish-green’ hydrolases to T4HN, and T4HN is further converted by a core set of enzymes to DHN. Final polymerization steps are accomplished by multicopper oxidases (MCOs). The involved genes are tightly clustered, partially clustered or widely distributed in the genomes of DHN melanin-producing fungi. DHN melanogenesis is often regulated in a spatial and temporal fashion resulting e.g. in melanized reproduction, survival and/or infection structures. In contrast, a polyphyletic group of Ascomycetes (microcolonial fungi/ black yeast) dwelling in hostile habitats such as bare rock surfaces in hot and cold deserts, exhibits constitutive melanogenesis. Here, we report on the identification and functional characterization of the DHN melanogenic genes of Knufia petricola as a representative of the Chaetothyriales, the sister order of the Eurotiales. Orthologs for all melanogenic genes were identified in the genome of K. petricola A95, including one gene encoding the polyketide synthase (KpPKS1), two genes encoding ‘yellowish-green’ hydrolases (KpYGH1,2), two genes encoding THN reductases (KpTHR1,2) and one gene encoding a scytalone dehydratase (KpSDH1). Ten genes encoding MCOs were identified, all MCOs are predicted to be secreted. The genes are not clustered in the genome but are highly expressed. Gene functions are studied by generation of single, double, and multiple deletion mutants in K. petricola and by heterologous expression in Saccharomyces cerevisiae for reconstruction of the synthesis pathway. T2 - VAAM Fachgruppentagung "Molecular Biology of Fungi" CY - Kaiserslautern, Germany DA - 07.09.2022 KW - DHN melanin KW - Genetics KW - Biodegradation PY - 2022 AN - OPUS4-55676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nitsche, Sarah A1 - Gerrits, Ruben A1 - Gorbushina, Anna A1 - Schumacher, Julia T1 - The role of the stress-activated MAP kinase SAK1 in Knufia petricola N2 - Mitogen-activated protein (MAP) kinases are highly conserved in animals, plants, and fungi and represent fundamental parts of signaling networks in eukaryotic cells. Black DHN (1,8-dihydroxynaphthalene) melanin and orange carotenoids are produced by many fungi in specific cell types/under certain conditions for protecting cells from abiotic and/or biotic stresses. Microcolonial black fungi constitutively produce DHN melanin, contain the conserved carotenogenic gene cluster, exhibit slow yeast-like growth and survive in extreme environments. Thus, the question arises to which extent pigment formation and responses mediated by the stress-activated MAP kinase module contribute to the observed extremotolerance. We address this question in the rock inhabitant Knufia petricola, the only representative of the extremotolerant black fungi that is genetically amendable. Here, the mutations of pks1, phs1 and both genes result in melanin-free (pink), carotenoid-free (black) and pigment-free (white) strains, respectively (Voigt Knabe et al. 2020, Sci Rep). The gene encoding the stress-activated MAP kinase was deleted in the wild-type and different pigment-deficient backgrounds. In addition, strains were generated that express a GFP-SAK1 fusion protein from the sak1 locus to follow the cytosolic/nuclear shuttling of SAK1 upon stress. Growth of the obtained single, double and triple deletion mutants was tested by dropping cell suspensions on solid media supplemented with different stress-inducing agents. The Δsak1 mutants show slightly reduced growth rates even under non-stress conditions and are hypersensitive to different stress conditions: reduced growth is observed on media inducing, for instance, osmotic, oxidative, membrane, and pH stress, and upon incubation at 30 °C (heat stress). Melanin-free Δsak1 mutants are more sensitive than black Δsak1 mutants to some but not all stress conditions, suggesting that melanin and the SAK1 pathway have complementary roles in protecting K. petricola from stress. T2 - VAAM Fachgruppentragung "Molecular Biology of Fungi" CY - Kaiserslautern, Germany DA - 07.09.2022 KW - Fungus KW - Extremotolerance KW - Signal transduction PY - 2022 AN - OPUS4-55677 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erdmann, Eileen A1 - Kunze, R. A1 - Gorbushina, Anna A1 - Schumacher, Julia T1 - Tools for Reverse and Forward Genetics in Knufia petricola N2 - Microcolonial black fungi are inhabitants of exposed natural and man-made surfaces in all climate zones. Genetic studies are hampered by slow growth, lacking sexual cycles and difficulties to transform these fungi. Recently, we implemented CRISPR/Cas9-based genetic tools enabling efficient targeted mutations of the rock inhabitant Knufia petricola (Eurotiomycetes/Chaetothyriales) for studying stress responses, the unusual types of cell division, mineral weathering and symbiotic interactions with phototrophic microbes (Voigt, Knabe et al. 2020, Sci Rep; Erdmann et al. 2022, Front Fungal Biol). To further explore the genome of this fungus as representative of the polyphyletic group of black fungi and to assign functions to yet unknown genes, a forward genetics approach is aimed. We chose the two-component Activator/ Dissociation (Ac/Ds) transposon system from maize for generating a collection of insertional mutants by in-vivo mutagenesis. For the optimal use of this genetic tool, an inducible promoter for the expression of the Ac transposase and by this the regulatable transposition of the resistance cassette-containing Ds transposon is requested. However, endogenous promoters for nitrate assimilation and galactose catabolism that are often used in fungi for regulatable gene expression are not inducible by their substrates in K. petricola suggesting that the regulatory networks for nutrient acquisition differ significantly in the oligotrophic black fungi. Therefore, the metabolism-independent Tet-on system was adopted and validated using a Ptet::gfp construct. No GFP fluorescence was detected in absence of the inducer doxycycline (DOX) while fluorescence intensities increased with increasing inducer concentrations. Consequently, the Tet-on system is suitable for regulatable expression of endogenous and foreign genes in K. petricola. T2 - VAAM Fachgruppentagung "Molecular Biology of Fungi" CY - Kaiserslautern, Germany DA - 07.09.2022 KW - Rock-inhabiting fungus KW - Genetic tools KW - Controllable gene expression PY - 2022 AN - OPUS4-55678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Roesch, Philipp T1 - Analytical Challenges for PFAS in Environmental Samples - Methods, Approaches and Applicability N2 - Per- and polyfluoroalkyl substances (PFAS) are anionic, cationic and zwitterionic synthetic products, in which the hydrogen atoms on the carbon skeleton of at least one carbon atom have been completely replaced by fluorine atoms and which include up to 1.7 M compounds, depending on the definition. As a result of continuous and prolific use, mainly in aviation firefighting foams, thousands of industrial and military installations have been found to contain contaminated soil, groundwater and surface water. Furthermore, because of the continuous contamination through PFAS containing commercial products, effluents and sewage sludge from WWTPs have been shown to be an important source of PFAS discharge into the aquatic environment. In the last few years, legacy PFAS (≥C4) have been found in various environments, including soil, water and wastewater, and their environmental pathways have been partly described. Several long-chain PFAS species, and their respective salts are considered as persistent organic pollutants by the United Nations Stockholm Convention. These pollutants have been linked to altered immune and thyroid function, liver disease, lipid and insulin dysregulation, kidney disease, adverse reproductive and developmental outcomes, and cancer. A significant shift in the chemical industry towards production of short (C4-C7) and ultrashort (C1-C3) alternatives was observed in response to recently intensified regulations and restrictions on the use of long-chain (≥C8) PFAS. PFAS analysis in environmental samples is currently mainly done by liquid chromatography tandem mass spectrometry (LC-MS/MS). This efficient method is conducted in a targeted fashion analyzing a small subset of PFAS. The US EPA method for analysis of PFAS using LC-MS/MS for example currently lists 40 PFAS (≥C4). However, to get a better overview of the amount of “total PFAS,” sum parameter methods like total oxidizable precursor (TOP) assay and methods based on combustion ion chromatography (CIC) are in development. CIC results in data regarding the sum of absorbable organic fluorine (AOF) or extractable organic fluorine (EOF), which can also quantify other organically bound fluorine compounds such as fluorinated pesticides and pharmaceutical. Moreover, non-target and suspect screening mass spectrometry can be used to identify novel emerging PFAS and partly unknown fluorinated compounds in environmental samples. Furthermore, to analyze ultrashort PFAS (C1-C3), supercritical fluid chromatography (SFC), hydrophilic interaction chromatography (HILIC) and gas chromatography-mass spectrometry (GC-MS) are available, but further research is needed to develop reliable and accurate methods to quantify several ultrashort PFAS in environmental samples. Additionally, for research purpose several spectroscopical methods like X-ray photoelectron spectroscopy (XPS), fluorine K-edge X-ray absorption near-edge structure (XANES)spectroscopy, particular induced gamma-ray emission (PIGE) spectroscopy and 19F nuclear magnetic resonance (NMR) spectroscopy are available. T2 - CleanUp 2022 CY - Adelaide, Australia DA - 11.09.2022 KW - PFAS KW - Combustion ion chromatography KW - XANES spectroscopy PY - 2022 AN - OPUS4-55741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -