TY - JOUR A1 - Zhang, Z. A1 - Dong, K. A1 - Mazzio, K. A. A1 - Hilger, A. A1 - Markötter, Henning A1 - Wilde, F. A1 - Heinemann, T. A1 - Manke, I. A1 - Adelhelm, P. T1 - Phase transformation and microstructural evolution of CuS electrodes in solid-state batteries probed by in situ 3D X-ray tomography JF - Advanced Energy Materials N2 - Copper sulfide shows some unique physico-chemical properties that make it appealing as a cathode active material (CAM) for solid-state batteries (SSBs). The most peculiar feature of the electrode reaction is the reversible formation of μm-sized Cu crystals during cycling, despite its large theoretical volume change (75%). Here, the dynamic microstructural evolution of CuS cathodes in SSBs is studied using in situ synchrotron X-ray tomography. The formation of μm-sized Cu within the CAM particles can be clearly followed. This process is accompanied by crack formation that can be prevented by increasing the stack pressure from 26 to 40 MPa. Both the Cu inclusions and cracks show a preferential orientation perpendicular to the cell stack pressure, which can be a result of a z-oriented expansion of the CAM particles during lithiation. In addition, cycling leads to a z-oriented reversible displacement of the cathode pellet, which is linked to the plating/stripping of the Li counter electrode. The pronounced structural changes cause pressure changes of up to 6 MPa within the cell, as determined by operando stack pressure measurements. Reasons for the reversibility of the electrode reaction are discussed and are attributed to the favorable combination of soft materials. KW - Copper sulfide KW - Crack evolution KW - Digital volume correlation KW - Phase transformation KW - Solid-state batteries PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564577 DO - https://doi.org/10.1002/aenm.202203143 IS - 2203143 SP - 1 EP - 12 PB - Wiley VHC-Verlag AN - OPUS4-56457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Nietzke, Jonathan A1 - Richter, Tim A1 - Mente, Tobias A1 - Mayr, P A1 - Nitsche, A T1 - Hydrogen effect on mechanical properties and cracking of creep‑resistant 9% Cr P92 steel and P91 weld metal JF - Welding in the World N2 - Martensitic 9% Cr steels like P91 and P92 can show an increased susceptibility to delayed hydrogen-assisted cracking. The focus of this study was the microstructure and heat treatment efect on the mechanical properties of P92 base material and P91 multi-layer weld metal in both as-welded and post weld heat treated (PWHT) condition. Tensile tests with hydrogen free reference samples and electrochemically hydrogen charged samples were carried out; the mechanical properties were assessed and supported by detailed fractographic analysis. Finally, a hydrogen and microstructure-dependent fracture criterion is established. All investigated microstructures showed a hydrogen-infuenced degradation of the mechanical properties compared to the hydrogen-free reference samples. The as-welded martensitic P91 weld metal had the highest degree of degradation in the presence of hydrogen. The P91 PWHT weld metal and the P92 base material had comparable properties. From that point of view, a signifcantly increased risk for hydrogen-assisted cold cracking during welding fabrication of P91 weld joints must be considered before any heat treatment is conducted. T2 - IIW Annual Assembly, Meeting of Commission IX-C CY - Tokyo, Japan DA - 16.07.2022 KW - Creep-resisting materials KW - Welding KW - Hydrogen assisted cracking KW - Hydrogen embrittlement KW - Mechanical properties PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564070 DO - https://doi.org/10.1007/s40194-022-01410-5 SN - 0043-2288 SP - 1 EP - 12 PB - Springer Nature CY - Basel (CH) AN - OPUS4-56407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - Structuring of thin films by ultrashort laser pulses JF - Applied physics A N2 - Modern life and global communication would not be possible without technologically tailored thin films; they are omnipresent in daily life applications. In most cases, the films are deposited entirely at the carrying substrates in a specific processing step of the device or sample. In some cases, however, removal or modification must be performed locally, i.e., site-controlled and material selective through an additional laser processing step. For that ultrashort laser pulses with durations in the femtosecond and picosecond range can provide unique advantages and capabilities in industrially scalable schemes. This article reviews the current state of the research and corresponding industrial transfer related to the structuring of thin films by ultrashort pulsed lasers. It focuses on the pertinent historic developments, reveals the relevant physical and chemical effects, explores the ultimate limits, and discusses selected industrial and scientific applications. KW - Thin films KW - Laser processing KW - Ultrashort lasers KW - Laser damage KW - Femtosecond laser ablation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565732 DO - https://doi.org/10.1007/s00339-022-06229-x SN - 0947-8396 SN - 1432-0630 VL - 129 IS - 1 SP - 1 EP - 38 PB - Springer CY - Berlin AN - OPUS4-56573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne A1 - Thomas, Maximilian A1 - Kannengießer, Thomas A1 - Gibmeier, J. A1 - Vollert, F. T1 - Assessment of the Solidification Cracking Susceptibility of Welding Consumables in the Varestraint Test by Means of an Extended Evaluation Methodology JF - Advanced Engineering Materials N2 - Various test methods are available for assessing the susceptibility of materials to solidification cracking during welding. In the widely used Varestraint test, the crack length is selected as a criterion as a function of the applied bending strain. Unfortunately, the crack length does not characterize the material behavior alone but depends to varying degrees on the individual test parameters used, which makes the interpretation of the results difficult. In addition, the crack length is not comparable under different test conditions. To overcome these disadvantages, we have developed a novel evaluation methodology that decouples the machine influence from the material behavior. The measured crack length is related to the maximum possible value specified by welding speed and deformation time. This relative crack length is calculated numerically, considering the orientation of the cracks. Experiments on two high-alloy martensitic welding consumables show that, in contrast to the conventional evaluation, a comparison of different welding parameters becomes possible. Furthermore, the strain rate proved to be a suitable crack criterion in agreement with Prokhorov's hot cracking model. KW - Welding KW - Solidification cracking KW - Varestraint test PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545780 DO - https://doi.org/10.1002/adem.202101650 SN - 1438-1656 SP - 2101650 PB - Wiley online library AN - OPUS4-54578 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Schweißen im Wasserstoffanlagen- und Behälterbau - Eine Kurzübersicht T2 - DVS Berichte 387: Schweißen im Anlagen- und Behälterbau N2 - Wasserstoff erfüllt die zentrale Rolle für die Umwandlung der bisherigen fossil-basierten Energieerzeugung und -nutzung auf eine dekarbonisierte, nachhaltige Form. Dazu muss der Wasserstoff erzeugt, gespeichert, transportiert werden, bevor er wieder der Nutzung zugeführt wird. Hierzu sind entlang der gesamtem Prozesskette Wasserstofftechnologien notwendig, die einen sicheren Betrieb erfordern. Hierbei kommt dem schweißtechnischen Anlagen- und Behälterbau wesentliche Bedeutung zu, insbesondere (aber nicht ausschließlich) für Speicherung und Transport des Wasserstoffes. Der vorliegende Beitrag gibt einen kurzen Überblick, wo und wie die konventionelle Schweißtechnik hierzu wichtige Beiträge leistet. Die additive Fertigung, also das „Drucken“ von Bauteilen wird dabei zunehmend wichtiger, entlang der gesamtem Prozesskette der Wasserstofftechnologien. Gleichwohl darf nicht unterschätzt werden, dass auch wesentlicher Bedarf an der Erweiterung und teilweiser Neufassung von bestehenden Regel- und Normenwerken besteht. T2 - 51. Sondertagung "Schweißen im Behälter- und Anlagenbau" CY - Munich, Germany DA - 01.03.2023 KW - Wasserstoff KW - Anlagenbau KW - Schweißen KW - Studie KW - Pipeline PY - 2023 SN - 978-3-96144-219-5 VL - 387 SP - 83 EP - 88 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-57075 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Erroneous or Arrhenius: A Degradation Rate-Based Model for EPDM during Homogeneous Ageing JF - Polymers N2 - To improve the predictive capability of long-term stress relaxation of elastomers during thermo-oxidative ageing, a method to separate reversible and irreversible processes was adopted. The separation is performed through the analysis of compression set after tempering. On the Basis of this separation, a numerical model for long-term stress relaxation during homogeneous ageing is proposed. The model consists of an additive contribution of physical and chemical relaxation. Computer simulations of compression stress relaxation were performed for long ageing times and the results were validated with the Arrhenius treatment, the kinetic study and the time-temperature superposition technique based on experimental data. For chemical relaxation, two decay functions are introduced each with an activation energy and a degradative process. The first process with the lower activation energy dominates at lower ageing times, while the second one with the higher activation energy at longer ageing times. A degradation-rate based model for the evolution of each process and ist contribution to the total system during homogeneous ageing is proposed. The main advantage of the model is the possibility to quickly validate the interpolation at lower temperatures within the range of slower chemical processes without forcing a straight-line extrapolation. KW - Kinetic study KW - Arrhenius KW - TTS KW - Modeling KW - Chemical processes KW - Stress relaxation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-512931 DO - https://doi.org/10.3390/polym12092152 SN - 2073-4360 VL - 12 IS - 9 SP - 1 EP - 21 AN - OPUS4-51293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voigt, Sascha A1 - Sträubig, Felix A1 - Palis, Stephan A1 - Kwade, A. A1 - Knaust, Christian T1 - CFD-analysis of Sensible Enthalpy Rise Approach to determine the heat release rate of electric-vehicle-scale lithium-ion batteries JF - Fire Safety Journal N2 - This paper analyses the suitability of the Sensible Enthalpy Rise Approach for measuring the heat release rate of electric-vehicle-scale lithium-ion batteries. An apparatus is designed that meets the conditions of an electric-vehicle-scale lithium-ion battery fire by using cement board as wall material. Modifications of the Sensible Enthalpy Rise Methodology are presented due to the high emissivity and inhomogeneous temperature distribution of the apparatus wall material: a power 4 approach for the heat flow from the walls to the ambient air and an alternative determination methodology for the wall temperature. A one factor at a time parameter study is performed with Computational Fluid Dynamics simulations, investigating a new calibration method based on a fit approach compared to common methods, the wall temperature determination, the approach for the ambient heat flow, the calibration power and the volume flow at the outlet. The simulations show, that suitable estimations of the heat release rate are obtained by using the modifications for wall temperature determination and the power 4 approach for the ambient heat flow. The three calibration methods provide suitable constants, if the calibration power in the same order of magnitude as the mean of the heat release rate profile of the test object. KW - Lithium-ion batteries KW - Heat Release Rate KW - Calorimetry KW - Sensible Enthalpy Rise Approach KW - Computational Fluid Dynamics PY - 2020 DO - https://doi.org/10.1016/j.firesaf.2020.102989 VL - 114 SP - 1 EP - 14 PB - Elsevier Ltd. AN - OPUS4-50964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Long, Lijia A1 - Anh Mai, Q. A1 - Morato, P. G. A1 - Dalsgaard Sorensen, J. A1 - Thöns, Sebastian T1 - Information value-based optimization of structural and environmental monitoring for offshore wind turbines support structures JF - Renewable Energy N2 - The use of load and structural performance measurement information is vital for efficient structural integrity management and for the cost of energy production with Offshore Wind Turbines (OWTs). OWTs are dynamically sensitive structures subject to an interaction with a control unit exposed to repeated cyclic wind and wave loads causing deterioration and fatigue. This study focuses on the quantification of the value of structural and environmental information on the integrity management of OWT structures, with the focus on fatigue of welded joints. By utilizing decision analysis, structural reliability methods, measurement data, as well as the cost-benefit models, a Value of Information (VoI) analysis can be performed to quantify the most beneficial measurement strategy. The VoI assessment is demonstrated for the integrity management of a butt welded joint of a monopile support structure for a 3 MW OWT with a hub height of approximately 71m. The conditional value of three-year measured oceanographic information and one-year strain monitoring information is quantified posteriori in conjunction with an inspection and repair planning. This paper provides insights on how much benefits can be achieved through structural and environmental information, with practical relevance on reliability-based maintenance of OWT structures. KW - Structural health monitoring KW - Offshore wind turbine KW - Monopile support structure KW - Value of information KW - Weld fatigue KW - Decision tree KW - Dynamic Bayesian Network PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514098 DO - https://doi.org/10.1016/j.renene.2020.06.038 VL - 10 IS - 159 SP - 1036 EP - 1046 PB - Elsevier Ltd. AN - OPUS4-51409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sachse, René A1 - Pfüger, Mika A1 - Velasco-Vélez, Juan-Jesús A1 - Sahre, Mario A1 - Radnik, Jörg A1 - Bernicke, Michael A1 - Bernsmeier, Denis A1 - Hodoroaba, Vasile-Dan A1 - Krumrey, Michael A1 - Strasser, Peter A1 - Kraehnert, Ralph A1 - Hertwig, Andreas T1 - Assessing optical and electrical properties of highly active IrOx catalysts for the electrochemical oxygen evolution reaction via spectroscopic ellipsometry JF - ACS Catalysis N2 - Efficient water electrolysis requires highly active electrodes. The activity of corresponding catalytic coatings strongly depends on material properties such as film thickness, crystallinity, electrical conductivity, and chemical surface speciation. Measuring these properties with high accuracy in vacuum-free and nondestructive methods facilitates the elucidation of structure−activity relationships in realistic environments. Here, we report a novel approach to analyze the optical and electrical properties of highly active oxygen evolution reaction (OER) catalysts via spectroscopic ellipsometry (SE). Using a series of differently calcined, mesoporous, templated iridium oxide films as an example, we assess the film thickness, porosity, electrical resistivity, electron concentration, electron mobility, and interband and intraband transition energies by modeling of the optical spectra. Independently performed analyses using scanning electron microscopy, energy-dispersive X-ray spectroscopy, ellipsometric porosimetry, X-ray reflectometry, and absorption spectroscopy indicate a high accuracy of the deduced material properties. A comparison of the derived analytical data from SE, resonant photoemission spectroscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy with activity measurements of the OER suggests that the intrinsic activity of iridium oxides scales with a shift of the Ir 5d t2g sub-level and an increase of p−d interband transition energies caused by a transition of μ1-OH to μ3-O species. KW - Spectroscopic ellipsometry KW - Electrocatalysis KW - Oxygen evolution reaction KW - Mesoporous iridium oxide films KW - Non-destructive ambient analysis KW - Intrinsic OER activity KW - Complementary methodology and metrology PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516288 DO - https://doi.org/10.1021/acscatal.0c03800 SN - 2155-5435 VL - 10 IS - 23 SP - 14210 EP - 14223 PB - American Chemical Society AN - OPUS4-51628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sturm, Patrick A1 - Moye, J. A1 - Gluth, Gregor A1 - Vogler, Nico A1 - Taffe, A. A1 - Kühne, Hans-Carsten ED - Rossignol, S. ED - Gluth, Gregor T1 - Properties of alkali-activated mortars with salt aggregate for sealing structures in evaporite rock JF - Open Ceramics N2 - Concrete structures for sealing of tunnels in the host rock are an essential part of systems for nuclear waste storage. However, concretes based on blended cements or magnesium oxychloride cements, which are commonly considered for this application, can deteriorate severely due to a significant heat of hydration and associated deformation and cracking. Alkali-activated materials (AAMs) offer a potential solution to this problem because of their low heat release during hardening. To explore their suitability for the construction of sealing structures in evaporite rock, various AAMs with salt aggregate were studied regarding fresh properties, heat release, mechanical properties and microstructure. The heat of reaction of the AAMs was up to 55% lower than that of a blended cement designed for sealing structures, indicating significant benefits for the intended application. Other relevant properties such as mechanical strength and permeability depended strongly on the mix-design of the AAMs and curing conditions. KW - Alkali-activated materials KW - Geopolymers KW - Nuclear waste storage KW - Sealing structures KW - Evaporite rock PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519422 DO - https://doi.org/10.1016/j.oceram.2020.100041 SN - 2666-5395 VL - 5 IS - Special issue: Alkali-activated materials and geopolymers in ceramics and beyond SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-51942 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -