TY - JOUR A1 - Glienke, R. A1 - Kalkowsky, F. A1 - Hobbacher, A. F. A1 - Holch, A. A1 - Thiele, Marc A1 - Marten, F. A1 - Kersten, R. A1 - Henkel, K.-M. T1 - Evaluation of the fatigue resistance of butt‑welded joints in towers of wind turbines - A comparison of experimental studies with small scale and component tests as well as numerical based approaches with local concepts JF - Welding in the world N2 - Wind turbines are exposed to a high number of load cycles during their service lifetime. Therefore, the fatigue strength verification plays an important role in their design. In general, the nominal stress method is used for the fatigue verification of the most common used butt-welded joints. The Eurocode 3 part 1–9 is the current design standard for this field of application. This paper presents recent results of fatigue tests on small-scaled specimens and large components with transverse butt welds to discuss the validity of the FAT-class. Furthermore, results from numerical simulations for the verification with the effective notch stress and the crack propagation approach are used for comparison. Based on the consistency between the numerical results and the fatigue tests, the influence of the seam geometry on the fatigue resistance was investigated. Finally, a prediction of the fatigue strength of butt-welded joints with plate thicknesses up to 80 mm was carried out. KW - Transverse butt weld KW - Weld imperfections KW - Wind turbine tower KW - Fatigue strength KW - Local approaches KW - Large components KW - Wind energy PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596648 DO - https://doi.org/10.1007/s40194-023-01630-3 SN - 1878-6669 SP - 1 EP - 26 PB - Springer CY - Berlin AN - OPUS4-59664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ratkovac, Mirjana A1 - Gerards-Wünsche, Paul A1 - Thiele, Marc A1 - Brackrock, Daniel A1 - Stamm, Michael T1 - Detection and monitoring of the fatigue crack growth on welds – Application-oriented use of NDT methods T2 - Procedia Structural Integrity N2 - Early detection of fatigue cracks and accurate measurements of the crack growth play an important role in the maintenance and repair strategies of steel structures exposed to cyclic loads during their service life. Observation of welded connections is especially of high relevance due to their higher susceptibility to fatigue damage. The aim of this contribution was to monitor fatigue crack growth in thick welded specimens during fatigue tests as holistically as possible, by implementing multiple NDT methods simultaneously in order to record the crack initiation and propagation until the final fracture. In addition to well-known methods such as strain gauges, thermography, and ultrasound, the crack luminescence method developed at the Bundesanstalt für Materialforschung und -prüfung (BAM), which makes cracks on the surface particularly visible, was also used. For data acquisition, a first data fusion concept was developed and applied in order to synchronize the data of the different methods and to evaluate them to a large extent automatically. The resulting database can ultimately also be used to access, view, and analyze the experimental data for various NDT methods. During the conducted fatigue tests, the simultaneous measurements of the same cracking process enabled a comprehensive comparison of the methods, highlighting their individual strengths and limitations. More importantly, they showed how a synergetic combination of different NDT methods can be beneficial for implementation in large-scale fatigue testing but also in monitoring and inspection programs of in-service structures - such as the support structures of offshore wind turbines. T2 - Fatigue Design 2023 (FatDes 2023) CY - Senlis, France DA - 29.11.2023 KW - Fatigue KW - Welded KW - NDT KW - Crack growth PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600238 DO - https://doi.org/10.1016/j.prostr.2024.03.062 VL - 57 SP - 560 EP - 568 PB - Elsevier B.V. AN - OPUS4-60023 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baeßler, Matthias A1 - Cuéllar, Pablo A1 - Schepers, Winfried A1 - Geißler, Peter A1 - Breithaupt, Matthias A1 - Basedau, Frank A1 - Balscheit, Hagen T1 - VERBATIM: Project Introduction and Large Scale Experiments N2 - The presentation summarizes the scope of the joint project VERBATIM on buckling of large Monopiles. The presented work from the authors focusses on the experimental field tests of large predented piles during driving and a numerical investigation on the observed buckling behaviour. T2 - Colloquium „Buckling of Offshore Wind Energy Structures“ CY - Berlin, Germany DA - 14.02.2024 KW - Buckling KW - Offshore KW - Wind Energy Structures KW - Monopiles KW - Pile-Tip-Buckling PY - 2024 AN - OPUS4-59535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Balscheit, Hagen T1 - Soil Embedded Piles - Reference Tests for Model Validation N2 - This presentation shows buckling tests on embedded piles conducted within the VERBATIM project. The generated data may serve as a valuable validation basis for numerical buckling design verification of Windenergy foundations in terms of the GMNIA concept. T2 - Buckling of Offshore Wind Energy Structures : 2-Day Buckling Colloquium CY - Berlin, Germany DA - 14.02.2024 KW - Wind Energy KW - Shell Buckling KW - Offshore Structures KW - GMNIA PY - 2024 AN - OPUS4-59536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kemmler, Samuel A1 - Cuéllar, Pablo A1 - Köstler, Harald T1 - A Fluid Solid Coupled Micromechanical Simulation of Piping Erosion During the Installation of a Suction Bucket for the Foundation of an Offshore Wind Turbine N2 - We present our approach and methodology for simulating piping erosion, which occurs during the installation process of suction bucket foundations for offshore wind turbines. We show several simulations and analyze the hydrodynamic and contact forces acting on the granular fabric and the differential pressure of the fluid phase. We demonstrate weak scaling performance on the LUMI supercomputer with a parallel efficiency of up to 90% for 4096 Graphics Compute Dies. T2 - 9th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS) CY - Lisbon, Potugal DA - 03.06.2024 KW - Offshore wind turbine KW - Suction bucket KW - Coupled fluid-particle simulation KW - High-performance computing PY - 2024 AN - OPUS4-60207 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zinas, Orestis A1 - Schneider, Ronald A1 - Cuéllar, Pablo A1 - Schepers, Winfried A1 - Baeßler, Matthias A1 - Papaioannou, I. T1 - Potentials of probabilistic approaches in offshore foundation installation N2 - This presentation discusses the potentials of probabilistic methods in offshore foundation installation, from the perspective of probabilistic ground models and data-driven site characterization. We discuss about methodologies for utilizing site-specific geotechnical (CPT) and geological data, aiming to construct an integrated ground model that can predict stratigraphic profiles and useful for geotechnical design parameters at any location within a 3D domain. The predicted parameters and stratigraphy are then used to predict the probability of potential pile tip damage, upon collision with a boulder. T2 - Colloquium Buckling of Offshore Wind Energy Structures CY - Berlin, Germany DA - 14.02.2024 KW - Wind KW - Offshore KW - Buckling KW - Probabilistic KW - Ground PY - 2024 AN - OPUS4-59538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cuéllar, Pablo T1 - Deep foundations for offshore wind turbines - 1st part: axial behavior T1 - Cimentaciones profundas para aerogeneradores marinos. 1a parte: Comportamiento axial N2 - This presentation deals with the phenomenology and design of pile foundations for offshore wind turbines, and is divided into two lectures. The first lecture presents a brief introduction to the context and peculiarities of such foundations, and then focuses on the particular case of axially loaded piles. This part is most relevant for the relatively slender piles of the multi-pile substructures (i.e. jackets and tripods). A clear distinction between physical phenomenology and practical design is drawn here. T2 - Masters course on Soil Mechanics and Geotechnical Engineering. Geotechnical Laboratory of CEDEX CY - Online meeting DA - 17.03.2023 KW - Pile foundations KW - Offshore wind turbines KW - Physical phenomenology KW - Design methods KW - Numerical modelling KW - Physical testing PY - 2023 AN - OPUS4-57176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sadowski, A. A1 - Seidel, M. A1 - Al-Lawati, H. A1 - Azizi, E. A1 - Balscheit, Hagen A1 - Böhm, M. A1 - Chen, Lei A1 - van Dijk, I. A1 - Doerich-Stavridis, C. A1 - Kunle Fajuyitan, O. A1 - Filippidis, A. A1 - Winther Fischer, A. A1 - Fischer, C. A1 - Gerasimidis, S. A1 - Karampour, H. A1 - Kathirkamanathan, L. A1 - Subramanian, S. A1 - Topkaya, Cem A1 - Wagner, H. N. R. A1 - Wang, J. A1 - Wang, J. A1 - Kumar Yadav, K. A1 - Yun, X. A1 - Zhang, P. T1 - 8-MW wind turbine tower computational shell buckling benchmark - Part 1: An international ‘round-robin’ exercise JF - Engineering failure analysis N2 - An assessment of the elastic-plastic buckling limit state for multi-strake wind turbine support towers poses a particular challenge for the modern finite element analyst, who must competently navigate numerous modelling choices related to the tug-of-war between meshing and computational cost, the use of solvers that are robust to highly nonlinear behaviour, the potential for multiple near-simultaneously critical failure locations, the complex issue of imperfection sensitivity and finally the interpretation of the data into a safe and economic design. This paper reports on an international ‘round-robin’ exercise conducted in 2022 aiming to take stock of the computational shell buckling expertise around the world which attracted 29 submissions. Participants were asked to perform analyses of increasing complexity on a standardised benchmark of an 8-MW multi-strake steel wind turbine support tower segment, from a linear elastic stress analysis to a linear bifurcation analysis to a geometrically and materially nonlinear buckling analysis with imperfections. The results are a showcase of the significant shell buckling expertise now available in both industry and academia. This paper is the first of a pair. The second paper presents a detailed reference solution to the benchmark, including an illustration of the Eurocode-compliant calibration of two important imperfection forms. KW - Wind turbine tower KW - Computational KW - Shell buckling KW - Benchmark PY - 2023 DO - https://doi.org/10.1016/j.engfailanal.2023.107124 SN - 1350-6307 VL - 148 SP - 1 EP - 23 PB - Elsevier Science CY - Oxford AN - OPUS4-57019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ratkovac, Mirjana A1 - Baeßler, Matthias T1 - Perspectives on Wind and Wave Load Reconstruction from SHM Data for Offshore Wind Turbines N2 - As many wind turbines approach the end of their design lifetime, from a technical point of view, comprehensive fatigue analysis of all critical parts is necessary to decide what comes after – continued operation, repowering, or decommissioning. Typically, it is a two-stage evaluation process consisting of a physical inspection of the structure and an analytical part to compare the design and actually experienced loading conditions. Structural health monitoring helps to reduce the uncertainties in the estimations by providing insight into deviations between the designed and the built structure. Furthermore, it allows the evaluation of the consumed fatigue lifetime by analyzing the strain measurements that mirror the actual structural response to experienced environmental and operational conditions. However, the measurement values are limited to a sparse number of instrumented spots on the structure, and further extrapolation to the non-instrumented (critical) sections is required to perform a complete fatigue assessment. One known approach is the external force reconstruction, which has only scarcely been considered for application in offshore wind turbines. In order to extend the previously developed thrust force reconstruction framework, this work discusses the possibilities and challenges of wind and wave loading reconstruction in offshore wind turbine support structures. T2 - 4th International Conference on Health Monitoring of Civil & Maritime Structures (HeaMES 2023) CY - Online meeting DA - 12.06.2023 KW - Wind turbines KW - Force reconstruction KW - Structural Health Monitoring PY - 2023 AN - OPUS4-57687 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cuéllar, Pablo T1 - Design challenges for Offshore wind-farms. From foundation mechanics to wind-farm aerodynamics N2 - This talk provides a brief introduction on general engineering design challenges for the offshore wind energy production. Some general features of the offshore wind-energy field from a civil engineering perspective are firstly presented, followed by a brief discussion of some of the main geomechanical issues for the foundation of the offshore turbines into the seabed. In the following part, an overview of relevant fluid-structure interactions and some options for an efficient numerical analysis are provided, where the hydromechanical Wave–Tower interaction is firstly discussed. Then, some general aspects of the windfarm aerodynamics are introduced. On the one hand, some modelling possibilities for the wake analysis of single turbines and turbine groups are discussed. And on the other hand the relevance of such analyses for a proper windfarm layout optimization is pointed out. In particular, this talk shows that: i) The performance and behavior of the turbine's foundation is often conditioned by the appearance of large deformations, fluid couplings and grain-scale phenomena, whereby specific physical testing (both in field and lab conditions) and ad-hoc simulation techniques can provide useful insights for design; ii) Numerical analysis of a turbine’s interaction with wind/waves is already affordable in engineering scales, while simplified models can already provide a useful insight into the windfarm aerodynamics. iii) Turbulent wake analysis is very relevant for the windfarm layout. T2 - Colloquium "Energy systems compared", Winter semester 22/23, Faculty of Physics CY - Duisburg, Germany DA - 24.01.2023 KW - Offshore wind-turbine foundations KW - Water-structure interaction KW - Wind-farm aerodynamics PY - 2023 AN - OPUS4-56888 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -