TY - JOUR A1 - Martin, S. A1 - Walnsch, A. A1 - Nolze, Gert A1 - Leineweber, A. A1 - Léaux, F. A1 - Scheuerlein, C. T1 - The crystal structure of (Nb0.75Cu0.25)Sn-2 in the Cu-Nb-Sn system N2 - During the processing of superconducting Nb3Sn wire, several intermediate intermetallic phases including a previously encountered Cu-Nb-Sn phase show up. The yet unknown crystal structure of this phase is now identified by a combination of different experimental techniques and database search to be of the hexagonal NiMg2 type with a proposed composition of about (Nb0.75Cu0.25)Sn2. The structure determination started from an evaluation of the lattice parameters from EBSD Kikuchi patterns from quenched material suggesting hexagonal or orthorhombic symmetry. A database search then led to the hexagonal NiMg2 type structure, the presence of which was confirmed by a Rietveld analysis on the basis of high energy synchrotron X-ray powder diffraction data. Assuming a partial substitution of Nb in orthorhombic NbSn2 by Cu, the change of the valence electron concentration provokes a structural transformation from the CuMg2 type for NbSn2 to the NiMg2 type for (Nb0.75Cu0.25)Sn2. In the previous literature the (Nb0.75Cu0.25)Sn2 phase described here has occasionally been referred to as Nausite. KW - Electron backscatter diffraction KW - X-ray diffraction KW - Intermetallic compound KW - Structure solution KW - Superconductor PY - 2017 U6 - https://doi.org/10.1016/j.intermet.2016.09.008 SN - 0966-9795 SN - 1879-0216 VL - 80 SP - 16 EP - 21 PB - Elsevier Ltd. AN - OPUS4-37874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nanaki, E. A. A1 - Koroneos, C. J. A1 - Roset, J. A1 - Susca, Tiziana A1 - Christensen, T. H. A1 - De Gregorio Hurtado, S. A1 - Rybka, A. A1 - Kopitovic, J. A1 - Heindrich, O. A1 - Amparo Lopez-Jimenez, P. T1 - Environmental assessment of 9 European public bus transportation systems N2 - The transportation sector is one of the largest sources of EU’s greenhouse gas emissions. In 2011, trans-portation represented approximately 25 percent of total EU’s greenhouse gas emissions. Urban mobilityaccounts for 40 % of all CO2emissions of road transport and up to 70 % of other pollutants from transport.As, transportation and mobility play a crucial part both in urban economics and the quality of life, it is ofgreat significance to ensure a low carbon transportation sector, so as to deal with the threat that climatechange poses to urban areas. This study examines the factors that affect the production of carbon dioxide(CO2) as well as of air pollutants, in 9 major European cities, aiming to provide a comprehensive overviewof the actual knowledge on the atmospheric pollution from public transportation systems. CO2emissionsas well as air pollutants, such as CO, HC, PM, NOx are calculated for the diesel and CNG bus fleets of theEuropean cities under study. Finally the environmental benefits, in terms of CO2and CO, HC, PM, NOxemissions reductions, from the penetration of different biodiesel blends (from B10 to B100) to the busfleets are estimated. KW - Urban buses KW - Air pollution KW - Urban transport PY - 2017 U6 - https://doi.org/10.1016/j.scs.2016.08.025 SN - 2210-6707 VL - 28 SP - 42 EP - 52 PB - Elsevier AN - OPUS4-38938 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silverstein, R. A1 - Sobol, Oded A1 - Böllinghaus, Thomas A1 - Unger, Wolfgang A1 - Eliezer, D. T1 - Hydrogen behavior in SAF 2205 duplex stainless steel N2 - This paper describes austenitic-ferritic duplex stainless steels, SAF 2205, in the presence of hydrogen. The duplex stainless steels (DSS) properties include excellent resistance to stress corrosion cracking, high strength and good weldability. Those steels are preferably used in industries combining hydrogen and loads. Hydrogen location in addition to hydrogen binding energy with the steel's defects are of great importance for the analysis of hydrogen embrittlement model in that steel. It is known from previously published works that the susceptibility to hydrogen embrittlement will depend on the competition between reversible and irreversible traps; meaning a direct relation to the hydrogen's state and position in the steel. In this work, we examine the local hydrogen concentration, trapping and distribution by two modern and advanced techniques: thermal desorption spectrometry (TDS) and we support it by time of flight-secondary ion mass spectrometer (ToF-SIMS). In this paper, we support and give for the first time new insights and better understanding to the hydrogen embrittlement mechanism in SAF 2205. The trapping energies levels were calculated using TDS and Lee and Lee's model. This model revealed reversible in addition to irreversible trapping sites. Also the trapping controlling mechanism was found to be a combination of detrapping controlled mechanism and diffusion controlled mechanism. The use of ToF-SIMS for local imaging the distribution of hydrogen species supports the discussion of the different hydrogen traps in this type of steel. The hydrogen embrittlemet phenomenon in SAF 2205 will be discussed in details in that paper. KW - Hydrogen trapping KW - Duplex stainless steel KW - Thermal desorption spectrometry (TDS) KW - ToF-SIMS PY - 2017 U6 - https://doi.org/10.1016/j.jallcom.2016.11.184 SN - 0925-8388 SN - 1873-4669 VL - 695 SP - 2689 EP - 2695 PB - Elsevier B.V. AN - OPUS4-38856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grelle, Tobias A1 - Wolff, Dietmar A1 - Jaunich, Matthias T1 - Leakage behaviour of elastomer seals under dynamic unloading conditions at low temperatures N2 - In technical applications, static seals are sometimes also subjected to dynamic loadings. Therefore, the leakage behaviour under dynamic conditions has to be evaluated as well. For this purpose, FKM elastomer seals have been tested by using newly designed equipment that allows for rapid partial release of the seal and simultaneous leakage rate measurement at a wide range of test temperatures. Furthermore, material characterisation was done by using Dynamic Mechanical Analysis, Differential Scanning Calorimetry and Compression Set. It was shown that, under static conditions, the leakage rate increased significantly during cooling at temperatures around 18 K lower than the glass transition range. On reheating, the seal’s functionality was restored in the high temperature region of the glass rubber transition. In the subsequent dynamic release tests, that comprised a reduction of the seal compression within 1 s from 25 % to 23 %, increased leakage rates were observed in the high temperature region of the glass transition range. It was shown that the temperature that is critical for increased leakage is significantly lower under static conditions compared to dynamic conditions. The obtained leakage rates for static tests and dynamic release tests at different temperatures were analysed with reference to results of the material characterisation. KW - Sealing material KW - Rubber KW - Partial release KW - Low temperature behaviour KW - Leakage rate PY - 2017 U6 - https://doi.org/10.1016/j.polymertesting.2016.12.018 SN - 0142-9418 SN - 1873-2348 VL - 58 SP - 219 EP - 226 PB - Elsevier Ltd. CY - Oxford, UK AN - OPUS4-38911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stengel, Dominik A1 - Mehdianpour, Milad T1 - Windbeanspruchung von Hochspannungs-Freileitungsseilen in Naturmessungen, Zeitbereichssimulation und Norm T1 - Wind load of high voltage overhead transmission line con ductors in field measurements, time domain simulations and standard N2 - Die Beanspruchung von Freileitungen erfolgt hauptsächlich durch Naturlasten. Dabei spielt für die bemessungsbestimmenden Lastfälle häufig der Wind eine entscheidende Rolle. Die Leiter, die mehrere hundert Meter weit spannen, tragen einen wesentlichen Anteil zur Gesamtbeanspruchung von Tragmasten bei, die wiederum Eigengewicht und Windlasten der Leiter zwischen zwei Abspannmasten abtragen. Wenn die Reaktion der Seile auf Starkwindereignisse abgeschätzt werden soll, müssen sowohl geometrische Nichtlinearitäten durch die großen Verformungen wie auch aerodynamische Nichtlinearitäten berücksichtigt werden. Insbesondere für die Anwendung und Berücksichtigung in Bemessungsvorschriften werden hierfür Vereinfachungen vorgenommen. In diesem Beitrag wird eine umfassende Untersuchung vorgestellt, über Naturmessungen, FEM-Simulationen kombiniert mit Windkanalversuchen und generierten Windzeitreihen. Ziel ist es, existierende Bemessungsvorschriften im Hinblick auf die Abschätzung der Beanspruchung aus Wind auf Leiter zu validieren. Hierbei sind insbesondere die Turbulenzannahmen und das dynamische Verhalten von weitgespannten Leitern wichtig, um die Extremschnittgrößen zu beschreiben. Mithilfe von so genannten Spannweitenfaktoren sollen die relevanten Parameter, wie Spannweite und Windturbulenz, bei der Beanspruchungsabschätzung berücksichtigt werden. N2 - The loading of overhead lines comprises of natural actions mainly. Wind loading signifies an important load case in the design of overhead transmission line structures. Conductors spanning often several hundreds of meters contribute significantly to the overall loading of suspension towers. Those towers are often designed as a mass product to support the dead and wind load of the conductors between two dead end towers. Estimating the reaction of the conductors to strong winds, both geometric nonlinearities because of the large deformations as well as aerodynamic nonlinearities need to be considered. Particularly for design procedures, those effects should be simplified. This paper presents a thorough investigation comprising field measurements along an existing overhead line, simulations with FEM combined with wind tunnel tests and generated wind fields. It is the aim of the study to validate the actual design procedure regarding loading of wind acting on conductors. Most important herein in order to describe the extreme response are assumptions on turbulence distribution and dynamic behavior of wide spanning overhead line conductors. According to usual design procedure, by means of so called span reduction factors, relevant parameters such as span length and wind turbulence can be considered. KW - Langzeitmessung KW - FEM-Simulation KW - Dynamik PY - 2017 U6 - https://doi.org/10.1002/stab. 201710437 SN - 1437-1049 VL - 86 IS - 1 SP - 45 EP - 53 PB - Ernst & Sohn CY - Berlin AN - OPUS4-38899 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hönig, Gerald A1 - Westerkamp, S. A1 - Hoffmann, A. A1 - Callsen, G. T1 - Shielding electrostatic fields in polar semiconductor nanostructures N2 - Polar semiconductor materials enable a variety of classic and quantum-light sources, which are optimized continuously. However, one key problem—the inherent electric crystal polarization of such materials—remains unsolved and deteriorates the radiative exciton decay rate. We suggest a sequence of reverse interfaces to compensate these polarization effects, while the polar, natural crystal growth direction is maintained. Former research approaches, like growth on less-polar crystal planes or even the stabilization of unnatural phases, never reached industrial maturity. In contrast, our concept provides a way for the development of ultrafast devices based on established growth processes for polar materials, while the electric potential landscape becomes adjustable. KW - Piezopolarisation KW - Spontane Polarisation KW - Halbleiterphysik KW - Nanophysik KW - Optoelektronik PY - 2017 U6 - https://doi.org/10.1103/PhysRevApplied.7.024004 SN - 2331-7019 VL - 7 IS - 2 SP - 024004-1 EP - 024004-12 PB - American Physical Society CY - College Park, MD 20740-3844 AN - OPUS4-39125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Konnertz, Nora A1 - Ding, Yi A1 - Harrison, W.J. A1 - Budd, P.M. A1 - Schönhals, Andreas A1 - Böhning, Martin T1 - Molecular mobility and gas transport properties of nanocomposites based on PIM-1 and polyhedral oligomeric phenethyl-silsesquioxanes (POSS) N2 - Polymers with intrinsic microporosity (PIMs) are of great interest in the field of gas separation membranes. Already the first synthesized PIM-1 shows extraordinary permeability and selectivity. Unfortunately, PIM-1 is susceptible to physical aging and thus gradually loses its outstanding properties. In this study a polyhedral oligomeric silsesquioxane with phenethyl substituents (PhenethylPOSS) was used as a nanofiller (0–40 wt%) in the PIM-1 matrix to potentially improve the gas transport properties and prevent physical aging. The molecular mobility of the solution-cast nanocomposite films was analyzed by Broadband Dielectric Spectroscopy (BDS). Furthermore, gas permeability was determined with the time lag method (0–20 bar upstream pressure) at 35 °C for N2, O2, CH4 and CO2. KW - Broadband Dielectric Spectroscopy KW - Gas separation KW - Gas permeation KW - Polymers of intrinsic microporosity KW - Nanocomposite KW - POSS KW - PIM-1 PY - 2017 U6 - https://doi.org/10.1016/j.memsci.2017.02.007 SN - 0376-7388 SN - 1873-3123 VL - 529 SP - 274 EP - 285 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-39169 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Midtlyng, Jan A1 - Epishin, A. I. A1 - Petrushin, N. V. A1 - Link, T. A1 - Nolze, Gert A1 - Svetlov, I. L. A1 - Reimers, W. T1 - Creep behavior of a γ΄-strengthened Co-base alloy with zero γ/γ΄-lattice misfit at 800 °C, 196 MPa N2 - Deformation and structural behavior of an experimental γ΄-strengthened Co-base alloy during creep at 800 °C and 196 MPa have been investigated. The characteristic features of this alloy are zero γ/γ΄-lattice misfit and a fine γ/γ΄-microstructure. In the initial condition, the γ΄-precipitates in this alloy are small (size of about 100 nm), have polyhedral morphology, and are separated by the very narrow c-channels (width of about 10 nm). The tests performed up to about 1% creep strain (about 500 h creep time) gave creep curves with a slow constant strain rate and without an apparent transient creep, typical for superalloys with nonzero misfit. In this initial stage of creep, entering of the narrow γ-channels by dislocations is blocked by a strong Orowan force. The micromechanism of creep was identified as an octahedral glide of h011i superdislocations simultaneously in two phases, γ and γ΄. The γ/γ΄-microstructure with zero misfit shows no rafting but rapidly coarsens isotropically. It is concluded that zero misfit is beneficial at the initial stages of the creep but is unfavourable for longterm creep because of the continuous microstructural coarsening. KW - Co-Basis-Legierung KW - Gitterfehlpassung KW - Kriechen KW - Ausscheidung PY - 2017 U6 - https://doi.org/10.1557/jmr.2017.424 SN - 0884-2914 SN - 2044-5326 VL - 32 IS - 24 SP - 4466 EP - 4474 PB - Cambridge Univ. Press CY - Cambridge AN - OPUS4-44027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheidemann, Robert A1 - Qiao, Linan A1 - Müller, Karsten T1 - Comparison of experimental results and numerical simulations of penetration tests with damping concrete N2 - The shock absorbing material damping concrete is for the foundation in dry interim storage facilities for radioactive waste in Germany. In case of a potential cask drop damping concrete minimizes the mechanical loads to the cask. In course of safety analyzes this accident scenario is considered by numerical simulations using the finite element method. To get reliable results of numerical simulations a suitable material model is needed to take the characteristics of damping concrete into account. Due to the lack of sufficient material knowledge a research project was started to characterize the material’s behavior under different load conditions. This paper presents the test program to analyze the material behavior of damping concrete which is characterized by large volume change and strain rate hardening dependence. The determined Parameters were used to adapt an existing material model of the FE-code ABAQUS®. This model has to handle the mechanical damage behavior of damping concrete which occurs under compression and shear loads during a potential cask drop. To verify the material model numerical simulations are compared with dynamic penetration tests, which were conducted with specimens assembled similar to the real application of the damping concrete footings. The transferability of the material model to a real accident scenario was verified by a drop test with a full-scale cask on a damping concrete footing. T2 - ASME 2017 Pressure Vessels & Piping Conference (PVP2017) CY - Waikoloa, Hawaii, USA DA - 16.07.2017 KW - Drop test KW - Damping concrete KW - Cask KW - Material model PY - 2017 SN - 978-0-7918-5802-8 VL - 7 SP - Article UNSP V007T07A034, 1 EP - 6 PB - The American Society of Mechanical Engineers CY - New York AN - OPUS4-44042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Johnson, Mark A1 - Tait, Trevor A1 - Tso, Chi-Fung A1 - Izatt, Conrad ED - ASME, T1 - Drop testing of a container for the storage. transport and disposal of intermediate level waste N2 - Impact tests were performed, as part of a corresponding container’s substantiation, during design development of a shielded container. The container will be used for storage, transport, and disposal of intermediate level waste in the UK. The mechanical test program comprised a 9m free drop test onto an unyielding target in a container long lid edge down orientation at ambient conditions. Further, a 0,5m free drop test onto a punch target was performed. Here, the container was orientated with the lid downwards in a way that the punch, a mild steel bar, impacts a filter lid. The test specimen was instrumented with strain gauges and accelerometers for the drop tests. Transient strains at selected points of the inner and outer container walls, at the shielding lid, as well as at the lid bolts were measured during the container’s impact. Furthermore, decelerations of the container body, container lid, and the skip were measured. The complex geometrical changes of the container due to impact were determined by optical 3d- deformation measures using the projected fringes method in combination with multi-image photogrammetry. This paper summarizes the performance of the drop tests and various drop test results in context with the design development as well as aspects regarding the associated Finite Element (FE) analyses and post-test evaluation. KW - Drop testing KW - Container KW - Intermediate level waste PY - 2017 SN - 978-0-7918-5802-8 VL - 7 SP - Article UNSP V007T07A036, 1 EP - 7 CY - New York AN - OPUS4-44047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -