TY - CONF A1 - Becker, Roland A1 - Altmann, Korinna A1 - Braun, Ulrike T1 - Querschnittsthema Referenzmaterialien: Planung Ringversuche N2 - Nach einer Erläuterung der international üblichen Definitionen von Referenzmaterialien und Matrix-Referenzmaterialien erfolgt eine Zusammenfassung der spezifischen Anforderungen bei Herstellung und Charakterisierung. Weiterhin werden die unterschiedlichen Anforderungen an die Durchführung von Ringversuchen im Sinne eines Methodenvergleiches, einer Eignungsprüfung von Laboratorien und der Zertifizierung von Matrix-Referenzmaterialien gegenübergestellt. Für den aktuell geplanten ersten Ringversuch zur Quantifizierung von Mikroplastik in Schwebstoffen mittels thermischer Verfahren werden die konkreten technischen Bedingungen zur Herstellung entsprechender Referenzmaterialien einschließlich der Homogenitätsprüfung ihrer Mikroplastikgehalte dargestellt. Die Besonderheiten des Ringversuches vor dem Hintergrund einer Normung der eingesetzten Verfahren werden diskutiert. T2 - Forschungsschwerpunkt „Plastik in der Umwelt – Quellen • Senken • Lösungsansätze“: 2. Workshop des Querschnittsthemas „Analytik und Referenzmaterialien“ CY - Augsburg, Germany DA - 4.7.2018 KW - Mikroplastik KW - Referenzmaterialien KW - Ringversuche KW - Thermische Verfahren KW - Schwebstoffe KW - Methodenvergleich PY - 2018 AN - OPUS4-45681 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Usmani, Shirin T1 - Wood treated with nano metal fluorides - relations between composition, size, and durability N2 - In this study, nanoscopic particles of magnesium Fluoride (MgF2) and calcium fluoride (CaF2) also known as nano metal fluorides (NMFs), were evaluated for their potential to improve wood durability. Even though these fluorides are sparingly soluble, their synthesis in the form of nano-sized particles turns them into promising candidates for wood preservation. Their distinct property of low-water solubility is proposed to maintain long-lasting protection of treated wood by reducing the leaching of fluoride. Analytical methods were used to characterize the synthesized NMFs and their distribution in treated wood specimens. Transmission electron microscopy images showed that these fluoride particles are smaller than 10 nm. In nano metal fluoride (NMF) treated specimens, aggregates of these particles are uniformly distributed in the wood matrix as confirmed with scanning electron microscopy images and their corresponding energy-dispersive X-ray spectroscopy maps. The fluoride aggregates form a protective layer around the tracheid walls and block the bordered pits, thus reducing the possible flow path for water absorption into wood. This is reflected in the reduced swelling and increased hydrophobicity of wood treated with NMFs. The biocidal efficacy of NMFs was tested against brown-rot fungi (Coniophora puteanaand Rhodonia placenta), white-rot fungus (Trametes versicolor), and termites (Coptotermes formosanus). The fungal and termite tests were performed in accordance with the EN 113 (1996) and EN 117 (2012) standards, respectively. Prior to fungal tests, the NMF treated wood specimens were leached according to the EN 84 (1997)standard. Compared to untreated specimens, the NMF treated wood specimens have a higher resistance to decay caused by brown-rot fungi, white-rot fungus, and termites. Although all NMF treatments in wood reduce the mass loss caused by fungal decay, only the combined treatment of MgF2 and CaF2 has efficacy against both brown-rot fungi and white-rot fungus. Similarly, wood treated with the combined NMF formulation is the least susceptible to attack by C. formosanus.It is proposed that combining MgF2 and CaF2changes their overall solubility to promote the release of fluoride ions at the optimal concentration needed for biocidal efficacy against fungi and termites. In this thesis, it was proven that even after leaching, sufficient fluoride was present to protect NMF treated wood from fungal decay. This shows that NMFs are robust enough for above ground contact outdoor applications of wood, where permanent wetness cannot be avoided according to Use Class 3.2, as per the EN 335 (2013) standard. Also, they pose a low risk to human health and the environment because they are sparingly soluble. Since NMFs significantly reduce the decay of wood, the CO2 fixed in it will be retained for longer than in unpreserved wood. Overall, the novel results of this study show the potential of NMFs to increase the service life of building materials made from non-durable wood. KW - Termites KW - Nano metal fluorides KW - Solubility KW - Wood protection KW - Fungi PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525108 DO - https://doi.org/10.18452/22553 SP - i EP - 118 PB - Humboldt-Universität zu Berlin CY - Berlin AN - OPUS4-52510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Becker, Roland A1 - Altmann, Korinna A1 - Braun, Ulrike T1 - Reference materials for microplastics in environmental matrices N2 - The pollution of marine, limnic and terrestrial environments with plastic waste and the potential impact especially on biota and humans has received increasing attention in recent years. Special focus is on particles smaller than 5 mm, the so-called microplastics. Consequently, possible regulations of emission and remediation efforts require sound information on the occurrence and fate of microplastics in the respective environmental compartments. Microplastics (MP) differ from classical organic pollutants in biota or the environment in that they do not consist of clearly defined low-molecular weight compounds but of polymer particulates with varying sizes and chemical compositions. This leads to specific challenges regarding the analytical techniques to be employed for their identification and quantification. Microplastics are defined as polymer particle in the size range between 1 µm and 5 mm and cover a wide range of polymers such as polyethylene, polypropylene, polystyrene and polyethylene terephthalate in variable geometric shapes. Properties relevant for environmental microplastics are polymer type, particle form and size distribution, surface morphology (aging status) and total mass fraction contained in a given sample. Polymer identification and particle size estimation using optical methods (IR and Raman spectroscopy) are time consuming and complicated by surface characteristics as a result of weathering, soiling, and microbial colonisation. Total mass fractions of MP in environmental samples can be determined by thermo-analytical methods. There are currently no standardised methods for sampling, sampling preparation, or detection of MP in environmental samples. So far, qualitative and quantitative investigations are done by research institutes and have not reached the routine laboratory community. The near future will see harmonisation efforts of MP mass fraction determination in environmental matrices by thermo-analytical procedures. The immediate need for reference materials during method development and comparison is outlined with regard to relevant matrix/polymer compositions, existing regulations and currently achievable detection limits. Examples for solid environmental matrix reference materials are discussed regarding the challenges encountered with matrices and polymer types as well as homogeneity testing and property value characterisation. T2 - BERM 2018 15th International Symposium on Biological and Environmental Reference Materials CY - Berlin, Germany DA - 23 September 2018 KW - Referenzmaterialien KW - Schwebstoffe KW - Sediment KW - Polymer PY - 2018 AN - OPUS4-46209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Usmani, Shirin A1 - Stephan, Ina A1 - Huebert, Thomas A1 - Kemnitz, E. T1 - Nano metal fluorides for wood protection against fungi N2 - Wood treated with nano metal fluorides is found to resist fungal decay. Sol−gel synthesis was used to synthesize MgF2 and CaF2 nanoparticles. Electron microscopy images confirmed the localization of MgF2 and CaF2 nanoparticles in wood. Efficacy of nano metal fluoride-treated wood was tested against brown-rot fungi Coniophora puteana and Rhodonia placenta. Untreated wood specimens had higher mass losses (∼30%) compared to treated specimens, which had average mass loss of 2% against C. puteana and 14% against R. placenta, respectively. Nano metal fluorides provide a viable alternative to current wood preservatives. KW - Brown-rot fungi KW - Coniophora puteana KW - Fluoride nanoparticles KW - Fluorolytic sol−gel KW - Rhodonia placenta KW - SEM wood characterization KW - Wood protection PY - 2018 DO - https://doi.org/10.1021/acsanm.8b00144 SN - 2574-0970 VL - 2018 SP - 1 EP - 6 PB - American Chemical Society (ACS) CY - Washington DC, US AN - OPUS4-44730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altmann, Korinna T1 - Mikroplastik Detektion mit Thermoanalytischen Methoden: Analytik, Referenzmaterial, Ringversuche N2 - Ich dem Vortrag geht es um die Vorstellung von thermoanalytischen Methoden für die Mikroplastik-Detektion. Verschiedene Kopplungsmöglichkeiten werden gezeigt und die Funktionsweise der TED-GC/MS wird erklärt. Im zweiten Teil werden Referenzmaterialien für die Mikroplastik-Analytik diskutiert. PET -Tabletten des PlasticTrace Projektes werden vorgestellt. Am Ende wird der VAMAS Ringversuch zur Mikroplastik-Detektion gezeigt. T2 - Plastik, Mikroplastik, Nanopartikel, PFAS und Verunreinigungen (Agilent Workshop) CY - Hamburg, Germany DA - 28.05.2024 KW - Mikroplastik KW - TED-GC/MS KW - Polymer 3R KW - Ringversuche KW - Referenzmaterial PY - 2024 AN - OPUS4-60155 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miclea, P.-T. A1 - Altmann, Korinna A1 - Wiesner, Yosri A1 - Visileanu, E. T1 - Real-life airborne micro- and nano-plastic particles and fibres on a porous membrane filter system from a textile factory suitable for both: vibrational and mass spectrometry N2 - The poster presents an application of Si wafer filter system on indoor air sampling. A textile factory producing PP fibres was sampled. T2 - SETAC Europe 2023 CY - Dublin, Ireland DA - 30.04.2023 KW - Microplastics KW - Polymer 3R KW - Textile fibres KW - Si wafer filter KW - Microplastics sampling PY - 2023 AN - OPUS4-57462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miclea, P.-T. A1 - Altmann, Korinna A1 - Wiesner, Yosri A1 - Hagendorf, C. T1 - Micro- and nanoplastic particle number and mass-based analysis on a plastic-free size-selective two stage Si membrane filtration cascade N2 - The poster presents a Si wafer filter development as two stage cascade and the adapter for microplastics filtration. T2 - SETAC Europe 2023 CY - Dublin, Ireland DA - 30.04.2023 KW - Microplastics KW - Filtration KW - TED-GC/MS KW - Polymer 3R KW - Cascade filtration PY - 2023 AN - OPUS4-57461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Smales, Glen Jacob A1 - Hahn, Marc Benjamin A1 - Hallier, Dorothea C. A1 - Seitz, H. T1 - X-ray scattering datasets and simulations associated with the publication "Bio-SAXS of single-stranded DNA-binding proteins: Radiation protection by the compatible solute ectoine" N2 - This dataset contains the processed and analysed small-angle X-ray scattering data associated with all samples from the publications "Bio-SAXS of Single-Stranded DNA-Binding Proteins: Radiation Protection by the Compatible Solute Ectoine" (https://doi.org/10.1039/D2CP05053F). Files associated with McSAS3 analyses are included, alongside the relevant SAXS data, with datasets labelled in accordance to the protein (G5P), its concentration (1, 2 or 4 mg/mL), and if Ectoine is present (Ect) or absent (Pure). PEPSIsaxs simulations of the GVP monomer (PDB structure: 1GV5 ) and dimer are also included. TOPAS-bioSAXS-dosimetry extension for TOPAS-nBio based particle scattering simulations can be obtained from https://github.com/MarcBHahn/TOPAS-bioSAXS-dosimetry which is further described in https://doi.org/10.26272/opus4-55751. This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under grant number 442240902 (HA 8528/2-1 and SE 2999/2-1). We acknowledge Diamond Light Source for time on Beamline B21 under Proposal SM29806. This work has been supported by iNEXT-Discovery, grant number 871037, funded by the Horizon 2020 program of the European Commission. KW - SAXS KW - Radiation protection KW - Microdosimetry KW - G5P KW - Ectoine KW - DNA-Binding protein PY - 2023 DO - https://doi.org/10.5281/zenodo.7515394 PB - Zenodo CY - Geneva AN - OPUS4-56811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hallier, Dorothea C. A1 - Smales, Glen Jacob A1 - Seitz, H. A1 - Hahn, Marc Benjamin T1 - Inside back cover for the article "Bio-SAXS of single-stranded DNA-binding proteins: Radiation protection by the compatible solute ectoine" N2 - Showcasing research from the Federal Institute for Material Research and Testing Berlin and Fraunhofer Institute for Celltherapy and Immunology Branch Bioanalytics and Bioprocesses Potsdam. Bio-SAXS of single-stranded DNA-binding proteins: Radiation protection by the compatible solute ectoine. We aimed to increase the possible undisturbed exposure time during bio-SAXS measurements of single-stranded DNA-binding proteins. Therefore small angle X-ray scattering was performed on Gene-V Protein (G5P/GVP), which is involved in DNA repair processes. To achieve this, irradiations were performed in presence and absence of the hydroxyl-radical scavenger and osmolyte Ectoine, which showed efficient radiation protection and prevented protein aggregation, thus allows for a non-disturbing way to improve structure-determination of biomolecules. KW - Bio-SAXS KW - BioSAXS KW - Cosolute KW - DNA KW - Dosimetry KW - Ectoin KW - Ectoine KW - G5P KW - GVP KW - Geant4 KW - Geant4-DNA KW - Ionizing radiation damage KW - LEE KW - McSAS3 KW - Microdosimetry KW - Monte-Carlo simulations KW - OH Radical KW - OH radical scavenger KW - Protein KW - Protein unfolding KW - Radiation damage KW - Radical Scavenger KW - SAXS KW - Single-stranded DNA-binding proteins KW - Small-angle xray scattering KW - Topas-MC KW - Topas-nBio KW - TopasMC KW - X-ray scattering KW - Particle scatterin simulations KW - ssDNA PY - 2023 DO - https://doi.org/10.1039/D3CP90056H SN - 1463-9076 SN - 1463-9084 VL - 25 IS - 7 SP - 5889 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-57006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Kunz, Valentin A1 - Schneider, Markus A1 - Nymark, Penny A1 - Grafström, Roland A1 - Unger, Wolfgang T1 - Combining surface analytic and toxicity data for safer nanomaterials N2 - Nanomaterials are present in our everyday life. Paint coats, sunscreens, catalysts and additives for tyres are good examples for the use of such materials in mass-market products. The problem of the safety of nanomaterials is recognized as a problem for health and environment, which lead to the special registration of nanomaterials according to an annex of REACH as of 2020. But a great problem for the risk assessment of nanomaterials that several factors could influence the hazardous nature of them. Additional to composition, crystal structure, size and shape the surface properties of such particles belong to these parameters for risk assesment. The reason for the relevance of the surface is obvious: the smaller the particle, the higher is the share of the surface. Additionally, the surface is the region of the particle which interacts with the surrounding which is another crucial factor for the understanding the effect of a nanomaterial on health and environment. In the OECD Testing Programme on Manufactured Nanomaterials exists consequently an Endpoint 4.30 Surface Chemistry in Chapter 4. PHYSICAL AND CHEMICAL PROPERTIES. In summary, there is obviously a need for a correlation between surface chemical analytic data and toxicity. To fill in this gap, we present surface analytic results obtained with X-ray photoelectron spectroscopy and Time-of-Flight Secondary Ion Mass Spectrometry and correlate them with cytotoxic data gain by high-throughput screening experiments. It must be noted, that these experiments were done at the same set of titania materials taken from the JRC (Joint Research Centre of the European Union) Nanomaterials Repository. As material TiO2 was chosen due to its widespread use in consumer products, e.g. paint coats and sunscreens. With this new approach a better understanding of the influence of surface properties on the toxicity can be expected leading to a better risk assessment of these materials. T2 - ECASIA 2019 CY - Dresden, Germany DA - 15.09.2019 KW - Risk assessment KW - Nanomaterials KW - Surface analytic KW - Toxicology PY - 2019 AN - OPUS4-49090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -