TY - CONF A1 - Schartel, Bernhard T1 - Bio, Waste, Non-vegan – Fun, Food for Thought, or Future N2 - Overview of the state of the art and current trends with the main topics: - renewable sources in flame retardant polymers (flame retarded bio-polymers and biocomposites; bio-flame retardants, renewable adjuvants from industrial waste) - flame retardancy meets sustainability - concepts between analogy and out-of-the-box. T2 - 18th SKZ International Conference on Trends in Fire Safety and InnovativeRFlame retardants for Plastics CY - Würzburg/Rottendorf, Germany DA - 27.09.2022 KW - Bio-polymer KW - Bio-composite KW - Renewable source KW - Renewable adjuvants KW - Vitrimer KW - Bio-flame retardant PY - 2022 AN - OPUS4-55840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gentzmann, Marie A1 - Adam, Christian A1 - Vogel, Christian A1 - Gäbler, H.-E. A1 - Huthwelker, T. T1 - Investigation and comparison of Scandium species in different European bauxite residues by combination of novel analytocall tools N2 - In recent times, as the need for new high-tech materials is growing steadily to fulfil future sustainability goals, more and more looks turn towards industrial waste streams as potential sources of valuable metals. Bauxite residue (BR), accumulating during alumina production, is one of the major waste streams in the metal industry. Suitable re-use possibilities for BR are intensively investigated including approaches for the recovery of scandium (Sc). This transition metal, even though rarely recognized by the broader audience yet, has recently gained the interest of e.g. aerospace industries and SOFC-producers since its use is strongly improving the performance and durability of the respective materials. Even though many sources classify Sc as one of the REE, there are many aspects, such as its ionic radius, which significantly differentiate Sc from the REE and cause its behaviour to be distinct as well. The large ionic potential (radius/charge) causes Sc to be incompatible in most rock forming minerals, which results in generally low concentrations in the earth’s crust and rare occurrences of natural Sc-deposits. The general occurrence of enriched concentrations of Sc in some BRs compared to the earth’s crust is known for some time now and has especially been investigated for Greek materials. However, the (geo)chemical and mineralogical behaviour, the Sc speciation, the association and the variation of Sc occurrences in BRs of different origin is still not fully understood. This study aims to gain better knowledge on the different kinds of Sc-occurrences and their possible impact on future recovery schemes. We therefore apply a diverse set of analytical methods including novel measurement techniques such as X-ray absorption near edge structure (XANES) spectroscopy as well as standard techniques such as electron microprobe analyses, and Raman spectroscopy on BRs from Germany, Hungary and Greece. Information on the local distribution of Sc is determined by high-resolution laser ablation – inductively coupled plasma – mass spectrometry (LA-ICP-MS) mappings. Sc in Greek BR seems to have an affinity towards Fe-Phases such as Goethite and Hematite. However, whereas some of these phases show distinct enrichment of Sc, others are particularly barren, which might be a result of the different input materials. By means of XANES measurements it was possible to show that Sc in the Greek samples occurs adsorbed on the surface of those Fe-Phases, likely in the form of amorphous Sc-hydroxide or -oxyhydroxide or can be incorporated into the crystal lattice as well. The general affinity of Sc to those kinds of phases has been reported for natural rocks such as laterites before, where similar investigations were made using the XANES method [8]. Likewise, the Fe-association has been observed for Greek BR by Vind et al. [7]. Hungarian BRs show similar results as the Greek samples and LA-ICP-MS mappings show distinct Sc enrichment rims surrounding mineral particles. In German BR, Fe as well as Ti-phases occur to be partially enriched in Sc. Depending on the original primary bauxite, the source rock of the bauxite and the bauxite processing route, it is likely that many different parameters influence the occurrence and species of Sc in the BR. Theoretically, it either can therefore remain within its original carrier or can be partially or fully redistributed within the BR. Since the processing of the bauxite involves elevated temperatures, pressure and dissolving reagents, it is however very likely that some of the Sc will be redistributed and adsorb on mineral surfaces of smaller and larger particles, making beneficiation steps rather ineffective. The study shows that there is no general rule defining how Sc is associated mineralogically or chemically within BRs. Therefore, the effective development of a recovery method needs a case specific background knowledge on the Sc-species present in the BR of interest. This research has received funding from the European Community’s Horizon 2020 Programme SCALE (H2020/2014-2020) under grant agreement n° 730105. T2 - 3rd European Rare Earth Resources Conference (ERES) 2020 CY - Online meeting DA - 06.10.2020 KW - Red Mud KW - Scandium KW - Bauxite Residue PY - 2020 AN - OPUS4-51570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Adam, Christian A1 - Kugler, Stefan A1 - Herzel, Hannes T1 - Phosphorus recovery from waste streams for fertilizer production N2 - Phosphorus (P) plays an essential role in the global food security. However, the global P reservoirs have a statistic lifetime of about 385 years only. Due to the scarcity of P and the increasing world population an efficient and sustainable recycling management is required. A few biogenic waste materials are high in P contents such as sewage sludge and meat and bone meal. Thus, they are suitable for P recycling and fertilizer production. But besides the high P content sewage sludge is often highly contaminated with organic pollutants and toxic heavy metals which have to be eliminated before agricultural field application. In this presentation we show the potential of sewage sludge as secondary resource for fertilizers. This includes our developments in thermochemical processes for the production of novel P-fertilizers from recycled materials. Furthermore, for these novel P-fertilizers common extraction tests to determine the plant-available P are often unusable. Therefore, we successfully applied the Diffusive gradients in thin-films (DGT) techniques to analyse the plant-availability of P-fertilizers from recycled materials. T2 - Eingeladener Vortrag an der University of South Australia CY - Mawson Lakes, Australia DA - 22.11.2018 KW - Phosphorus recovery KW - Sewage sludge KW - Diffusive Gradients in thin films (DGT) PY - 2018 AN - OPUS4-46764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Roesch, Philipp A1 - Wittwer, Philipp T1 - Current challenges on PFAS analytics N2 - Several thousand PFAS are in circulation and the current challenge lies in detection of these compounds. Wheter environmental contamination occurs via industrial emission or direct PFAS exposure, as through the use of AFFF fire fighting foams. Wheter PFAS need to be detected in consumer products or agricultral soil, or wheter human and wildlife exposure to PFSA needs to be evaluated, suitable analytical methods are required to identifiy the target class within a hugh variety of matrices. At the same time it is critical to detect trace amounts of compounds within various matrices, we want to make sure that we consider very volatile and mobile species, simultaneously want to assure that we do not overlook less and insoluble compounds. We require methods that allow both single and multi target analysis and want to have an ideal overview with the help of sum parameters. T2 - Workshop - Advancements of Analytical Techniques for Per- and Polyfluoroalkyl Substances (PFAS) CY - Online meeting DA - 01.09.2021 KW - PFAS KW - PFAS analytics KW - EOF/AOF PY - 2021 AN - OPUS4-53196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Huang, L. A1 - Sekine, R. A1 - Doolette, A. A1 - Herzel, Hannes A1 - Kugler, Stefan A1 - Hoffmann, Marie A1 - Lombi, E. A1 - Zuin, L. A1 - Wang, D. A1 - Félix, R. A1 - Adam, Christian T1 - Specification of bioavailable nutrients and pollutants in the environment by combining DGT and spectroscopic techniques N2 - Previous research shows that analytical methods based on Diffusive Gradients in Thin films (DGT) provide very good correlations to the amount of bioavailable nutrients and pollutants in the environmental samples. However, these DGT results do not identify which compound of the specific element has the high bioavailability. Using various spectroscopic techniques (infrared, XANES and NMR spectroscopy) to analyze the dried DGT binding layers after deployment could allow us to determine the specific elements or compounds. Nutrients such as phosphorus and nitrogen are often, together with other elements, present as molecules in the environment. These ions are detectable and distinguishable by infrared and NMR spectroscopy, respectively. In addition, XANES spectroscopy allows for the specification of nutrients and pollutants (e.g. chromium) on the DGT binding layer. Furthermore, microspectroscopic techniques make it also possible to analyze compounds on the DGT binding layer with a lateral resolution down to 5 µm2. Therefore, species of elements and compounds of e.g. a spatial soil segment can be mapped and analyzed, providing valuable insight to understand the dynamics of nutrients and pollutants in the environment. Here we will present the advantages and limitations of this novel combination of techniques. T2 - 6th Conference on Diffusive Gradients in Thin Films CY - Vienna, Austria DA - 17.09.2019 KW - Soil P species KW - DGT KW - Infrared spectroscopy PY - 2019 AN - OPUS4-49057 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Piechotta, Christian A1 - Lisec, Jan A1 - Sommerfeld, Thomas A1 - Kluge, Stephanie A1 - Herzel, Hannes A1 - Simon, Franz-Georg T1 - Per- and Polyfluoroalkyl Substances (PFAS) in Sewage Sludge and Wastewater-based Fertilizers N2 - Per- and polyfluoroalkyl substances (PFAS) are chemicals which were developed to improve humanity’s quality of life. Due to their high chemical stability and resistance to degradation by heat or acids, PFAS were used in a variety of consumer products. The continuous use of PFAS in household products and the discharge of PFAS from industrial plants into the sewer system resulted in the contamination of effluents and sewage sludge from wastewater treatment plants (WWTPs) (Roesch et al. 2022). Since sewage sludge is often used as fertilizer, its application on agricultural soils has been observed as a significant entry path for PFAS into the environment, specifically in our food chain. In Germany the sewage sludge/biosolid application on agricultural land was banned with the amendment of the German Sewage Sludge Ordinance and by 2029 sewage sludge application will be totally prohibited. However, phosphorus (P) from sewage sludge should still be recycled in WWTPs of cities with a population larger than 50,000 residents. To produce high-quality P-fertilizers for a circular economy, PFAS and other pollutants (e.g. pesticides and pharmaceuticals) must be separated from sewage sludge. Due to the strong diversity of industrial PFAS usage it is not clear if a safe application of novel recycled P-fertilizers from WWTPs can be guaranteed. Therefore, we analyzed various sewage sludges and wastewater-based fertilizers. Sewage sludge (SL) samples from various WWTPs in Germany and Switzerland, six sewage sludge ashes (SSA) from Germany, six thermally treated SL and SSA samples with different additives (temperatures: 700-1050 °C), two pyrolyzed SL samples (temperature: 400 °C) and two struvite samples from Germany and Canada were analyzed. The goal was to quantify PFAS in sewage sludges and wastewater-based P-fertilizers with the sum parameter extractable organic fluorine (EOF) by combustion ion chromatography (CIC). The results were compared with data from classical LC-MS/MS target analysis as well as selected samples by HR-MS suspect screening. The EOF values of the SLs mainly range between 154 and 538 µg/kg except for one SL which showed an elevated EOF value of 7209 µg/kg due to high organofluorine contamination. For the SSA samples the EOF values were lower and values between LOQ (approx. 60 µg/kg) and 121 µg/kg could be detected. For the pyrolyzed SLs no EOF values above the LOQ were detected. Moreover, the two wastewater-based struvite fertilizers contain 96 and 112 µg/kg EOF, respectively. In contrast to the EOF values, the sum of PFAS target values were relatively low for all SLs. Additional applied PFAS HR-MS suspect screening aimed to tentatively identify PFAS that could contribute to the hitherto unknown part of the EOF value. The majority of the detected fluorinated compounds are legacy PFAS such as short- and long-chain perfluorocarboxylic acids (PFCA), perfluorosulfonic acids (PFSA), polyfluoroalkyl phosphate esters (PAPs) and perfluorophosphonic acids (PFPA). Moreover, fluorinated pesticides, pharmaceutical as well as aromatic compounds were also identified, which are all included in the EOF parameter. Our research revealed that the current PFAS limit of 100 µg/kg for the sum of PFOS + PFOA in the German Fertilizer Ordinance is no longer up to date. Since the number of known PFAS already exceeds 10,000, the ordinance limit should be updated accordingly. Recent regulations and restrictions on using long-chain PFAS (≥C8) have resulted in a significant shift in the industry towards (ultra-)short-chain alternatives, and other, partly unknown, emerging PFAS. Ultimately, also fluorinated pesticides and pharmaceuticals, which end up as ultrashort PFAS in the WWTPs, have to be considered as possible pollutants in fertilizers from wastewater, too. T2 - Dioxin Konferenz CY - Maastricht, Netherlands DA - 10.09.2023 KW - Combustion Ion Chromatography KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Sewage sludge KW - Fertilizer PY - 2023 AN - OPUS4-58345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sichler, Theresa A1 - Herzel, Hannes A1 - Adam, Christian T1 - European Sewage Sludge Ash Monitoring N2 - For the European sewage sludge ash monitoring ash samples from sewage sludge incineration plants were requested from all over Europe. First results of the received samples regarding main and trace element contents were presented at ESPC4. Moreover, a list of all known European facilities for sewage sludge monoincineration was presented. T2 - European Sustainable Phosphorus Conference 4 CY - Vienna, Austria DA - 20.06.2022 KW - Sewage sludge ash KW - Sewage sludge incineration KW - Phosphorus recovery PY - 2022 AN - OPUS4-55145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Elert, Anna Maria A1 - Becker, Roland A1 - Dümichen, Erik A1 - Eisentraut, Paul A1 - Falkenhagen, Jana A1 - Sturm, Heinz A1 - Braun, Ulrike T1 - Comparison of methods used for microplastics detection N2 - The pollution of the environment with microplastics MP (particles < 5mm) is a problem of increasing concern.1 A consistent methodology that facilitates detection of MP is still missing. Here we present the data recorded by applying different MP identification methods to a soil fortified with known amounts of MP. T2 - MoDeSt Konferenz CY - Krakau, Poland DA - 4.09.2016 KW - Microplastics KW - Raman KW - FTIR KW - TED-GC-MS KW - GPC PY - 2016 AN - OPUS4-38161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cornelsen Sampaio Kling, I. A1 - Pauw, Brian Richard A1 - Agudo Jácome, Leonardo A1 - Archanjo, B. S. A1 - Simão, R. A. T1 - Development and characterization of starch film and the incorporation of silver nanoparticles N2 - Starch is one of the biopolymers being used for bioplastic synthesis. For production, starch can be combined with different plasticizers, starches from different plant sources and even with nanomaterials to improve or to add film properties. The challenge of adding these, e.g. in the form of silver nanoparticles (AgNp) is to determine the concentration so as to avoid impairing the properties of the film, agglomeration or altering the visual characteristics of the film. In this study, a starch film synthesis route and the incorporation of silver nanoparticles has been proposed in order not to alter the properties of the film while maintaining the transparency and a clear colour of the starch film. The results showed that the proposed synthesis route is promising, efficient, reproducible, fast and the film has good mechanical properties. T2 - Semana MetalMat & Painal PEMM 2020 CY - Online meeting DA - 23.11.2020 KW - Biofilm KW - Silver nanoparticle KW - Starch KW - Starch nanoparticle PY - 2020 SP - 1 EP - 2 AN - OPUS4-51940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wehmann, N. A1 - Lenting, C. A1 - Stawski, Tomasz A1 - Agudo Jácome, Leonardo A1 - Jahn, S. T1 - Non classical nucleation in calcium sulfates Insights from the hyper arid Atacama Desert N2 - Gypsum (CaSO4∙2H2O) and anhydrite (CaSO4) are among the dominant evaporite minerals in the Atacama Desert [1]. They are distributed ubiquitously, and play a key role in local landscape evolution. The formation mechanism of especially anhydrite has been a matter of scientific debate for more than a century [2]. To date, there exists no model that can reliably predict anhydrite formation at earth’s surface conditions. While thermodynamics favor its formation [3], it is hardly achieved on laboratory time scales at conditions fitting the Atacama Desert. Long induction times for nucleation have recently been modeled by Ossorio et al. [4]. However, anhydrite can be readily found in the Atacama Desert. Recently, the mineral was synthesized in flow-through reactors as a byproduct of K-jarosite dissolution at high water activity (aw=0.98) and room temperature [5], even-though the thermodynamic stability field begins only under a value of ~0.8. Additionally, recent studies investigated the nano-structure of various calcium-sulfates, which advocate for highly non-classical crystallization behavior [6]. The specific roles of particulates, ionic or organic reagents working as catalysts for the non-classical crystallization pathway remain to be determined. Here, we present recent results from flow-through experiments as well as analyses of anhydrite samples from the Atacama Desert. Flow-through experiments were performed to systematically explore the domains of flow rate, composition, ionic-strengths and starting materials. Neither primary, nor secondary anhydrite was produced in any of these experiments. Analyses on Atacama samples reveal the existence of at least three distinct anhydrite facies, with differing mineralogy and micro- to nano-structures. The facies are (1) aeolian deposits with sub-µm grain sizes, (2) (sub-)surface nodules that formed from aeolian deposits and (3) selenites with secondary anhydrite rims. Possible mechanisms of their formation will be discussed. T2 - Goldschmidt2023 CY - Lyon, France DA - 13.07.2023 KW - Gypsum KW - Anhydrite KW - Atacama Desert KW - Local landscape evolution PY - 2023 AN - OPUS4-58988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -