TY - CONF A1 - Otremba, Frank T1 - Hazmat tanks subjected to fire N2 - Smaleand large scale tests have been carried out. Pressure vessel –to improve numerical modelling. Thermal coating –increase of surveillance time. Numerical calculations -quantifying the safety margin. RV cannot avoid catastrophic failure. T2 - Kolloquium Gefahrgut an der UAQ CY - Queretaro, Mexico DA - 22.03.2018 KW - Hazmat KW - Tank KW - Fire PY - 2018 AN - OPUS4-44629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sklorz, Christian A1 - Balke, Christian A1 - Otremba, Frank T1 - Fire protection systems for above-ground storage tanks N2 - Liquefied propane gas (LPG) tanks in a fully engulfing accidental fire experience a fast increase in internal pressure. The result is often a Boiling Liquid Expanding Vapor Explosion (BLEVE) that can result in a large fireball and flying debris over a radius of more than 100 meters. In the last 30 years BAM has carried out more than 30 real scale fire tests on propane storage vessels across three test sites. The primary research goal was to identify systems that can delay or prevent a BLEVE. Early studies started with water deluge systems, and have since moved on to consider alternative protection systems. It has been shown that an unprotected vessel fails within 10 minutes or less. Tests with different oil and propane fueled fires have given an overview on possible real accidents involving full-engulfing scenarios. LPG tanks of various sizes (2.7 m³, 3.6 m³, 4.8 m³, 6.7 m³) were used with different filling levels. Numerous protection systems, ranging from active systems like water systems to passive thick- and thin-film layers. Also, the degree of thickness of these layers was variated. Pressure relief valves (PRV) have also been investigated, both alone and in combination with protection systems. This paper gives an overview of the work performed by BAM in the field of BLEVE prevention of protecting system since the last 30 years. It has been shown that e.g. with a full applied coating degree on the tank with and without PRV can be reached an exposition in a test fire scenario a duration of more than 60min. For partly coated tanks with and without PRV the duration time is like an unprotected vessel. Furthermore, it could be shown that the active water system also protects with technically correct design. T2 - Loss Prevention 2019 CY - Delft, Niederlande DA - 16.06.2019 KW - Fire KW - Protection systems KW - Propane storage tanks PY - 2019 SN - 978-88-95608-72-3 VL - 75 SP - 1 EP - 6 AN - OPUS4-49021 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bradley, I. A1 - Scarponi, G. E. A1 - Otremba, Frank A1 - Cozzani, V. A1 - Birk, A. M. T1 - Experimental Analysis of a Pressurized Vessel Exposed to Fires: an Innovative Representative Scale Apparatus N2 - A novel deign of test equipment has been commissioned to investigate thermal stratification and boiling during fire exposure of pressure vessels. Extensive temperature measurements and video of the internal conditions during fire exposure are possible, and the equipment has been designed for future compatibility with laser-based velocity measurement techniques. It is expected to generate data large quantities of data that will be of use in validation of two- and three-dimensional CFD models for the prediction of pressure vessel behaviour in fire. Future work will seek to characterize the boundary layer conditions in detail for a range of test fluids, fill levels and fire-induced thermal boundary conditions. Initial tests undertaken during commissioning may indicate that fire exposure of the vessel wall just above the liquid level can have a notable influence on the pressurization rate, by increasing the degree of superheat. Further experimental and modelling work is required to confirm and quantify this effect, or to rebut this conclusion. T2 - ICH 13th International Conference on Chemical and Process Engineering CY - Milan, Italy DA - 28.05.2017 KW - Representative Scale Apparatus KW - Pressurized Vessel, KW - Fire PY - 2017 VL - 57 SP - 1 EP - 6 AN - OPUS4-40663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bradley, I. A1 - Scarponi, G. E. A1 - Otremba, Frank A1 - Cozzani, V. A1 - Birk, A. M. T1 - Experimental analysis of a pressurized N2 - Test equipment has been commissioned and proven to work.Initial data on temperatures, and pressurization rates have been collected and are now under analysis. The level of detail of the measurements is suitable for CFD validation. Initial PIV studies were undertaken to measure the velocity field. T2 - ICH 13th International Conference on Chemical and Process Engineering CY - Milan, Italy DA - 28.05.2017 KW - Fire KW - pressurized vessel KW - Representative scale apparatus PY - 2017 AN - OPUS4-40665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert A1 - Hajhariri, Aliasghar A1 - Camplese, Davide A1 - Scarponi, Giordano Emrys A1 - Cozzani, Valerio A1 - Otremba, Frank T1 - A comparative study on insulation materials in tanks for the storage of cryogenic fluids in fire incidents N2 - Liquefied Hydrogen (LH2) or Liquefied Natural Gas (LNG) establish themselves as important energy carriers in the transport sector. Its storage requires tanks with Thermal Super Insulations (TSI) to keep the transported fluid cold. TSI has proven itself in various applications over a long time, but not in the land transport sector, where accidents involving collisions, fires, and their combination are to be expected. The focus of this study is to investigate the behavior of different types of TSI when exposed to a heat source that represents a fire. Therefore, a High-Temperature Thermal Vacuum Chamber (HTTVC) was used that allows the thermal loading of thermal insulation material in a vacuum and measuring the heat flow through the TSI in parallel. Within this study, 5 samples were tested regarding 3 different types of MLI, rock wool, and perlites. The thermal exposure caused different effects on the samples. In practice, this can be connected to the rapid release of flammable gases as well as a Boiling Liquid Expanding Vapour Explosion (BLEVE). These results are relevant for the evaluation of accident scenarios, the improvement of TSI, and the development of emergency measures. T2 - IMECE 2023 CY - New Orleans, Louisiana, USA DA - 29.10.2023 KW - LH2 KW - LNG KW - Fire PY - 2023 SP - 1 EP - 7 AN - OPUS4-58768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank A1 - Eberwein, Robert A1 - Hajhariri, Aliasghar A1 - Camplese, Davide A1 - Scarponi, Giordano Emrys A1 - Cozzani, Valerio T1 - Systems with Cryogenic Liquefied Gases in Fire Incidents N2 - Liquefied Hydrogen (LH2) or Liquefied Natural Gas (LNG) establish themselves as important energy carriers in the transport sector. Its storage requires tanks with Thermal Super Insulations (TSI) to keep the transported fluid cold. TSI has proven itself in various applications over a long time, but not in the land transport sector, where accidents involving collisions, fires, and their combination are to be expected. The focus of this study is to investigate the behavior of different types of TSI when exposed to a heat source that represents a fire. Therefore, a High- Temperature Thermal Vacuum Chamber (HTTVC) was used that allows the thermal loading of thermal insulation material in a vacuum and measuring the heat flow through the TSI in parallel. Within this study, 5 samples were tested regarding 3 different types of MLI, rock wool, and perlites. The thermal exposure caused different effects on the samples. In practice, this can be connected to the rapid release of flammable gases as well as a Boiling Liquid Expanding Vapour Explosion (BLEVE). These results are relevant for the evaluation of accident scenarios, the improvement of TSI, and the development of emergency measures. T2 - IMECE 2023 CY - New Orleans, Louisiana, USA DA - 29.10.2023 KW - LH2 KW - LNG KW - Fire PY - 2023 AN - OPUS4-58769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Camplese, D. A1 - Chianese, C. A1 - Scarponi, G. A1 - Eberwein, Robert A1 - Otremba, Frank A1 - Cozzani, V. T1 - Analysis of high temperature degradation of multi-layer insulation (MLI) systems for liquid hydrogen storage tanks N2 - The interest in hydrogen-based green energy is increasing worldwide, and the same is true for hydrogen-powered vehicles. Among the possible solutions to store hydrogen in such vehicles, cryogenic tanks equipped with multi-layer insulation (MLI) are the most promising to increase the amount of energy stored per unit volume. However, MLI is affected by severe deterioration when exposed to an external source of heat such as a fire following a car accident, leaving the tank unprotected and leading to failure in a relatively short time. In this work, a one-dimensional model to evaluate MLI thermal degradation when a liquid hydrogen tank is exposed to fire is presented. The relevance of taking MLI degradation into account when simulating the pressure increase due to external fire exposure is here demonstrated through the analysis of several case studies. The results show that MLI systems performance depletes within a few minutes of exposure to hydrocarbon poolfire. T2 - ICheaP 16 CY - Naples, Italy DA - 21.05.2023 KW - LH2 KW - MLI KW - Tiefkalt KW - Fire KW - Tank PY - 2023 SN - 2283-9216 VL - 2023 SP - 1 EP - 6 PB - AIDIC Servizi S.r.l. AN - OPUS4-57584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert A1 - Hajhariri, Aliasghar A1 - Camplese, D. A1 - Scarponi, G. E. A1 - Cozzani, V. A1 - Otremba, Frank T1 - Insulation Materials Used in Tanks for the Storage of Cryogenic Fluids in Fire Scenarios N2 - The importance of tanks for storing cryogenic fluids in the energy industry is increasing because of ongoing political conflicts and the implementation of more environmentally friendly energy sources. Key representatives for the application of cryogenic tanks are natural gas in the form of Liquefied Natural Gas (LNG) and hydrogen, e. g. in the form of Liquefied Hydrogen (LH2), for which significantly higher transport capacities can be achieved with the same transport volume using cryogenic storages than with storages based solely on overpressure. What applies to all cryogenic transported fluids in common is their condition that must be maintained. Hence heat flows into the preserved fluid must be minimized. Thermal super Insulations (TSI) based on e. g. multilayer insulations (MLI), perlites, and vacuum are utilized for this purpose and have already proven themselves in similar applications. However, for the use of tanks for cryogenic fluids in the transport sector, there is insufficient knowledge regarding the course and consequences of incidents, which is due to the still short period of use and the few documented incidents, hence few investigations carried out in this field. Typical scenarios in the transport sector represent car accidents with collisions, fires, and their combination, which are associated with extraordinary loads on the tank. The focus of this study is to investigate the behavior of TSI as a result of their thermal exposure to a heat source representing a fire. It is worth mentioning that this could lead to an increase of the heat flux into a tank by several orders of magnitude, and to permanent damage of the TSI, ultimately rapid release of flammable gas as well as a Boiling Liquide Expanding Vapour Explosion (BLEVE). For this purpose, a high temperature thermal vacuum chamber (HTTVC) has been developed that allows thermal loading of MLI or perlites in a vacuum and simultaneous measurement of heat flow through this TSI. The HTTVC is designed to represent realistic insulation conditions and to withstand thermal loads from typical design fires. The HTTVC was applied to investigate TSI based on MLI and vacuum. It is shown that the thermal stress caused permanent damage to the TSI, with shrinkage, phase change, pyrolysis, and condensation being significant damage mechanisms. The results are relevant for the evaluation of accident scenarios and can thus contribute to the improvement of TSI and the development of emergency measures for the protection of persons and infrastructures. T2 - ASME 2023 Pressure Vessels & Piping Conference (PVP2023) CY - Atlanta, Georgia, USA DA - 16.07.2023 KW - LH2 KW - LNG KW - MLI KW - Fire PY - 2023 SP - 1 EP - 8 PB - ASME AN - OPUS4-57973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert A1 - Hajhariri, Aliasghar A1 - Camplese, D. A1 - Scarponi, G. E. A1 - Cozzani, V. A1 - Otremba, Frank T1 - Insulation Materials Used in Tanks for the Storage of Cryogenic Fluids in Fire Scenarios N2 - The importance of tanks for storing cryogenic fluids in the energy industry is increasing because of ongoing political conflicts and the implementation of more environmentally friendly energy sources. Key representatives for the application of cryogenic tanks are natural gas in the form of Liquefied Natural Gas (LNG) and hydrogen, e. g. in the form of Liquefied Hydrogen (LH2), for which significantly higher transport capacities can be achieved with the same transport volume using cryogenic storages than with storages based solely on overpressure. What applies to all cryogenic transported fluids in common is their condition that must be maintained. Hence heat flows into the preserved fluid must be minimized. Thermal super Insulations (TSI) based on e. g. multilayer insulations (MLI), perlites, and vacuum are utilized for this purpose and have already proven themselves in similar applications. However, for the use of tanks for cryogenic fluids in the transport sector, there is insufficient knowledge regarding the course and consequences of incidents, which is due to the still short period of use and the few documented incidents, hence few investigations carried out in this field. Typical scenarios in the transport sector represent car accidents with collisions, fires, and their combination, which are associated with extraordinary loads on the tank. The focus of this study is to investigate the behavior of TSI as a result of their thermal exposure to a heat source representing a fire. It is worth mentioning that this could lead to an increase of the heat flux into a tank by several orders of magnitude, and to permanent damage of the TSI, ultimately rapid release of flammable gas as well as a Boiling Liquide Expanding Vapour Explosion (BLEVE). For this purpose, a high temperature thermal vacuum chamber (HTTVC) has been developed that allows thermal loading of MLI or perlites in a vacuum and simultaneous measurement of heat flow through this TSI. The HTTVC is designed to represent realistic insulation conditions and to withstand thermal loads from typical design fires. The HTTVC was applied to investigate TSI based on MLI and vacuum. It is shown that the thermal stress caused permanent damage to the TSI, with shrinkage, phase change, pyrolysis, and condensation being significant damage mechanisms. The results are relevant for the evaluation of accident scenarios and can thus contribute to the improvement of TSI and the development of emergency measures for the protection of persons and infrastructures. T2 - ASME 2023 Pressure Vessels & Piping Conference (PVP2023) CY - Atlanta, Georgia, USA DA - 16.07.2023 KW - LH2 KW - LNG KW - Fire KW - MLI KW - Safety PY - 2023 AN - OPUS4-57974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -