TY - CONF A1 - Lehnik-Habrink, Petra T1 - Status der europäischen Normung zur PAK16-Analytik N2 - Der Vortrag gibt einen Überblick über die europäischen und internationalen Normungsaktivitäten, insbesondere zur Bestimmung der 16 EPA-PAK in Feststoffen. T2 - Workshop zum "Freiberger Protokoll" zur Bestimmung von PAK16 auf und in festen Rückständen der Holzvergasung CY - Fraunhofer Institut Oberhausen, Germany DA - 20.03.2018 KW - PAK KW - Normung KW - Boden KW - Abfall PY - 2018 AN - OPUS4-44664 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Törne, Wipert Jannik A1 - Piechotta, Christian T1 - GC-MS and GC-MS/MS Based Determination of Transformation Products and Major Phase I Metabolites of Warfarin N2 - Herein, we present the development of a gas chromatographic method for Determination of warfarin, its TPs, and selected metabolites. TPs were formed by applying UV-irradiation, ozonation, and an electrochemical cell coupled to mass spectrometry to mimic the oxidative phase I metabolism. The further aim is to use this method for detection and quantification under environmentally relevant conditions, as well as, toxicological assessment. T2 - SETAC GLB CY - Landau, Germany DA - 04.09.2019 KW - Warfarin KW - GC-MS KW - GC-MS/MS PY - 2019 AN - OPUS4-49307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Raysyan, Anna A1 - Savvina, Olga T1 - Determination of mycotoxins in food and pharmaceuticals by immunochemical analysis N2 - Mycotoxins are toxic secondary metabolites produced by filamentous fungi. The contamination of mycotoxins in food and feed products has been recognized to be an important safety issue for human and animal health. In the context of food safety, medical herbs nowadays are also considered as potential source of mycotoxins. Considering that mycotoxins are generally stable compounds and could not be destroyed completely during food-processing operations, prevention of contamination is identified as main issue. Currently, biochemical, and immunochemical methods based on the use of antibodies as a specific recognition bioreagents are increasingly found to be applied in screening. Along with good common enzyme linked immunosorbent assay (ELISA), more and more widely used method is fluorescence polarization immunoassay (FPIA). These methods help to monitor of many toxic substances in large number of samples and carried out quickly, easily, cheaply, and give good results in quantifying the one or more substances. That is why the use of immunochemical methods of analysis, such as ELISA and FPIA, is the most promising for solving this problem. Thus, the aim of our work is to optimize the determination of mycotoxins by ELISA and FPIA in medical herbs. We selected antibodies and a tracer for the FPIA, then we constructed obtained a calibration curve and determined the sensitivity of this method for the samples in aqueous media. Then, the optimal sample preparation was elaborated: for spiked nuts samples were selected and prepared and a calibration curve was obtained with respect to the matrix effect. After that, the analysis of spiked nuts samples was performed by ELISA and FPIA and the sensitivity of both methods was compared. T2 - Global Food Science Student Competition CY - Jiangnan University, Wuxi, China DA - 14.11.2018 KW - Mycotoxins KW - FPIA KW - ELISA PY - 2018 AN - OPUS4-50048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaeger, Carsten A1 - Lisec, Jan T1 - Rapid characterization of ionization products for chemistry-aware compound annotation in nontargeted small molecule mass spectrometry N2 - Nontargeted high-resolution mass spectrometry (HRMS) is widely used for small molecule screening in biotic or abiotic samples. However, HRMS approaches like metabolomics or environmental nontarget screening currently still lack confidence in chemical annotation, i.e. computational structure assignment to all measured mass signals. As a crucial step within the annotation pipeline, molecular weight inference (MWI) deduces a compound’s intact mass from diagnostic mass differences between MS1 peaks, allowing precise database queries in subsequent steps. As the common practice of considering all possible ionization products such as adducts, multimers, multiple charges etc. in MWI suffers from high false positive rates, we aimed at selecting candidate ionization products in a chemically sensitive way. Generally, electrospray ionization produces different types of adducts depending on chromatographic system and sample matrix, necessitating application-specific optimization for optimum MWI performance. To avoid, however, the tedious and potentially biased manual data curation connected to optimization, we established an R-based workflow for automating this task. The workflow consists of two parts. Part 1 creates an MS1 spectral library by performing peak detection, spectral deconvolution and target peak assignment based on density estimation. Part 2 analyzes ion relationships within the library and returns a list of detected ionization products ranked by their frequency. We applied the workflow to a commercial 634-compound library that was acquired for two chromatographic methods (reverse phase, RP; hydrophilic liquid interaction chromatographic, HILIC) and the two ESI modes (positive, negative). As expected, different frequency distributions of ionization products were found for the two chromatographies. Interestingly, however, some of the differences were expected in terms of solvent chemistries (e.g. [M+NH4]+ in ammonium formate-buffered HILIC) while others indicated more complex ion competition (e.g. abundant [M+K]+, [M+2K-H]+ in HILIC). This demonstrated the relevance of this empirical approach. We further show that MWI accuracy clearly benefitted from derived optimized adduct lists – by adding filters or weighting terms – and present FDR calculations supporting this observation. We conclude that chemistry-aware compound annotation based on the combination of high-throughput library acquisition and statistical analysis holds significant potential for further improvements in nontargeted small molecule HRMS. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2019 KW - Compound annotation KW - Mass spectrometry KW - Electrospray ionization KW - Nontarget analysis KW - Accurate mass PY - 2019 AN - OPUS4-48332 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaeger, Carsten T1 - Comparing Nontargeted LC-MS Methods by Co-visualizing Linear Dynamic Range and Chemical Coverage N2 - INTRODUCTION Biological and environmental samples contain thousands of small molecule species that all vary in chemical properties and concentration range. Identifying and quantifying all these chemical entities remains a long-term goal in metabolomics and related systems approaches. Due to its broad selectivity, nontargeted LC-MS is usually the method of choice for broad chemical screening. Optimizing nontargeted LC-MS methods, however, is less straightforward than for targeted methods where sensitivity, specificity, linearity etc. serve as well-established performance criteria. We therefore investigated linear dynamic range (LDR) and chemical classification as alternative performance criteria to guide nontargeted method development. EXPERIMENTAL METHODS LDR was defined as the linear portion of a feature’s response curve over multiple concentration levels. Comparing the LDR of features across methods can be expected to be significantly more robust than comparing signal intensities for a single concentration. To determine LDR for all features, a computational workflow was implemented in the R programming language. For estimating the linear portion of a curve, several mathematical approaches including linear, non-linear and piecewise linear regression were evaluated. Chemical classification was based on ClassyFire, which computes chemical classes for a given structure. To avoid false classifications for incorrectly annotated compounds, we took the following statistical approach. For each compound, multiple likely annotation hypotheses were derived using a recently described workflow[2]. All annotation hypotheses were submitted to ClassyFire and obtained classifications were ranked by frequency. The most frequently suggested class was kept for further analysis. Finally, LDR and chemical classes were visualized together on a molecular network, which was constructed using the well-established MS/MS similarity approach. RESULTS AND DISCUSSION For technical validation of the workflow, several hundred curve fits obtained from the different regression models were reviewed visually. Piecewise linear regression performed the most reliably with respect to the heterogeneous curve shapes of ‘real-life’ features. Validation of chemical classification was performed against a compound library, which showed that 90% of ~450 library compounds were correctly classified using the described approach. Two liquid chromatography methods (HILIC, RPC) as well as two electrospray ionization variants (low/high-temperature ESI) applied to urinary metabolomics were exemplarily studied to test the workflow. Molecular network visualization indicated that of all analytical setups, HILIC/high temperature ESI performed best in terms of high LDR achieved over a wide range of compound classes. Despite one order of magnitude lower sensitivity, HILIC/low temperature ESI showed similar chemical coverage, except for organic nitrogen compounds that were underrepresented compared to high-temperature ESI. Both RPC setups were inferior to the HILIC setups in terms of high-LDR features, supporting previous findings for the given matrix. The higher relative representation of benzenoids and lipids in RPC demonstrated that the workflow successfully captured expected selectivity differences between chromatographies. CONCLUSION When comparing nontargeted LC-MS methods for optimization purposes, ideally all available quantitative and qualitative information should be integrated. The present workflow follows this idea. Visualizing LDR and chemical classes of all features on a molecular network quickly indicated differences in method selectivity that were otherwise difficult to spot. As an automated approach, it is easily applied to repeated optimization steps, enabling effective optimization strategies. T2 - EURACHEM Workshop CY - Tartu, Estonia DA - 20.05.2019 KW - Linear dynamic range KW - Liquid chromatography-mass spectrometry KW - Nontargeted approach KW - Method development KW - Chemical coverage PY - 2019 AN - OPUS4-48333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steinhäuser, Lorin A1 - Piechotta, Christian A1 - Lardy-Fontan, S. A1 - Heath, E. A1 - von Törne, Wipert A1 - Perkola, N. A1 - Balzamo, S. A1 - Cotman, M. A1 - Gökcen, T. A1 - Gardia-Parège, C. A1 - Budzinski, H. A1 - Lalère, B. T1 - A project to deliver reliable measurements of estrogens for better monitoring surveys and risk assessments N2 - EDC WFD project to deliver reliable measurements of estrogens for better monitoring surveys and risk assessments. Collaboration between National Metrology Institutes and advanced research institutes from 6 European countries A Balance of expertise: development and certification of RM, proficiency tests / interlaboratory comparison design, method development and validation, standardisation A 3 years project: September 2019- August 2022 Strong engagement with stakeholders (Advisory Group) T2 - SETAC 2020 CY - Online meeting DA - 03.05.2020 KW - EDC KW - Endocrine disrupting chemicals PY - 2020 AN - OPUS4-51739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - Hein, Sebastian A1 - von Törne, Jannik Wipert A1 - Kaminski, Katja A1 - Klyk-Seitz, Urszula-Anna T1 - NSO-Heterozyklen – Zwischen Rattengift und Normung N2 - Warfarin als ein Vertreter der NSO-Hetereozyklen, ist seit den 1950er Jahren einer der bekanntesten Gerinnungshemmer. Beim Menschen wird es bis heute zur Vorbeugung von Thrombose und der Behandlung von Vorhofflimmern und Arrhythmie eingesetzt. Doch schon einige Jahre vor der FDA Zulassung als Medikament wurde es zur Bekämpfung von Nagetieren eingesetzt. Bis heute wurde es nur teilweise durch weitaus wirksamere antikoagulante Rodentizide (ARs) der zweiten Generation, sogenannte Superwarfarine, ersetzt. In der Fachliteratur finden sich zahlreiche Beispiele für sekundäre und tertiäre Vergiftung mit ARs bei Wildtieren und anderen Nichtzieltieren. Bisher ist relativ wenig über die Bioakkumulation, Persistenz und Toxizität von ARs und deren Transformationsprodukten (TPs) in der terrestrischen und aquatischen Umwelt, sowie der Nahrungskette bekannt. Um Einblicke in mögliche Transformations- und Abbauprozesse von Warfarin zu erhalten und um Umwelteinflüsse zu simulieren, wurde es in einer elektrochemischen Reaktorzelle oxidativ umgesetzt und mittels Massenspektrometrie analysiert. Hinsichtlich der Wasseraufbereitung in Kläranlagen wurden technisch relevante Simulationsverfahren wie Chlorung, UV-Bestrahlung und Ozonung angewendet um potentielle Eliminierungswege aufzuklären. Gebildete Transformationsprodukte wurden daher mittels unterschiedlicher chromatografischer Verfahren getrennt, massenspektrometrisch analysiert und verglichen. T2 - MS-Tage CY - Düsseldorf, Germany DA - 03.12.2019 KW - GC-MS KW - Warfarin KW - NSO-Heterozyklen PY - 2019 AN - OPUS4-49974 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piechotta, Christian A1 - von Törne, Jannik Wipert T1 - Identification of Transformation Products of Warfarin N2 - Warfarin, also known as Coumadin is one of the most popular anticoagulant drugs used as a therapeutic in humans to prevent thrombosis, atrial fibrosis, and fibrillation since the 1950s. Because of its ability to hinder blood from clotting by blocking vitamin K-depending carboxylation of blood clotting precursors, it is also used as a rodenticide worldwide. Until today it has been partially substituted by far more potent anticoagulant rodenticides (ARs), so-called superwarfarins. There are numerous references confirming secondary and tertiary poisoning in non-target-animals and wildlife like mammals, birds, and fish associated with ARs. Up to now relatively little is known about persistence and toxicity of transformation products of those AR in the environment and food chain. Herein, warfarin was chosen as a model compound to determine andelucidate TPs which are generated technically and under environment-like conditions. Such as the simulation of the oxidative phase I metabolism by implementing electrochemical flow cells coupled to mass spectrometry (MS). Obtained results are being compared to TPs generated by UVB-irradiation and ozonation. Analysis and separation of degradation products and TPs were achieved by a variety of gas- and liquid chromatographic techniques coupled to (high resolution) MS. T2 - Goldschmidt 2019 CY - Barcelona, Spain DA - 18.08.2019 KW - GC-MS KW - Warfarin KW - Transformations products PY - 2019 AN - OPUS4-49795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lardy-Fontan, S. A1 - Piechotta, Christian A1 - Heath, E. A1 - Perkola, N. A1 - Balzamo, S. A1 - Cotman, M. A1 - Gökcen, T. A1 - Gardia-Parège, C. A1 - Budzinski, H. A1 - Lalère, B. T1 - A project to deliver reliable measurements of estrogens for better monitoring survey and risks assessments N2 - Monitoring programs should generate high-quality data on the concentrations of substances and other pollutants in the aquatic environment to enable reliable risk assessment. Furthermore, the need for comparability over space and time is critical for analysis of trends and evaluation of restoration of natural environment. Additionally, research work and exercises at the European level have highlighted that reliable measurements of estrogenic substances at the PNEC level are still challenging to achieve. The project EDC-WFD “Metrology for monitoring endocrine disrupting compounds under the EU Water Framework Directive” aims to develop traceable analytical methods for determining endocrine disrupting compounds and their effects, with a specific focus on three estrogens of the first watch list (17-beta-estradiol (17βE2), 17-alpha-ethinylestradiol (EE2), and estrone (E1)). Estrogens 17-alpha-estradiol (17aE2) and estriol (E3) will be included to demonstrate the reliability of the developed methods - Mass Spectrometry based method and effect-based methods (EBM) - and to support the requirements of Directive 2013/39/EC, Directive 2009/90/EC and Commission Implementation Decision (EU) 2018/840, hence improving the comparability and compatibility of measurement results within Europe. During the EDC-WFD project four EBM will be deeply investigated in order to improve their rationale use and their support in water quality assessment. T2 - Eurachem Workshop - Uncertainty from sampling and analysis for accredited laboratories CY - Berlin, Germany DA - 19.11.2019 KW - MS based method KW - Estrogens KW - Reliable measurements KW - Comparability KW - Effect based Method PY - 2019 AN - OPUS4-49738 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lardy-Fontan, S. A1 - Piechotta, Christian A1 - Heath, E. A1 - Perkola, N. A1 - Balzamo, S. A1 - Cotman, M. A1 - Gökcen, T. A1 - Gardia-Parège, C. A1 - Budzinski, H. A1 - Lalère, B. T1 - A project to deliver reliable measurements of estrogens for better monitoring survey and risks assessments N2 - Monitoring programs should generate high-quality data on the concentrations of substances and other pollutants in the aquatic environment to enable reliable risk assessment. Furthermore, the need for comparability over space and time is critical for analysis of trends and evaluation of restoration of natural environment. Additionally, research work and exercises at the European level have highlighted that reliable measurements of estrogenic substances at the PNEC level are still challenging to achieve. The project EDC-WFD “Metrology for monitoring endocrine disrupting compounds under the EU Water Framework Directive” aims to develop traceable analytical methods for determining endocrine disrupting compounds and their effects, with a specific focus on three estrogens of the first watch list (17-beta-estradiol (17βE2), 17-alpha-ethinylestradiol (EE2), and estrone (E1)). Estrogens 17-alpha-estradiol (17aE2) and estriol (E3) will be included to demonstrate the reliability of the developed methods - Mass Spectrometry based method and effect-based methods (EBM) - and to support the requirements of Directive 2013/39/EC, Directive 2009/90/EC and Commission Implementation Decision (EU) 2018/840, hence improving the comparability and compatibility of measurement results within Europe. During the EDC-WFD project four EBM will be deeply investigated in order to improve their rationale use and their support in water quality assessment. T2 - ICRAPHE - Second International Conference on Risk Assessment of Pharmaceuticals in the Environment CY - Barcelona, Spanien DA - 28.11.2019 KW - Estrogens KW - Effect based Method KW - Comparability KW - Reliable measurements KW - MS based method PY - 2019 AN - OPUS4-49739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -