TY - CONF A1 - Weidner, Steffen A1 - Lauer, F. A1 - Seifert, S. A1 - Diehn, S. A1 - Kneipp, Janina T1 - MALDI-TOF MS und MALDI-MSI zur Identifikation und Klassifizierung von Pollen N2 - Es werden die letzten Ergebnisse präsentiert, die es ermöglichen, einzelne Pollenkörner unterschiedlicher Arten in Mischungen mittels MALDI-TOF Massenspektrometrie bzw. MALDI-TOF Imaging zu messen und unter Zuhilfenahme multivariater Auswertemethoden zu klassifizieren. T2 - 24. Bruker MALDI Anwendertreffen CY - Leipzig, Germany DA - 18.02.2019 KW - MALDI-TOF Massenspektrometrie KW - Pollenkörner KW - Klassifizierung KW - MALDI Imaging KW - Multivariate Analyse PY - 2019 AN - OPUS4-47441 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Axel A1 - Vogler, M. A1 - Grathwohl, P. A1 - Hollert, H. A1 - Braun, Ulrike T1 - Analysis of microplastics in soil samples by using a thermal decomposition method N2 - While plastics have become indispensable in our daily lives over the last decades, the input into the environment has been increasing concurrently. Plastics often end up in the environment because of intensive use and poor waste management practice. They are subjected to aging and fragmentation and finally be deposited as microplastic particles or in short microplastics (MP). MP are defined as particles originating from synthetic polymers between 1 µm and 5 mm. Although the pervasive abundance of MP in aquatic environments has been demonstrated comprehensively, less is known about the occurrence and fate of MP in terrestrial ecosystems. It is still unclear if soil functions as a MP source or a sink for aquatic environments. MP can either be transported into water bodies by soil erosion or be retained in soils. The few studies published are not comparable because of non-existent harmonized and standardized methods for sampling, sample preparation, and analysis. For an assessment of a potential exposure situation of MP, the determination of a mass content in the soil is crucial. Consequently, spectroscopic methods like Raman or FTIR are not suitable, as they deliver information about the shape and size of individual particles. Therefore, we show the application of ThermoExtractionDesorption-GasChromatography-MassSpectrometry (TED-GC-MS) for MP analysis in the soil. In this method, the soil sample is heated up to 600 °C in a nitrogen atmosphere. The decomposition gases are sorbed on a solid phase, then transferred to a GS-MS system where they are desorbed, separated and identified. The method allows the rapid identification of individual polymers through the detection of specific decomposition products, but also the quantitative determination of the MP mass. Besides thermoplastics, elastomers originated from tire abrasion, can be detected. In the present study, several terrestrial ecosystems in south-west Germany were systematically sampled. Subsequent sample preparation included sieving in fractions of 5-100 µm, 100-1000 µm, and 1-5 mm. MP were extracted by density separation using ZnCl2 solutions. The detection was done by TED-GC-MS measurements. Data of agricultural areas and floodplains are presented exemplarily. A quantitative assessment of highly occurring MP from littering as well as tire abrasion is conducted. T2 - EGU 2019 - European Geoscience Union General Assembly 2019 CY - Wien, Austria DA - 07.04.2019 KW - TED-GC-MS KW - Soil KW - Microplastics KW - Analysis PY - 2019 AN - OPUS4-47822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogler, M. A1 - Müller, Axel A1 - Braun, Ulrike A1 - Grathwohl, P. T1 - Sampling and Sample Preparation for Analysis of Microplastics in Soils N2 - Despite abundant evidence of the occurrence of microplastics (MP) – these are particles smaller 5 mm – in aquatic environments, little is known about the accumulation of plastic in terrestrial environments, especially in soils. Possible major input pathways could be the use of plastic mulching, the use of compost, sewage sludge or residues from biogas facilities as fertilizers, as well as littering in urban areas. To estimate the MP pollution, the development of reliable, fast methods for sampling, sample preparation, and detection is needed. The obtained data must be representative of the sampled environmental compartment and measurements from different environmental compartments must be comparable. A first breakthrough is an application of ThermoExtractionDesorption-Gas Chromatography-MassSpectrometry (TED-GC-MS) for the detection of MP, including tire abrasives. This method allows the determination of mass content within a few hours and only a minimum of sample preparation for samples from aquatic environments is needed. However, in contrast to filtrate samples from aquatic environments, sediment or soil samples need an enrichment of MP. Whereas MP concentration from marine sediments can be obtained by floatation and density Separation techniques using NaCl solutions, the extraction or separation from soils proves to be more difficult, as plastic particles are often part of organo-mineral aggregates within the soil matrix. The aim of this study is the development of a practicable processing guideline for representatively taken soil samples in order to concentrate microplastics, without complex and time-consuming treatment steps. Dispersants or detergents can be applied to decompose the soil matrix, but each preparation step carries the risk of crosscontamination of the sample and prolongs the preparation procedure. For this reason, we choose ZnCl2-solution with a density of 1.7 g/cm3, which include the densities of relevant MP types (0.9-1.7 g/cm3). It was tested to achieve both, disaggregation and separation as it decomposes organic material and dissolves carbonates. Also, ZnCl2 is inert to the precipitation of undesirable salts and Carbonates during the process of density separation, as polytungstate solution does. ZnCl2 can be reused after stepwise filtering (7 µm, 1.5 µm, 0.7 µm). Thus, disposal costs can be reduced. Efficiency and reproducibility of the sample preparation as well as the degradation behavior of MP under the present conditions were demonstrated with model samples. Real sampling campaigns were conducted at several agricultural sites and floodplains in south-west Germany. The sampling was performed according to practice for soil sampling, using adequate sampling strategies (pattern of sampling, number of field samples, homogenization, etc). The lab sample was fractioned into three size classes (5-100 µm, 100-1000 µm, and 1-5 mm). The identification and determination of mass fraction were done using TED-GC-MS. T2 - EGU 2019 - European Geoscience Union General Assembly 2019 CY - Wien, Austria DA - 07.04.2019 KW - Microplastics KW - Density separation KW - Sample preparation KW - Soil PY - 2019 AN - OPUS4-47824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hassanein, Yosri-Kamal A1 - Eisentraut, Paul A1 - Goedecke, Caroline A1 - Müller, Axel A1 - Kittner, Maria A1 - Bannick, C.G. A1 - Barthel, A.K. A1 - Braun, Ulrike T1 - Detection of microplastics in compost samples using a thermal decomposition method N2 - The ubiquitous presence of unwanted plastics in the environment, especially microscale particles, has been an issue in scientific studies and public debate in the last years. It is well known that oxidative degradation and subsequent fragmentation, caused by UV-radiation, oxidative aging and abrasion lead to the decomposition of larger plastic products into microplastics (MP). Possible effects of these MP on ecosystems are still unclear. Recent studies on MP findings are focused mainly on aquatic systems, while little is known about MP in terrestrial ecosystems. A possible source of MP input into the soil is compost from domestic bio-waste. Inappropriate waste separation causes plastic fragments in the bio-waste, some of which end up in the compost. In Germany compost is used as fertilizer in agriculture, hence MP could enter the soil by this pathway. So far, there have been only a few studies on this object. For this reason, analysis of compost as a sink and source of MP in ecosystems is of high interest. To estimate and monitor the MP content in compost and soil, fast and harmonised analytical methods are essential, which not only measure the polymer type and number of particles, but also the mass content. The most common spectroscopic methods are very time-consuming, often require complex sample preparation steps and cannot determine mass contents. Therefore, we used ThermoExtractionDesorption-GasChromatography-MassSpectrometry (TED-GC-MS) as a fast, integral analytical technique. The sample is pyrolyzed to 600°C in a nitrogen atmosphere and an excerpt of the pyrolysis gases is collected on a solid phase adsorber. Afterwards, the decomposition gases are desorbed and measured in a GC-MS system. Characteristic pyrolysis products can be used to identify the polymer type and determine the mass contents. This method is well established for the analysis of MP in water filtrate samples. In the present work we optimized the TED-GC-MS method for compost and compost/soil matrix and very common polymers, such as polyethylene, polypropylene, polyethylene-terephthalate and polystyrene (sample mass, detection limits, interfering signals, etc.). Additionally, specific pyrolysis products of polymers used for bio-waste bags, such as polylactide (PLA) and polybutylenadipat-terephthalat (PBAT) had to be identified and evaluated. First measurements were carried out on model and real samples from prepared mixtures and composting plant. The samples were sterilized, fractionated, filtered and dried. In addition, half of the sample material was treated with hydrogen peroxide to investigate a possible effect on detection. T2 - European Geosciences Union (EGU) General Assembly 2019 CY - Vienna, Austria DA - 07.04.2019 KW - Microplastics KW - Compost KW - Detection PY - 2019 AN - OPUS4-47829 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Glimpses of the future: Systematic investigations of 1200 mofs using a highly automated, full-stack materials research laboratory N2 - By automatically recording as much information as possible in automated laboratory setups, reproducibility and traceability of experiments are vastly improved. This presentation shows what such an approach means for the quality of experiments in an X-ray scattering laboratory and an automated synthesis set-up. T2 - Winter School on Metrology and Nanomaterials for Clean Energy CY - Claviere, Italy DA - 28.01.2024 KW - Digitalization KW - Automation KW - Digital laboratory KW - Scattering KW - Synthesis KW - Nanomaterials KW - Holistic science PY - 2024 AN - OPUS4-59621 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dittmann, Daniel A1 - Saal, L. A1 - Zietzschmann, F. A1 - Mai, M. A1 - Altmann, Korinna A1 - Al-Sabbagh, Dominik A1 - Ruhl, A. S. A1 - Jekel, M. A1 - Braun, U. T1 - Aktivkohlecharakterisierung als weiterer Schlüssel für Adsorptionsprognosen organischer Spurenstoffe in der vierten Reinigungsstufe N2 - In diesem Beitrag wird der Einfluss des Aktivkohleprodukts auf die Adsorption von Spurenstoffen aus Kläranlagenablauf gezeigt und diskutiert. Im zweiten Teil wird das Material Aktivkohle analytisch charakterisiert und die Eigenschaften systematisiert. Die gewonnenen Erkenntnisse werden mit Bezug zu Praxislösungen zusammengefasst. T2 - Wasser 2021 CY - Online meeting DA - 10.05.2021 KW - Aktivkohle KW - Thermogravimetrie KW - Zersetzungsgasanalyse KW - Proximatanalyse PY - 2021 SP - 373 EP - 378 AN - OPUS4-52740 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, U. A1 - Bachem, G. A1 - Müller, A. A1 - Kittner, Maria A1 - Altmann, Korinna A1 - Meierdierks, J. A1 - Grathwohl, P. A1 - Lackmann, C. A1 - Simic, A. A1 - Velki, M. A1 - Hollert, H. T1 - Detection of plastics in soil N2 - Soil acts as a final sink for pollutants. Microplastics from different sources such as plastic mulching, littering, compost, sewage sludge, sedimentary deposition, and tyre abrasion are expected to be found in soil. However, representative and comprehensive information is missing on the sources, transport, and fate. Therefore, a reliable analysis method for microplastics in soils needs to be developed. The presented work describes the development of a procedure for microplastics analysis in soils. A representative sampling based on the on-site conditions and a sample preparation method was established and comprised of a drying step, the separation of microplastic particles > 1 mm, and a density separation for particles < 1 mm. The detection of the large microplastic particles (> 1 mm) was conducted with Attenuated Total Reflection - Fourier Transform infrared Spectroscopy (ATR-FTIR) , while Thermal Extraction Desorption - Gas Chromatography / Mass Spectrometry (TED-GC/MS) was applied for particles < 1 mm, gaining information on the type of polymer and mass fraction. Based on the established method, 14 environmental soil samples ? with different exposure of microplastics from agriculture, industrial sites, roads, and floods were investigated. Due to the arbitrary microplastic particle distribution among the samples for large microplastics, it was reasoned that the found particles were unrepresentative. In contrast, microplastic particles < 1 mm were discovered in a high mass in soil samples exposed to plastic mulching or fertilization with sewage sludge or compost (0 – 115 mg/kg). On average, microplastic contents detected in soil samples taken from a construction site and an inner-city lake were higher (13 – 238 mg/kg). As expected, microplastic content in soil sampled in proximity to roads was more pronounced in the upper soil layers. In contrast, very remote sampling sites, expectably uncontaminated, did not lead to the detection of microplastic regarding to thermoanalytical detection method. In a proof of concept experiment several in vivo and in vitro ecotoxicological tests were applied to evaluate the effect of microplastics (tyre abrasion, polystyrene containing hexabromocyclododecane) in natural soils. In summary, while no effects of the examined probes could be detected on higher levels of biological organization after exposures to earthworm E. andrei, significant changes in several oxidative stress related biomarkers were observed. T2 - SETAC Europe 2022 CY - Kopenhagen, Denmark DA - 15.05.2022 KW - Microplastic KW - TED-GC/MS KW - Soil PY - 2022 AN - OPUS4-55872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kittner, Maria A1 - Altmann, Korinna A1 - Hamann, Sven A1 - Weyer, Rüdiger A1 - Kalbe, Ute T1 - Assessment of Microplastic Emissions from Artificial Turf Sports Pitches N2 - Following the recommendation of the European Chemicals Agency, on 25 September 2023 the European Commission passed a comprehensive new regulation to reduce emissions of microplastics (MP) into the environment, which includes the sale and use of intentionally added MP.1,2 This also applies to the application of synthetic rubber granulate infill in artificial turf systems and will ultimately have an impact on recreational sports. In Germany, rubber granulate made of ethylene-propylene-diene-monomer rubber (EPDM) is currently predominantly used. So far, there is no sufficient database for estimating MP emissions from artificial turf pitches into the environment and thus their relevance as a source of MP pollution.3 This topic is controversially discussed due to the complexity of sampling and analytics. To close this research gap, this project has the goal to determine mass balances for the emissions of MP from artificial turf pitches to allow an estimation of the amount of MP released per artificial turf pitch and year. Within this study, MP emissions of three artificial turf scenarios at different time states (unaged, artificially aged and real-time aged) are compared: the past (old turf: fossil based, synthetic infill), present (most commonly installed in Europe: fossil based, EPDM infill), and the future (turf with recycled gras fibres, no synthetic infill). To simulate the outdoor weathering during the lifespan of an artificial turf of approx. 15 years, brand-new artificial turf and EPDM rubber granulate were accelerated aged by means of UV weathering and mechanical stress. Potential MP emissions into surface and groundwater are simulated by lysimeter and shake experiments. MP mass contents are subsequently determined by Thermal Extraction Desorption Gas Chromatography/Mass Spectrometry. Using special microfilter crucibles allows the estimation of the particle sizes of the emitted MP, which is a fundamental requirement for an assessment of potential health hazards for humans. T2 - SETAC 2024 CY - Seville, Spain DA - 05.05.2024 KW - Mikroplastik KW - TED-GC/MS KW - Lysimeter KW - PAK KW - Schwermetalle PY - 2024 AN - OPUS4-60014 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Drago, C. A1 - Altmann, Korinna A1 - Wiesner, Yosri T1 - Standardization Methods for the Analysis of Microplastics (10 100µm) in Food Matrix: Sample Preparation and Digestion of Milk Powder. N2 - Monitoring of microplastics in food matrices is crucial to determinate the human exposure. By direct ingestion microplastics could be released in the food during the production, through packaging and by consumer’s use. The absence of standard methods to quantify and detect different size range and type of microplastics has led to difficult and time consuming procedural steps, poor accuracy and lack of comparability. In this work, matrix characterization and laboratory experiments were used to investigate the efficiency of sample preparation in milk powder. This information is crucial to compile a standard procedure for sample preparation and digestion of common milk powder to detect different particle sizes and types of polymers. Charaterisation is done by TGA and TOC measurements. T2 - SETAC Europe 2024 CY - Sevilla, Spain DA - 05.05.2024 KW - Microplastics KW - Harmonisation in microplastics KW - Polymer 3R KW - Microplastics in milk PY - 2024 AN - OPUS4-60034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haacke, Nasrin A1 - Sahre, Mario A1 - Schlau, Sven A1 - Gersdorf, Sven A1 - Ebell, Gino T1 - Design and construction of a rainfall simulator to test metal runoff at atmospheric conditions N2 - A rainfall simulator was presented as an environmental assessment tool to quantify wash-off concentrations from metallic materials. It is part of the RUNOFF-project, which studies and re-assesses the durability of roofing and facade materials under current atmospheric conditions in Germany. Studying building materials is important as they have a significant impact on achieving a variety of goals and targets within the sustainable developments goals (SDGs). The durability of materials is essential to reach sustainability. However, the durability of metallic materials is strongly depended on climate conditions, which have changed as a result of technical measures in industry, climate change and increasing urbanisation. In Germany at least, the data base is not up-to-date leading to prediction models regarding corrosion resistance and durability of metallic materials which can no longer be trusted and therefore need to be re-assessed and updated. Also, not only the demand for sustainable but also environmentally friendly building materials has increased dramatically. A number of construction materials produce chemical hazards, and therefore have negative impacts on water quality, soils health and ecosystems. To limit these impacts, environmental assessment methods and tools are needed to measure and quantify the inputs and outputs of building materials throughout their lifetime. T2 - EUROCORR 2023 CY - Brussels, Belgium DA - 27.08.2023 KW - Rainfall simulator KW - Runoff KW - Atmospheric conditions KW - Laboratory experiments PY - 2023 AN - OPUS4-58152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -