TY - JOUR A1 - Romero-Navarrete, José A. A1 - Otremba, Frank T1 - Vehicle’s components damage JF - Journal of Automobile Engineering N2 - The failure of vehicle’s suspension components has contributed to road crashes, while their defective operation can deteriorate the fuel efficiency of the vehicles. In this context, and when compared with solid cargo transporters, the road tankers would tend to produce larger roll forces during turning, as the curved shape of the liquid cargo container, shifts upwards the centre of gravity of the cargo. With reference to a rectangular cargo container representing the solid cargo situation, the increase in the position due to elliptical and circular tank shapes, can attain a value of 17% (100% fill, circular tank). In this study, experimental results comparing the lateral load transfer due to solid and liquid cargoes, indicate that the average force increase on the vehicle’s load-receiver side due to a liquid cargo, is 4.3%. To analyse the fullscale situation of both situations, that is, the higher position of the centre of gravity and the shifting of the liquid cargo, a simplified model is developed. The outputs from such a model when subjected to realistic operating conditions (speed and turning radius), suggest that the higher position of the centre of gravity due to using a non-rectangular cargo container generates an average force increase of 4.9% on the side receiving the load transfer. The incorporation of the effect of the liquid cargo, through the simple pendulum analogy, suggests that such an average increases to 6.76%, with a maximum of 8.35% in the case of the elliptical tank at 75% fill level. It is found that the average liquid cargo effect is 5.44%, which should be compared with the 4.3% of the experiments. Road tankers components would thus have a relatively shorter load cycle life than those of the solid cargo trucks. KW - Liquid cargo KW - Load transfer KW - Roll reactions KW - Experimental modelling KW - Pendulum-analogy PY - 2020 DO - https://doi.org/10.1177/0954407020960543 VL - 235 IS - 2-3 SP - 446 EP - 454 PB - Sage Journals AN - OPUS4-51386 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pötzsch, Sina A1 - Krüger, Simone A1 - Sklorz, Christian A1 - Borch, Jörg A1 - Hilse, Thilo A1 - Otremba, Frank T1 - The fire resistance of lightweight composite tanks depending on fire protection systems JF - Fire Safety Journal N2 - To save weight and resources lightweight tanks with complex geometries made of glass-fibre reinforced plastics (GFRP) are a promising innovation for the transportation of dangerous goods. To realise the use of polymer tanks for such applications, their fire safety must be guaranteed. This paper presents solutions to protect fibre-reinforced plastic tanks from fire. The fire resistance of six GFRP tanks with different fire protection systems was tested in an outdoor full-scale fire test facility according to the regulation stipulated in the ADR (European agreement concerning the national carriage of dangerous goods by road). All tanks feature a complex geometry and a holding capacity of 1100 litres. The fire protection systems are composed of specialised resins as well as two intumescent coatings. All systems had a protective impact. The best results were achieved by the epoxy based intumescent coating, which was able to prolong the time needed to reach 150 °C inside the tank by 20 min. The emergence of a temperature holding point inside the tank due to condensation effects was observed at temperatures around 100 °C. KW - Fire safety composite tanks PY - 2018 UR - https://www.sciencedirect.com/science/article/pii/S0379711218301644 DO - https://doi.org/10.1016/j.firesaf.2018.08.007 SN - 0379-7112 SN - 1873-7226 VL - 100 SP - 118 EP - 127 PB - Elsevier Ltd. AN - OPUS4-45697 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Jan A1 - Kutz, P. W. A1 - Otremba, Frank T1 - Testing of Small Scale Tank Prototypes under Cryogenic Conditions T2 - 4Th international conference on energy supply and energy efficiency in Baku Azerbaijan and 5 years neseff N2 - Climate change, CO2 reduction, resource efficiency are only 3 current keywords that describe the current industrial-economic situation. In order to influence climate change effectively, the conversion of supply systems with technically usable forms of energy must succeed in the next decade. The international network founded in Baku in 2015 bundles research activities in the broad field of energy supply and energy efficiency. Discuss current research approaches and results with scientists and experts from renowned universities and follow Azerbaijan's efforts to implement the energy revolution. T2 - Neseff 2020 CY - Online meeting DA - 28.09.2020 KW - Mud pumps KW - Mud circulation system KW - Pistons KW - Hydrostatic pressure KW - Friction wear KW - Ceramic liners KW - Tribology PY - 2020 SN - 978-3-940471-59-8 SP - 4 EP - 9 AN - OPUS4-52149 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kutz, Philipp A1 - Werner, Jan A1 - Otremba, Frank T1 - Testing of Composite Material for Transport Tanks for LNG JF - Key Engineering Materials N2 - To reduce the emission of carbondyoxide (CO2) of combustion engines, liquefied natural gas (LNG) is used as an alternative fuel. LNG is transported via truck, ship or railway for long distances. Double walled stainless steel tanks are used for transportation, which are heavy and expensive. The vacuum insulation between the two walled structure ensures that the LNG stays liquid over the transportation time (boiling point of LNG: -162 ◦C). This causes a high temperature difference between the transported good and the ambient air. A simplified tank construction is used to reduce the weight and price of the tank. Instead of stainless steel, glass fiber reinforced plastic (GFRP) is used. The design is changed to a single walled construction with a solid insulation material outside on the GFRP structure. Goal of this work is the characterization of a suitable insulation material and configuration as well as the analysis of the mechanical properties of GFRP under cryogenic conditions. Several experiments are carried out. Numerical models of these experiments can then be used for parameter studies. KW - GFRP KW - Lightweight design KW - LNG PY - 2019 DO - https://doi.org/10.4028/www.scientific.net/KEM.809.625 SN - 1662-9795 VL - 809 SP - 625 EP - 629 PB - Trans Tech Publications Ltd. AN - OPUS4-48271 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank A1 - Eberwein, Robert A1 - Hajhariri, Aliasghar A1 - Camplese, Davide A1 - Scarponi, Giordano Emrys A1 - Cozzani, Valerio T1 - Systems with Cryogenic Liquefied Gases in Fire Incidents N2 - Liquefied Hydrogen (LH2) or Liquefied Natural Gas (LNG) establish themselves as important energy carriers in the transport sector. Its storage requires tanks with Thermal Super Insulations (TSI) to keep the transported fluid cold. TSI has proven itself in various applications over a long time, but not in the land transport sector, where accidents involving collisions, fires, and their combination are to be expected. The focus of this study is to investigate the behavior of different types of TSI when exposed to a heat source that represents a fire. Therefore, a High- Temperature Thermal Vacuum Chamber (HTTVC) was used that allows the thermal loading of thermal insulation material in a vacuum and measuring the heat flow through the TSI in parallel. Within this study, 5 samples were tested regarding 3 different types of MLI, rock wool, and perlites. The thermal exposure caused different effects on the samples. In practice, this can be connected to the rapid release of flammable gases as well as a Boiling Liquid Expanding Vapour Explosion (BLEVE). These results are relevant for the evaluation of accident scenarios, the improvement of TSI, and the development of emergency measures. T2 - IMECE 2023 CY - New Orleans, Louisiana, USA DA - 29.10.2023 KW - LH2 KW - LNG KW - Fire PY - 2023 AN - OPUS4-58769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank A1 - Romero-Navarrete, José A. ED - Otremba, Frank ED - Romero-Navarrete, José A. T1 - Sloshing in Vertical Circular Tanks and Earthquakes Perturbations T2 - The World Congress on Engineering and Computer Science N2 - A simplified formulation is proposed in this paper to assess the proximity of the earthquake-related Perturbation frequencies to the natural sloshing frequencies of the liquid contained in vertical cylindrical tanks. The methodology is based upon an existing gravity-waves approach, which was developed for rectangular cross-section reservoirs, and is extended in this paper to analyze circular cross-section tanks. The experimental outputs of this paper show that the existing methodology correlates at 100% with experimental data in the case of rectangular containers; while the corresponding average error in the case of a conical container and a cylindrical container is 7% and 9.1 %, respectively. The full diameter of the cross section was considered. The use of sovalidated methodology to full scale tanks, suggests that cylindrical vertical tanks with a capacity lower than 700 m3, could be exposed to a resonance excitation when subjected to earthquake motions, regardless of the fill level. T2 - WCECS 2019 CY - San Francisco, CA, USA DA - 22.10.2019 KW - Sloshing KW - Tanks KW - Earthquake KW - Perturbation PY - 2019 SP - 1 EP - 6 PB - IA ENG CY - San Francisco AN - OPUS4-49407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Otremba, Frank A1 - Romero-Navarrete, José A. T1 - Sloshing in vertical circular Tanks and Earthquakes Perturbations N2 - Tanks with capacity larger than 700 m3, could be exposed to a resonance excitation when subjected to earthquake motions, regardless of the fill level. Further studies to assess the dynamic forces linked to such resonance and close-to-resonance situations, in a context of a standard overloading situation due to sloshing forces. T2 - WCECS 2019 CY - San Francisco, CA, USA DA - 22.10.2019 KW - Sloshing KW - Tanks KW - Earthquake KW - Perturbation PY - 2019 AN - OPUS4-49408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Romero-Navarrete, José A. A1 - Otremba, Frank A1 - Lozano Guzmán, A. A. T1 - Simulation of liquid cargo – vehicle interaction under lateral and longitudinal accelerations T2 - The 9th International Conference on Computational Methods N2 - Amongst the vehicle parameters influencing road safety, the carried cargo plays a critical role in the case of a liquid cargo, posing rollover risk and affecting the available friction forces for braking. While the lateral sloshing of the cargo within the vehicle´s compartments, can be excited when the vehicle negotiates a turn, the longitudinal motion of the cargo derives from changes of speed. The combination of both types of perturbations occurs when the vehicle brakes while negotiating a turn. In this paper, a two-pendulum formulation is used to simulate the lateral and longitudinal behavior of a vehicle when negotiating a braking in a turn maneuver. The suspension forces are thus calculated as the linear superposition of both models. Results suggest that the vehicle roll stability is affected by the cargo sloshing, with increments on the order of 100% in the lateral load transfer, for a 50% filled tank. On the other hand, the dispersion of the travelling speed also affects the lateral stability of such type of vehicles, as a function of the dispersion of the vehicle´s travelling speed. T2 - The 9th International Conference on Computational Methods (ICCM2018) CY - Rome, Italy DA - 06.08.2018 KW - Sloshing cargo KW - Road tankers KW - Pendulum analogy KW - Braking in a turn KW - Lateral load transfer ratio PY - 2018 SP - 88 EP - 102 PB - Scientech Publisher LLC AN - OPUS4-45821 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Romero Navaratte, José A. A1 - Otremba, Frank T1 - Scientific Society of Mechanical Engineers N2 - The efficiency and safety of railway transportation depends on many factors and operating conditions, associated to the vehicle, the infrastructure, the operator and the environment. From the vehicle-infrastracture perspective, some influential factors include the dynamics of the vehicle and infrastructure interaction when the vehicle operates on curved tracks. Düring such changes of direction, the vehicle dynamically responds to the lateral perturbation, producing a lateral load transfer that represents an increase of the wheel forces on one side of the track, as a function of the train operating conditions and track design, including track's geometry and over-elevation, and vehicle's operating speed as well as its inertial properties and dimensions. In this context, the lateral load transfer superimposes to tangential steering forces, which are developed when the vehicle enters the curved track, and stabilize once a steady state is attained if the vehicle travels along a constant radius track at constant speed. The magnitude of such tangential forces depends on a variety of factors, including the yaw stiffness of the bogie, and the friction at the centre plate. While the friction at the centre plate generates higher tangential forces on the track and a consequential greater rail wearing and lose of locomotive energy, such friction is also crucial to avoid the hunting phenomenon when the vehicle travels along tangents. In this paper, a mechanically active centre plate is proposed, which increases the friction torque at the centre plate when the vehicle travels along tangents, and reduces such a friction torque when the vehicle negotiates curved portions of the track. Such conceptual design includes the principles of Operation and a needed preliminary experimental model to assess the potential benefits as well as the feasibility of such equipment. T2 - 11th international conference on railway bogies and running gears CY - Budapest, Hungary DA - 09.09.2019 KW - Centre plate KW - Railway KW - Fiction PY - 2019 SP - 28 EP - 30 AN - OPUS4-49004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hurtado-Hurtado, G. A1 - Morales-Velazquez, L. A1 - Otremba, Frank A1 - Jáuregui-Correa, J. C. T1 - Railcar Dynamic Response during Braking Maneuvers Based on Frequency Analysis JF - Applied Sciences N2 - The dynamic response of a vehicle during braking is influenced by the tangential forces developed at the wheel-rail’s contact surface. The friction coefficient affects the load transfer from the wheel’s tread to the vehicle. In this work, the vibrations of a scale-down railway vehicle are monitored during braking and their relationship with the friction coefficient between wheel and rail is found out. The vehicle is instrumented with encoders, accelerometers, and is controlled via Bluetooth. The tests are carried out with clean and friction-modified rails. The tangential forces transmitted from the wheel to the railcar’s body are visualized in time and frequency using a proposed correlation algorithm based on the outputs of the ContinuousWavelet Transform (CWT). The results demonstrate that tangential forces have a significant impact on railway vehicles under conditions of high friction coefficients and large creep values. KW - Railway vibration measurements KW - Vibration signal analysis KW - Wheel-rail tangential forces KW - Railway braking forces KW - Wheel-rail friction coefficient PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572309 DO - https://doi.org/10.3390/app13074132 VL - 13 IS - 7 SP - 1 EP - 15 PB - MDPI AN - OPUS4-57230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -