TY - CONF A1 - Arfi, W. A1 - Khan, A. A1 - Moulai, F. A1 - Agroui, K. A1 - Baretta, C. A1 - Oreski, G. A1 - Jaunich, Matthias ED - Munday, J. ED - Bermel, P. ED - Kempe, M. T1 - Optical and thermal analysis of PVB encapsulant polymer functionalized with luminescent organic dyes T2 - Proceedings of SPIE Volume 10759: New Concepts in Solar and Thermal Radiation Conversion and Reliability N2 - This work focused on the technology of luminescent down shift (LDS), with a primary aim to identify and investigate a methodology to introduce the luminescent organic dye into PVB polymer encapsulant as emergent material for photovoltaic application. For this goal, we propose to study the feasibility to implement the LDS functionality and to identify suitability of available luminescent to be incorporated into the host polymer encapsulant material. The first step to this direction was through a comprehensive optical study of Violet 570 (V) organic dye in ethanol solvent. The methodology and experimental conditions such as laboratory polymer preparation and luminescence dye concentration were presented. Also, the emergent polymer encapsulant sheets were characterized by using optical and thermal analysis techniques. The absorption spectrum of the prepared PVB material shifts towards longer wavelengths, with increasing organic dye concentration. T2 - New Concepts in Solar and Thermal Radiation Conversion and Reliability CY - San Diego, California, United States DA - 19.08.2018 KW - Photovoltaic KW - Encapsulation KW - Luminescence PY - 2018 SN - 9781510620902 DO - https://doi.org/10.1117/12.2318428 SN - 1996-756X SP - Paper OH, 1 PB - SPIE CY - Bellingham, Washington, USA AN - OPUS4-47165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - de Miguel, N. A1 - Mair, Georg A1 - Acosta, B. A1 - Szczepaniak, Mariusz A1 - Moretto, P. T1 - Hydraulic and pneumatic pressure cycle life test results on composite reinforced tanks for hydrogen storage T2 - Proceedings of the ASME 2016 Pressure Vessels and Piping Conference N2 - Current standards governing the design, qualification and in-service inspection of carbon fibre composite cylinders do not facilitate to optimise cylinder design. The requirements have been adapted from standards for metallic cylinders and cannot easily quantify the degradation processes in composite materials. In this article, the results of hydraulic and hydrogen pressure cycle life tests performed on composite reinforced tanks with a metal liner (type 3) and with a high density polymer liner (type 4) are shown. Moreover, the degradation measured by means of residual strength of the tanks after the cycling tests have been compared. It has been found that the most critical aging for metal based composite cylinder is the gaseous cycling while type 4 designs seem to be more sensitive to hydraulic cycling at high temperature. T2 - ASME 2016 Pressure Vessels and Piping Conference CY - Vancouver, British Columbia, Canada DA - 17.07.2016 KW - Composite reinforced tanks KW - Compressed hydrogen storage KW - Design and qualification standards KW - Pressure cycle life tests KW - Safety factors PY - 2016 SN - 978-0-7918-5035-0 VL - 1A SP - 63568-1 EP - 63568-10 PB - ASME CY - Vancouver, British Columbia, Canada AN - OPUS4-36275 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erenberg, Marina A1 - Bletzer, Claus A1 - Feldkamp, Martin A1 - Musolff, André A1 - Nehrig, Marko A1 - Wille, Frank T1 - Experimental investigations of the burning behaviour of transport package impact limiters and of fire spread impact onto the cask T2 - Proceedings of the ASME 2018 Pressure Vessels an Piping Conference N2 - Accident safe packages for the transport of spent nuclear fuel and high-level waste shall fulfil international IAEA safety requirements. Compliance is shown by consecutive mechanical and thermal testing. Additional numerical analysis are usually part of the safety evaluation. For damage protection some package designs are equipped with wood filled impact limiters encapsulated by steel sheets. The safety of these packages is established in compliance with IAEA regulations. Cumulative mechanical and fire tests are conducted to achieve safety standards and to prevent loss of containment. Mechanical reliability is proven by drop tests. Drop testing might cause significant damage of the impact limiter steel sheets and might enable sufficient oxygen supply to the impact limiter during the fire test to ignite the wood filling. The boundary conditions of the fire test are precisely described in the IAEA regulatory. During the test the impact limiter will be subjected to a 30 minute enduring fire phase. Subsequent to the fire phase any burning of the specimen has to extinguish naturally and no artificial cooling is allowed. At BAM a large-scale fire test with a real size impact limiter and a wood volume of about 3m3 was conducted to investigate the burning behaviour of wood filled impact limiters in steel sheet encapsulation. The impact limiter was equipped with extensive temperature monitoring equipment. Until today burning of such impact limiters is not sufficiently considered in transport package design and more investigation is necessary to explore the consequences of the impacting fire. The objective of the large scale test was to find out whether a self-sustaining smouldering or even a flaming fire inside the impact limiter was initiated and what impact on the cask is resulting. The amount of energy, transferred from the impact limiter into the cask is of particular importance for the safety of heavy weight packages. With the intention of heat flux quantification a new approach was made and a test bench was designed. T2 - ASME 2018 Pressure Vessels and Piping Conference CY - Prague, Czech Republic DA - 15.07.2018 KW - Shock absorber KW - Impact limiter KW - Wood KW - Thermal testing KW - Fire KW - Smoldering KW - IAEA KW - Fire test PY - 2018 SN - 978-0-7918-5170-8 VL - PVP2018 SP - 84714-1 EP - 84714-10 AN - OPUS4-46984 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Florian, Camilo A1 - Deziel, J.-L. A1 - Kirner, Sabrina V. A1 - Siegel, J. A1 - Bonse, Jörn T1 - Femtosecond laser-induced oxidation in the formation of periodic surface structures T2 - Proceedings of 2021 Conference on Lasers and Electro-Optics/Europe – European Quantum Electronics Conferences N2 - Micro- and nanostructuring with laser-induced periodic surface structures (LIPSS) has been demonstrated to be feasible in a wide variety of materials including metals, semiconductors and dielectrics. Suitable processing regimes for flat, curved and complex surfaces have been identified for many materials, allowing the generation of diverse applications in fields such as optics, tribology and medicine, to name a few. A common side effect when producing such structures in air environment is the formation of a thin surface oxide layer in the laser irradiated areas. Previous studies have shown that oxidation plays an important role in the tribological performance for which the structures where created, and very recently it has been shown that the laser-induced oxide graded layers may contribute to the formation of a new type of embedded low-spatial frequency LIPSS (LSFL) with annomalous orientation parallel to the laser polarization, in addition to the appearance of the well-known high-spatial frequency LIPSS (HSFL) at the surface. In this contribution, we explore this effect experimentally for chromium nitride (CrN) irradiated with femtosecond laser pulses and compare the findings to finite-difference time-domain (FDTD) simulations of the intensity distributions at different depth positions. T2 - 2021 Conference on Lasers and Electro-Optics/Europe – European Quantum Electronics Virtual Conferences CY - Munich, Germany DA - 21.06.2021 KW - Femtosecond laser ablation KW - Finite-difference time-domain calculations KW - Laser-induced periodic surface structures (LIPSS) KW - Surface oxidation PY - 2021 SN - 978-1-6654-1876-8 DO - https://doi.org/10.1109/CLEO/Europe-EQEC52157.2021.9542774 VL - 2021 SP - 1 PB - Institute of Electrical and Electronics Engineers (IEEE) CY - Piscataway, NJ, USA AN - OPUS4-53457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geißler, Peter A1 - Cuéllar, Pablo A1 - Hüsken, Götz A1 - Kühne, Hans-Carsten A1 - Baeßler, Matthias T1 - Insights into compaction grouting for offshore pile foundations T2 - Proceedings of the ASME 2018 37th International Conference on Ocean, Offshore and Arctic Engineering OMAE 2018 N2 - The authors are currently investigating the possibility to apply compaction grouting for offshore pile foundations (Jacket piles as well as monopiles) as a possible retrofitting technique for an optimised foundation concept. In this research project, we are developing a design approach aiming to predict the ideal amount and properties of a grout for a specific soil situation and desired improvement of pile bearing capacity after Installation and during service time. Both numerical and experimental tests have been carried out to investigate the injection process during which a highly viscous grout is injected into the soil under high pressure to displace and compact the surrounding soil without fracturing it. The implicit Material Point Method (MPM) based on a mixed formulation is the numerical technique chosen to deal with the expected large deformations and the arbitrary shape of the developing grout bulb. The usage of MPM prevents both the need of remeshing and the numerical instability induced by extensive mesh distortion. For validation with experimental results, we have constructed a testing chamber with one transparent sidewall. This chamber enables us to observe the injection process directly at the transparent vertical window and to measure the in-plane soil displacements and strains by means of the Digital Image Correlation (DIC) technique. The results already reveal the interrelation of soil and grout properties for a successful usage of this common ground improvement technique. T2 - 37th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2018) CY - Madrid, Spain DA - 18.06.2018 KW - Offshore pile foundation KW - Compaction grouting KW - Material Point Method (MPM) KW - Mixed formulation KW - Digital Image Correlation (DIC) PY - 2018 SN - 978-0-7918-5130-2 SN - 2153-4772 VL - 9 SP - V009T10A013, 1 EP - 9 AN - OPUS4-46004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gerards-Wünsche, Paul A1 - Ratkovac, Mirjana A1 - Schneider, Ronald A1 - Hille, Falk A1 - Baeßler, Matthias T1 - A framework for assessing the reliability of crack luminescence – an automated fatigue crack detection system T2 - SPIE Conference Smart Structures + Nondestructive Evaluation 2023 N2 - The new crack luminescence method offers the possibility of making fatigue surface cracks in metallic materials more visible during inspections through a special coating system. This coating system consists of two layers, whereby the first layer has fluorescent properties and emits visible light as soon as it is irradiated by UV light. The top layer is black and is designed to prevent the fluorescent layer from emitting if no crack develops in the underlying material. The technique proved particularly useful in a wide variety of fatigue tests of steel components under laboratory conditions. Moreover, it has the potential to be used in various industrial applications. To enable industrial deployment and integration into maintenance strategies, a concept study is developed in this contribution, resulting in a qualification framework that can serve as a foundation for determining the reliability of the crack luminescence system in terms of a probability of detection curve. Within this study, factors causing measurement variability and uncertainty are being determined and their influences assessed. Due to the extension of the system by a moving computer vision system for automated crack detection using artificial intelligence, additional long-term effects associated with structural health monitoring systems need to be incorporated into an extended probability of detection study as part of the technical justification. Finally, important aspects and findings related to design of experiments are discussed, and a framework for reliability assessment of a new optical crack monitoring method is presented, emphasizing the influence of various uncertainty parameters, including long-term effects such as system ageing. T2 - SPIE Conference Smart Structures + Nondestructive Evaluation 2023 CY - Long Beach, CA, USA DA - 24.03.2023 KW - Structural Health Monitoring KW - Non-Destructive Evaluation KW - Probability of Detection KW - Reliability KW - Artificial Intelligence KW - Computer Vision KW - Crack Luminescence KW - Wind PY - 2023 SN - 978-1-5106-6086-1 DO - https://doi.org/10.1117/12.2658390 SP - 1 EP - 15 AN - OPUS4-57244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gravenkamp, Hauke A1 - Bause, F. A1 - Rautenberg, J. A1 - Henning, B. ED - Declercq, N. F. T1 - Model Based Sensitivity Analysis in the Determination of Viscoelastic Material Properties Using Transmission Measurements through Circular Waveguides T2 - Physics Procedia N2 - Several ultrasonic approaches for material determination are formulated in terms of an (nonlinear) inverse problem, e.g. immersion technique (Castaings et al. (2000)) or plate-waveguide techniques (Marzani et al. (2012)). In this contribution we focus on cylindrical waveguides for ultrasonic material determination and especially on the sensitivity of recorded transmission signals to the material properties. We utilize composite scaled sensitivities to determine the information content that can be achieved by the setup to certain parameters and discuss the limitations of the approach. T2 - ICU International Congress on Ultrasonics 2015 CY - Georgia Tech Lorraine, Metz, France DA - 10.05.2015 KW - Ultrasonic material determination KW - Sensitivity KW - Inverse problem PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-372551 DO - https://doi.org/10.1016/j.phpro.2015.08.127 SN - 1875-3892 VL - 70 SP - 204 EP - 207 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-37255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grelle, Tobias A1 - Wolff, Dietmar A1 - Probst, Ulrich A1 - Jaunich, Matthias A1 - Völzke, Holger T1 - Investigation of the time and temperature dependent behavior of metal seals in radioactive waste containers T2 - Proceedings of the ASME 2018 Pressure Vessels an piping Conference N2 - The Bundesanstalt für Materialforschung und –Prüfung (BAM) runs an investigation program on the long-term behavior of multi-component metal seals. Such seals are used in a wide area of applications including transport and storage casks for spent nuclear fuel and high level radioactive waste. The seal function is mainly based on the compression of the inner helical spring, which generates the necessary seal force to keep the sealing surfaces in close contact. This in turn leads to a plastic deformation of the outer jacket of the seal, comprised of highly ductile aluminum or silver that adapts to the sealing surfaces of cask body and bolted lid, thus providing high Level leak tightness. In Germany, those casks are licensed for Interim storage periods of up to 40 years or more if extended Interim storage would become necessary before a final repository is available. Thus, the sealing performance has to be evaluated, including factors like elevated temperature due to decay heat or mechanical loads due to transport under normal as well as accident conditions. Long-term investigations at BAM have been running over the last nine years to identify and evaluate the seal performance by measuring the remaining seal force, the useable resilience and the leakage rate after various time intervals at temperatures ranging from room temperature up to 150 °C. It was found that the seal force and useable resilience decrease with time and temperature, caused by creep deformation of the outer jacket. In order to obtain an analytical description for the seal behavior and to achieve more information on the material behavior under application conditions a comprehensive investigation program with Focus on aluminum as outer jacket material was launched. The program includes material investigations such as compression and tension creep tests with representative basic materials. An additional test setup allows for the continuous measurement of the remaining seal force at temperatures of up to 150 °C. Furthermore, seal segments are compressed and stored in heating chambers, thus producing segments at different stages of the aging process. The segments are investigated regarding the development of the contact area width, jacket thickness and microstructural changes. This data will be used to develop material models and an analytical description of the time and temperature dependent long-term sealing behavior. This paper explains the current status of gained test results and modelling approaches and closes with an outlook to the future Project plans. T2 - ASME 2018 Pressure Vessels and Piping Conference CY - Prague, Czech Republic DA - 15.07.2018 KW - Metal seal KW - Creep KW - Long-term behavior PY - 2018 SP - PVP2018-84584, 1 EP - 6 AN - OPUS4-46110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hicke, Konstantin A1 - Krebber, Katerina ED - Chung, Y. ED - Jin, W. ED - Lee, B. ED - Canning, J. ED - Nakamura, K. ED - Yuan, L. T1 - Towards efficient real-time submarine power cable monitoring using distributed fibre optic acoustic sensors T2 - Proceedings SPIE: 25th International Conference on Optical Fiber Sensors N2 - Online condition monitoring of submarine power cables helps to avert failures and damages produced by mechanical impacts. We report, to our knowledge for the first time, on investigations regarding the feasibility of distributed fiber optic acoustic sensors based on C-OTDR, with the sensor fibres being embedded in the cable, to detect vibrations due to mechanical disturbances along the cable. We present first results of sensing experiments where acoustic signals are transmitted through water to simulate the corresponding submarine conditions. Furthermore, we show results evaluating the usefulness of fibre commonly embedded in existing power cable designs for our sensing purposes. T2 - 25th International Conference on Optical Fiber Sensors CY - Jeju-City, Jeju, Republic of Korea DA - 24.04.2017 KW - Distributed acoustic sensing KW - Power cable monitoring KW - C-OTDR KW - Fibre optic sensors KW - DAS PY - 2017 SN - 978-1-5090-4850-2 DO - https://doi.org/10.1117/12.2267474 SN - 0277-786X SN - 1996-756X VL - 10323 SP - 1032390-1 EP - 1032390-4 PB - SPIE CY - Bellingham, WA, USA AN - OPUS4-40088 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hüllmann, Dino A1 - Kohlhoff, Harald A1 - Neumann, Patrick P. ED - Bársony, I. ED - Zolnai, Z. ED - Battistig, G. T1 - Embedded control of a PMSM servo drive without current measurements T2 - Proceedings of the 30th anniversary Eurosensors Conference – Eurosensors 2016 N2 - A permanent-magnet synchronous motor (PMSM) servo drive for lightweight robotic platforms that have a high torque demand at low rotational speeds has been developed. First, a current-independent torque controller is derived and cascaded with a speed and position controller, while merely an encoder is used as a sensor device in combination with a speed estimator. Finally, the speed estimator output is compared to gyroscope measurements and the overall functioning is verified on a real system. T2 - 30th Eurosensors Conference - Eurosensors 2016 CY - Budapest, Hungary DA - 04.09.2016 KW - BLDC KW - PMSM KW - Motor control KW - Servo drive KW - Optical incremental encoder PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-388973 DO - https://doi.org/10.1016/j.proeng.2016.11.487 SN - 1877-7058 VL - 168 SP - 1671 EP - 1675 PB - Elsevier B.V. CY - Amsterdam, Netherlands AN - OPUS4-38897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -