TY - CONF A1 - Mrkwitschka, Paul A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan A1 - Rabe, Torsten T1 - Comparative study of suitable preparation methods to evaluate irregular shaped, polydisperse nanoparticles by scanning electron microscopy (SEM). N2 - Reliable characterization of materials at the nanoscale regarding their physio-chemical properties is a challenging task, which is important when utilizing and designing nanoscale materials. Nanoscale materials pose a potential toxicological hazard to the environment and the human body. For this reason, the European Commission amended the REACH Regulation in 2018 to govern the classification of nanomaterials, relying on number-based distribution of the particle size. Suitable methods exist for the granulometric characterization of monodisperse and ideally shaped nanoparticles. However, the evaluation of commercially available nanoscale powders is problematic. These powders tend to agglomerate, show a wide particle size distribution and are of irregular particle shape. Zinc oxide, aluminum oxide and cerium oxide with particle sizes less than 100 nm were selected for the studies and different preparation methods were used comparatively. First, the nanoparticles were dispersed in different dispersants and prepared on TEM-supported copper grids. Furthermore, individual powders were deposited on carbon-based self-adhesive pads. In addition, the samples were embedded by hot mounting and then ground and polished. The prepared samples were investigated by scanning electron microscopy (including the transmission mode STEM-in-SEM) and Dynamic Light scattering. The software package ImageJ was used to segment the SEM images and obtain the particle sizes and shapes and finally the number-based particles size distribution with size expressed as various descriptors. T2 - Ceramics 2021 CY - Online meeting DA - 19.04.2021 KW - Nanoparticles KW - Preparation KW - Characterization PY - 2021 AN - OPUS4-53272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Abram, Sarah-Luise A1 - Thünemann, Andreas A1 - Rühle, Bastian A1 - Radnik, Jörg A1 - Bresch, Harald A1 - Resch-Genger, Ute A1 - Hodoroaba, Vasile-Dan T1 - The Role of Electron Microscopy in the Development of Monodisperse Cubic Iron Oxide Nanoparticles as CRM for Size and Shape N2 - Due to their unique physico-chemical properties, nanoparticles are well established in research and industrial applications. A reliable characterization of their size, shape, and size distribution is not only mandatory to fully understand and exploit their potential and develop reproducible syntheses, but also to manage environmental and health risks related to their exposure and for regulatory requirements. To validate and standardize methods for the accurate and reliable particle size determination nanoscale reference materials (nanoRMs) are necessary. However, there is only a very small number of nanoRMs for particle size offered by key distributors such as the National Institute of Standards and Technology (NIST) and the Joint Research Centre (JRC) and, moreover, few provide certified values. In addition, these materials are currently restricted to polymers, silica, titanium dioxide, gold and silver, which have a spherical shape except for titania nanorods. To expand this list with other relevant nanomaterials of different shapes and elemental composition, that can be used for more than one sizing technique, we are currently building up a platform of novel nanoRMs relying on iron oxide nanoparticles of different shape, size and surface chemistry. Iron oxide was chosen as a core material because of its relevance for the material and life sciences. T2 - Microscopy and Microanalysis 2022 CY - Online meeting DA - 31.07.2022 KW - Certified Referencematerial KW - Cubical Iron Oxide KW - Nanoparticles KW - Electron Microscopy KW - Small-Angle X-ray Scattering PY - 2022 AN - OPUS4-57035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Maxi B. A1 - Böhmert, Linda A1 - Thünemann, Andreas A1 - Loeschner, Katrin A1 - Givelet, Lucas A1 - Fahrenson, Christoph A1 - Braeuning, Albert A1 - Sieg, Holger T1 - Influence of artificial digestion on characteristics and intestinal cellular effects of micro-, submicro- and nanoplastics N2 - The production of plastics is rising since they have been invented. Micro, submicro- and nanoplastics are produced intentionally or generated by environmental processes, and constitute ubiquitous contaminants which are ingested orally by consumers. Reported health concerns include intestinal translocation, inflammatory response, oxidative stress and cytotoxicity. Every digestive milieu in the gastrointestinal tract does have an influence on the properties of particles and can cause changes in their effect on biological systems. In this study, we subjected plastic particles of different materials (polylactic acid, polymethylmethacrylate, melamine formaldehyde) and sizes (micro- to nano-range) to a complex artificial digestion model consisting of three intestinal fluid simulants (saliva, gastric and intestinal juice). We monitored the impact of the digestion process on the particles by performing Dynamic Light Scattering, Scanning Electron Microscopy and Asymmetric Flow Field-Flow Fractionation. An in vitro model of the intestinal epithelial barrier was used to monitor cellular effects and translocation behavior of (un)digested particles. In conclusion, artificial digestion decreased cellular interaction and slightly increased transport of all particles across the intestinal barrier. The interaction with organic matter resulted in clear differences in the agglomeration behavior. Moreover, we provide evidence for polymer-, size- and surface-dependent cellular effects of the test particles. KW - Toxicology KW - Nanoparticles KW - Dynamic Light Scattering KW - Nanoplastics KW - Microplastics KW - Reference Method KW - Reference Material PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593947 DO - https://doi.org/10.1016/j.fct.2023.114423 VL - 184 SP - 1 EP - 16 PB - Elsevier BV AN - OPUS4-59394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Anker, A. S. A1 - Balazs, D. M. A1 - Beyer, F. L. A1 - Bienert, Ralf A1 - Bouwman, W. G. A1 - Breßler, Ingo A1 - Breternitz, J. A1 - Brok, E. S. A1 - Bryant, G. A1 - Clulow, A. J. A1 - Crater, E. R. A1 - De Geuser, F. A1 - Giudice, A. D. A1 - Deumer, J. A1 - Disch, S. A1 - Dutt, S. A1 - Frank, K. A1 - Fratini, E. A1 - Gilbert, E. P. A1 - Hahn, Marc Benjamin A1 - Hallett, J. A1 - Hohenschutz, Max A1 - Hollamby, M. J. A1 - Huband, S. A1 - Ilavsky, J. A1 - Jochum, J. K. A1 - Juelsholt, M. A1 - Mansel, B. W. A1 - Penttilä, P. A1 - Pittkowski, R. K. A1 - Portale, G. A1 - Pozzo, L. D. A1 - Ricardo de Abreu Furtado Garcia, P. A1 - Rochels, L. A1 - Rosalie, Julian M. A1 - Saloga, P. E. J. A1 - Seibt, S. A1 - Smith, A. J. A1 - Smith, G. N. A1 - Annadurai, V. A1 - Spiering, G. A. A1 - Stawski, Tomasz A1 - Taché, O. A1 - Thünemann, Andreas A1 - Toth, K. A1 - Whitten, A. E. A1 - Wuttke, J. T1 - The human factor - Results of a small-angle scattering data analysis round robin N2 - A Round Robin study has been carried out to estimate the impact of the human element in small-angle scattering data analysis. Four corrected datasets were provided to participants ready for analysis. All datasets were measured on samples containing spherical scatterers, with two datasets in dilute dispersions, and two from powders. Most of the 46 participants correctly identified the number of populations in the dilute dispersions, with half of the population mean entries within 1.5 % and half of the population width entries within 40 %, respectively. Due to the added complexity of the structure factor, much fewer people submitted answers on the powder datasets. For those that did, half of the entries for the means and widths were within 44 % and 86 % respectively. This Round Robin experiment highlights several causes for the discrepancies, for which solutions are proposed. KW - Round robin KW - Sall-angle scattering KW - Nanostructure quantification KW - Nanostructure KW - SAXS KW - MOUSE KW - X-ray scattering KW - Size distribution KW - Nanoparticles PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571342 DO - https://doi.org/10.48550/arXiv.2303.03772 SP - 1 EP - 23 PB - Cornell University CY - Ithaca, NY AN - OPUS4-57134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pellegrino, Francesco A1 - Maurino, V. A1 - Hodoroaba, Vasile-Dan T1 - Morphological Characterization and Chemical Identification of TiO2 Nanoparticles Doped with Ultrafine Metal Particles for Enhanced Photocatalytical Activity N2 - The conversion of solar energy into electricity and solar fuels is of crucial importance for a green and sustainable future. Water splitting using semiconductor photo-catalysts is considered a sustainable method to produce clean hydrogen (H2) fuel. Nevertheless, H2 photo-production efficiency remains still low, although extensive research works to understand better the mechanisms of the Hydrogen Evolution Reaction (HER) and the Oxygen Evolution Reaction (OER) are being carried out. In this respect, TiO2 is a key photoactive material, usually employed with a co-catalyst deposited onto the surface to enhance charge carriers’ separation and catalyze surface charge transfer reactions. The deposition of a co-catalyst on the TiO2 nanoparticle surface represents one successful way to enhance the activity of the photocatalyst through a modification of its surface and redox properties. In this context, high-resolution scanning electron microscopy coupled with elemental analysis by energy-dispersive X-ray spectroscopy (EDS) is fundamental for studying and understanding the effect of the nanoparticle morphology on the functional properties of shape-controlled TiO2 crystals (bipyramides, platelets, and elongated particles). Different types of metal-semiconductor combinations, TiO2 shapes and dopant metals (Ag, Pt, etc) and metal concentrations will be discussed. KW - Nanoparticles KW - Photocatalysis KW - Electron microscopy KW - EDS KW - Metal-semiconductor PY - 2022 DO - https://doi.org/10.1017/S1431927622010078 VL - 28 IS - Suppl. 1 SP - 2658 EP - 2660 PB - Cambridge University Press AN - OPUS4-55436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Pauli, Jutta A1 - Behnke, Thomas A1 - Würth, Christian T1 - Standardization of Fluorescence Measurements in the UV/vis/NIR/IR - Needs for and requirements on calibration tools N2 - Photoluminescence techniques are amongst the most widely used tools in the life sciences, with new and exciting applications in medical diagnostics and molecular imaging continuously emerging. Advantages include their comparative ease of use, unique sensitivity, non-invasive character, and potential for multiplexing, remote sensing, and miniaturization. General drawbacks are, however, signals, that contain unwanted wavelength- and polarization contributions from instrument-dependent effects, which are also time-dependent due to aging of instrument-components, and difficulties to measure absolute fluorescence intensities. Moreover, scattering systems require special measurement geometries and the interest in new optical reporters with emission > 1000 nm strategies for reliable measurements in the second diagnostic for the comparison of material performance and the rational design of new fluorophores with improved properties. Here, we present strategies to versatile method-adaptable liquid and solid fluorescence standards for different fluorescence parameters including traceable instrument calibration procedures and the design of integrating sphere setups for the absolute measurement of emission spectra and quantum yields in the wavelength region of 350 to 1600 nm. Examples are multi-emitter glasses, spectral fluorescence standards, and quantum yield standards for the UV/vis/NIR T2 - Spie Photonics west 2017 CY - San Francisco, USA DA - 28.01.2017 KW - Fluorescence standard KW - Instrument calibration KW - Integrating sphere spectroscopy KW - Absolute fluorescence quantum yield KW - Fluorescent glasses KW - Nanoparticles PY - 2017 AN - OPUS4-39074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rühle, Bastian A1 - Nirmalananthan-Budau, Nithiya A1 - Roloff, Alexander A1 - Resch-Genger, Ute T1 - Surface Functional Group Quantification on Micro- and Nanoparticles N2 - Organic and inorganic micro- and nanoparticles are increasingly used as drug carriers, fluorescent sensors, and multimodal labels in the life and material sciences. Typically, these applications require further functionalization of the particles with, e.g., antifouling ligands, targeting bioligands, stimuli-responjsive caps, or sensor molecules. Besides serving as an anchor point for subsequent functionalization, the surface chemistry of these particles also fundamentally influences their interaction with the surrounding medium and can have a significant effect on colloidal stability, particle uptake, biodistribution, and particle toxicity in biological systems. Moreover, functional groups enable size control and tuning of the surface during the synthesis of particle systems. For these reasons, a precise knowledge of the chemical nature, the total number of surface groups, and the number of groups on the particle surface that are accessible for further functionalization is highly important. In this contribution, we will will discuss the advantages and limitiations of different approaches to quantify the amount of commonly used surface functional groups such as amino,[1,2] carboxy,[1,2] and aldehyde groups.[3] Preferably, the quantification is carried out using sensitive and fast photometric or fluorometric assays, which can be read out with simple, inexpensive instrumentation and can be validated by complimentary analytic techniques such as ICP-OES and quantitative NMR. T2 - NANAX Hamburg CY - Hamburg, Germany DA - 16.09.2019 KW - Microparticles KW - Nanoparticles KW - Quantitative Analysis KW - Surface KW - Funtional Groups PY - 2019 AN - OPUS4-49616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rühle, Bastian A1 - Hodoroaba, Vasile-Dan T1 - Towards Automated Electron Microscopy Image Segmentation for Nanoparticles of Complex Shape by Convolutional Neural Networks N2 - In this contribution different ways are explored with the aim to generate suitable training data for ‘non-ideal’ samples using various approaches, e.g., computer-generated images or unsupervised learning algorithms such as generative adversarial networks (GANs). We used these data to train simple CNNs to produce segmentation masks of SEM images and tested the trained networks on real SEM images of complex nanoparticle samples. The novel use of CNN for the automated analysis of the size of nanoparticles of complex shape and with a high degree of agglomeration has proved to be a promising tool for the evaluation of particle size distribution on a large number of constituent particles. Further development and validation of the preliminary model, respectively larger training and validation data sets are necessary. KW - Nanoparticles KW - Convolutional neural networks KW - Image segmentation KW - Electron microscopy KW - Automatisation PY - 2020 DO - https://doi.org/10.1017/S1431927620017262 VL - 26 IS - S2 SP - 1188 EP - 1189 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, Ralf A1 - Behnke, Thomas A1 - Resch-Genger, Ute A1 - Kästner, Claudia A1 - Ebisch, Maximilian A1 - Thünemann, Andreas T1 - Investigation and control of protein adsorption for fluorescent nanosilver reference material N2 - Upon interaction of nanomaterials like noble metal nanoparticles (NPs) with biological systems like body fluids such as serum, a protein corona is formed.[1] This reversibly bound layer of proteins controls the transport of the NPs and their subsequent interaction with biological components.[2] The plasmonic properties of nobel metal NPs like Au and Ag can considerably affect the fluorescence properties of fluorophores in their vicinity, i.e., within a near field distance. Depending on the chemical composition, size and shape of these noble metal NPs, the spectral properties of the dye, and the particle-fluorophore distance, the fluorescence is quenched or in some cases enhanced.[3,4,5] This can be monitored by fluorescence intensity and lifetime measurements, with the latter effect being accompanied by an increase in fluorescence intensity and reduction in fluorescence lifetime due to an increase in radaiative rate constant. We utilized these effects to study and manipulate noble metal NP-protein interaction exemplarily for fluorophore-labeled bovine serum albumin (BSA) modified e.g. by succinylation, amination and the introduction of thiol groups, resulting in different binding affinities of the proteins.[6] Our results show that the fluorescent corona allows monitoring of the interaction of our accordingly protein-functionalized particles with biological model systems like solutions containing different amounts of various proteins. This can be eventually used for further in vitro and in vivo studies to assess the uptake, digestion, and excretion of surface functionalized noble metal NPs. T2 - EBS 2017 CY - Potsdam, Germany DA - 20.03.2017 KW - Nanoparticles KW - Reference material KW - Fluorescence probes KW - Plasmonics PY - 2017 AN - OPUS4-39552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - INPR A1 - Schroeder, Barbara A1 - Le Xuan, Hoa A1 - Völzke, Jule L. A1 - Weller, Michael G. T1 - Preactivation crosslinking – An efficient method for the oriented immobilization of antibodies N2 - Crosslinking of proteins for their irreversible immobilization on surfaces is a proven and popular method. However, many protocols lead to random orientation and the formation of undefined or even inactive by-products. Most concepts to obtain a more targeted conjugation or immobilization requires the recombinant modification of at least one binding partner, which is often impractical or prohibitively expensive. Here a novel method is presented, which is based on the chemical preactivation of Protein A or G with selected conventional crosslinkers. In a second step, the antibody is added, which is subsequently crosslinked in the Fc part. This leads to an oriented and covalent immobilization of the immunoglobulin with a very high yield. Protocols for Protein A and Protein G with murine and human IgG are presented. This method may be useful for the preparation of columns for affinity chromatography, immunoprecipitation, antibodies conjugated to magnetic particles, permanent and oriented immobilization of antibodies in biosensor systems, microarrays, microtitration plates or any other system, where the loss of antibodies needs to be avoided, and maximum binding capacity is desired. This method is directly applicable even to antibodies in crude cell culture supernatants, raw sera or protein-stabilized antibody preparations without any purification nor enrichment of the IgG. This new method delivered much higher signals as a traditional method and, hence, seems to be preferable in many applications. KW - Antibody coating KW - Proximity-enhanced reaction KW - Immunoglobulins KW - IgG KW - Protein G KW - Protein A KW - Immunoprecipitation KW - Immunocapture KW - Stabilization KW - Biosensor KW - Biochip KW - Microarray KW - ELISA KW - Immunoassay KW - Immunosensor KW - Crosslinker KW - Nanoparticles KW - Click chemistry KW - Herceptin KW - Trastuzumab PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-478797 DO - https://doi.org/10.20944/preprints201904.0205.v1 SN - 2310-287X SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-47879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz A1 - Wolf, Jakob A1 - Emmerling, Franziska T1 - Smart Machines, New Materials, Automated Future N2 - In pursuing the automated synthesis of metal nanoparticles (NPs), the capabilities of the “Chemputer” are deployed, for the first time, into the field of inorganic chemistry. Metal NPs have a substantial impact across different fields of science, such as photochemistry, energy conversion, and medicine. Among the commonly used nanoparticles, silver NPs are of special interest due to their antibacterial properties and applications in sensing and catalysis. However, many of the methods used to synthesize Ag NPs often do not result in well-defined products, the main obstacles being high polydispersity or a lack of particle size tunability. The Chemputer is a modular, automated platform developed by the Cronin group for execution of multi-step, solution based organic synthesis. The machine has been further implemented at BAM, where we used this setup to perform automated organic syntheses, autonomously controlled by feedback derived from online NMR. In the Chemputer liquids can be transferred across a backbone, constructed from HPLC selection valves and syringe pumps. The Chemputer operates in a batch mode, common laboratory devices, such as heaters and glassware like round bottom flasks, are connected to the backbone, forming reaction modules. Solutions can be manipulated in these modules, and as all operations are controlled through a software script, reproducibility among individual syntheses is high. Likewise, any adjustments of the synthesis conditions, if required, are straightforward to implement and are documented in the reaction log file and a code versioning system. We characterised Chemputer-synthesized nanoparticles using small-angle X-ray scattering, dynamic light scattering and further methods, showing that automated synthesis can yield colloids with reproducible and tuneable properties. The approach is an important first step towards the automation of nanoparticle syntheses in a modular, multipurpose platform. The modularity of the Chemputer opens many possibilities for the synthesis of a variety of different NP morphologies and sizes and potentially more complex structures. These advances and further work can help in the general investigations of silver nanoparticles by supplying a reliable and reproducible method of their synthesis and removing tacit knowledge by significantly reducing the experimental bias. T2 - Analytica 2022 CY - Munich, Germany DA - 21.06.2022 KW - Automated synthesis KW - Nanoparticles PY - 2022 AN - OPUS4-55198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steinhoff, U. A1 - Hodoroaba, Vasile-Dan T1 - EMPIR Erläuterung der Fördermaßnahme und Beispiele aus der Nanotechnologie N2 - Das EMPIR-Förderprogramm wird kurz erläutert und laufende Projekte aus der Nanotechnologie werden vorgestellt. Der Schwerpunkt liegt auf Standardisierungsprojekten, die gemeinsam mit ISO/TC 229 'Nanotechnologies' und CEN/TC 352 'Nanotechnologies' zu neuen Normen führen sollten. Als Beispiel für laufende Nanotechnologie-Projekte mit Koordination aus Deutschland werden MagNaStand (PTB) und nPSize (BAM) gegeben. T2 - Treffen des Normungsausschusses NA 062-08-17 AA Nanotechnologien CY - KIT, Karlsruhe, Germany DA - 07.03.2019 KW - EMPIR KW - Nanoparticles KW - Reference materials KW - Particle size distribution KW - Traceability KW - Standardisation PY - 2019 AN - OPUS4-47859 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strommer, Bettina A1 - Böhning, Martin A1 - Schulze, Dietmar A1 - Schartel, Bernhard T1 - Natural Rubber Nanocomposites via Optimized Latex Premixing and Conventional Technical Processing N2 - Creation of highly functional materials and replacement of high amounts of conventional fillers are driving forces for the development of nanocomposites. Besides the type and properties of nanoparticles, their dispersing in the elastomeric matrix and the stability of this dispersion through all processing steps are the main factors for the resulting performance of the produced material. Therefore, a preparation chain via latex premixing to a highly filled masterbatch, followed by conventional technical processing is to be developed. Three types of carbon-based particles are characterized as such (SEM, Raman Spectroscopy, BET specific surface area) and in combination with natural rubber, as nanocomposites (TEM. Hardness, Abrasion resistance, Compression set, Cone calorimetry). All of the studied particles lead to an improvement in the investigated mechanical properties, the extent of reinforcement depends strongly on the specific surface of the particle interacting with the elastomeric matrix in combination with their shape. T2 - DKG Elastomer Symposium CY - Online meeting DA - 28.06.2021 KW - Processing KW - Elastomers KW - Nanocomposites KW - Graphene KW - Nanoparticles KW - Latex KW - Natural rubber PY - 2021 AN - OPUS4-53106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strommer, Bettina A1 - Böhning, Martin A1 - Schulze, Dietmar A1 - Schartel, Bernhard T1 - Networking Skills: The Effect of Graphene on Crosslinking N2 - 2D layered nanoparticles enable a distinct reduction of filler loadings in rubber compounds combined with a boost in performance due to their high surface to volume ratio. They often enable unique property profiles providing a great potential as effective fillers in rubber, especially by enhancing mechanical and barrier properties. As the best possible incorporation into the elastomer matrix is crucial for the efficiency of the nanofiller, dispersing and exfoliation of the nanoparticles without formation of agglomerates usually constitutes an outstanding challenge - especially when using conventional processing methods. Laboratory-scale approaches for highly dispersed nanocomposites sometimes solve this problem, but these are often too energy and time consuming and provide no scale up possibility for real applications. Therefore, a latex premixing process was established to produce highly filled masterbatches, enabling the processing with conventional techniques. The presence of nanoparticles greatly impacts the behavior of elastomeric compounds, besides affecting the properties of the final product also the processing is influenced (rheology, crosslinking). In this study, nanocomposites of natural rubber and multilayer graphene (MLG) were prepared via a latex masterbatch route. Different strategies for masterbatch premixing are compared (stirring vs. ultrasonication, coagulation vs. drying). Dispersion and exfoliation of MLG were determined by transmission electron microscopy. The reinforcing effect of MLG affects the viscosity while the dispersed graphene layers may also act as diffusion barrier/absorbent for the crosslinking agents. In contrast to that, MLG forms physical crosslinks in the final product. Swelling measurements and differential scanning calorimetry allow a differentiation between chemical and physical network links. Different technical properties of the nanocomposites were measured with respect to mechanical and application relevant behavior. T2 - PPS 37 CY - Online meeting DA - 12.04.2022 KW - Elastomers KW - Nanocomposites KW - Graphene KW - Nanoparticles KW - Latex KW - Natural rubber KW - Processing PY - 2022 AN - OPUS4-54696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sötebier, Carina A1 - Bierkandt, Frank A1 - Bettmer, J. A1 - Rades, Steffi A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Weidner, Steffen T1 - Characterization of Ag nanoparticles: limitation and advantages of field-flow fractionation N2 - Silver nanoparticles (Ag NPs) are widely used in consumer products due to their excellent antibacterial properties. Their broad application has led to a variety of recent regulation on their use and labelling. Thus, a highly specific analytical method for their characterization and quantification is needed. Due to their large separation range, field-flow fractionation (FFF) techniques are repeatedly applied for the analysis of NP. Limitations of FFF include quantification, sample loss and insufficient recovery rates. Another challenge can be non-ideal elution behavior of particles in complex and unknown matrices. The possible sources for sample losses of Ag NP have been studied using an asymmetric flow FFF (AF4) in combination with inductively coupled plasma mass spectrometry (ICP-MS). The influence of different parameters, for example the sample concentration, on the recovery rates and sample loss has been investigated. Using laser ablation ICP-MS, the Ag deposition on the membrane was located and quantified. Our results identified ionic silver as the main sources of sample loss. These results can be useful for further method improvement. However, when a Ag NP sample containing an unknown complex matrix is analyzed, FFF method optimization is challenging as the sample might show a shift in the retention times and lower recovery rates. In this case, ICP-MS experiment in the single particle mode (sp-ICP-MS) can be a useful addition to the FFF measurement. Here, upon assumption of spherical particles, the geometric diameters can be calculated. This fast and easy approach can be helpful in order to interpret the FFF fractograms and advice the FFF method optimization process. T2 - 18th International Symposium on Field- and Flow-Based Separations CY - Dresden, Germany DA - 22.05.2016 KW - Silver KW - Nanoparticles KW - Field-flow fractionation KW - ICP-MS PY - 2016 AN - OPUS4-36352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thünemann, Andreas T1 - SAXS for the development of reference materials: Silver nanoparticles, a case study N2 - Today there are hundreds of products available containing silver in form of nanoparticles, so-called nanosilver. This situation and the foreseeable future growing market of nanosilver will supposedly cause an increased release of silver into the environment. In this way, silver can be also incorporated into the human body and accumulated in different organs, which can be toxic or at least an unknown risk to human health. For these reasons, it is important to constantly study materials containing silver nanoparticles, their production, application in products and technical processes, dissemination of silver nanoparticles in the environment, and effects on humans and nature. The state-of-the-art nanoparticle size and concentration characterization are illustrated in an extensive interlaboratory comparison. To guarantee the traceability of measurements and to secure the comparison of results of different analytical methods, reference materials (RM) and certified reference materials (CRM) are essential. As a case study, the objective of the presented project was to provide an aqueous suspension of silver nanoparticles as a reference material with a nominal diameter below 10 nm for application in the determination of the size and concentration of nanoparticles in an aqueous surrounding. Measurands are the particles’ diameter D, size distribution width σ, number density N, and concentration c. Target uncertainties, defined as one sigma of the measurand values, are 5% for D, 10% for σ, 20% for N, and 20% for c. The certification was carried out based on ISO 17867 and the relevant ISO-Guides to produce reference material. The process of using SAXS as a reliable method for testing homogeneity and short-term and long-term stability of the material is reported. The particle preparation is described in detail so that the user can carry out the steps of synthesis and characterization in his own laboratory if required. Optionally, one can also contact the author for the provision of the silver nanoparticles. Detailed information can be found elsewhere (BAM Certification Reports, BAM-N008 (2022)). T2 - SAXS excites CY - Graz, Austria DA - 04.04.2023 KW - Nanoparticles KW - SAXS KW - Nanosilver KW - Small-angle x-ray scattering PY - 2023 AN - OPUS4-57283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thünemann, Andreas A1 - Kästner, Claudia T1 - (Bio)polymers tune the catalytic activity of silver nanoparticles N2 - We report on the development of ultra-small core-shell silver nanoparticles synthesized by an up-scaled modification of the polyol process. It is foreseen to use these thoroughly characterized particles as reference material to compare the catalytic and biological properties of functionalized silver nanoparticles. Small-angle X-ray scattering (SAXS) analysis reveal a narrow size distribution of the silver cores with a mean radius of RC = 3.0 nm and a distribution width of 0.6 nm. Dynamic light scattering (DLS) provides a hydrodynamic radius of RH = 10.0 nm and a PDI of 0.09. The particles’ surface is covered with poly(acrylic acid) (PAA) forming a shell with a thickness of 7.0 nm, which provides colloidal stability lasting for more than six months at ambient conditions. The PAA can be easily exchanged by biomolecules to modify the surface functionality. Replacements of PAA with glutathione (GSH) and bovine serum albumin (BSA) have been performed as examples. We demonstrate that the particles effectively catalyze the reduction of 4-nitrophenol to 4-aminophenol with sodium borohydride. The tunable catalytic activity of (436 ± 24) L g-1 s-1 is the highest reported in literature for silver nanoparticles. T2 - POLYDAYS 2016 CY - Potsdam, Germany DA - 28.09.2016 KW - Nanoparticles KW - Small-angle X-ray scattering KW - SAXS KW - Silver PY - 2016 AN - OPUS4-37622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Usmani, Shirin A1 - Schlishka, Joerg A1 - Klutzny, Kerstin A1 - de Laval, Yvonne A1 - Plarre, Rüdiger A1 - Krahl, Thoralf A1 - Stephan, Ina A1 - Huebert, Thomas A1 - Kemnitz, Erhard T1 - Wood protection with nanoparticles: MgF2 and CaF2 N2 - Alkaline earth metal fluoride nanoparticles have been investigated for application in wood protection. Sols of MgF2 and CaF2 were synthesized and their efficacy was tested against fungi and termites (Rehmer 2016, Krahl et al. 2016). The sols were characterized by XRD and SEM. The wood specimens were vacuum impregnated with nanoparticles and then exposed to fungi and termites according to EU certified test conditions. Our results show that wood impregnated with metal fluoride nanoparticles significantly reduce cellulose hydrolysis by fungi and termites. The wood samples were exposed to brown-rot fungi; Coniophora puteana and Poria placenta. Between the two fungi, the overall mass lost due to fungal degradation was lower for treated (MgF2 and CaF2) wood samples exposed to Coniophora puteana. Thus, the metal fluoride nanoparticles impregnated in the wood samples were more efficient in reducing cellulose degradation from Coniophora puteana than from Poria placenta. However the mass loss in samples treated with MgF2 was similar to those treated with CaF2, irrespective of type of fungi. Therefore, it is likely that fungal degradation in treated samples was dependent on the biocidal action of fluorides rather than on the differences in chemical and physical properties of MgF2 and CaF2, respectively. Conversely, for termite exposure, wood samples treated with MgF2 had lower cellulose degradation compared to those treated with CaF2. A possible explanation for this difference in results could be fungi and termites use separate mechanisms for cellulose hydrolysis which will be further investigated. Future experiments include testing the leaching potential of MgF2 and CaF2 nanoparticles from wood. The results from the leaching experiment will test if metal fluoride nanoparticles can provide long-term and environmentally safe protection to wood. T2 - International Research Group (IRG48) Scientific Conference on Wood Protection CY - Ghent, Belgium DA - 04.06.2017 KW - Fluoride KW - Nanoparticles KW - Brown-rot fungi KW - Termites PY - 2017 AN - OPUS4-41019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Usmani, Shirin M. A1 - Stephan, Ina A1 - Schlischka, Joerg A1 - Klutzny, Kerstin A1 - de Laval, Yvonne A1 - Plarre, Rüdiger A1 - Huebert, Thomas A1 - Saliwan Neumann, Romeo A1 - Kemnitz, Erhard T1 - Wood protection with MgF2 and CaF2 nanoparticles N2 - Sol-gel synthesis was used to prepare nanoparticles of MgF2 and CaF2. These nanoparticles were tested for their application in wood protection. In comparison to control samples, wood specimens treated with MgF2 and CaF2 showed lower mass loss under exposure to termites and fungi. Samples treated with MgF2 performed better at protecting wood from cellulose degradation when exposed to termites. Conversely, in the presence of fungi, mass loss in treated samples was similar irrespective of the chemical composition (MgF2 and CaF2) of the treatment. A possible explanation for this difference in results between termites and fungi could be their different mechanism of cellulose hydrolysis. Thus, future wood preservatives would need to be customized according to their specific application. T2 - 19th International Sol-Gel Conference CY - Liege, Belgium DA - 03.09.2017 KW - Nanoparticles KW - Wood protection KW - Fungi KW - Termites PY - 2017 AN - OPUS4-42541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Usmani, Shirin M. A1 - Plarre, Rüdiger A1 - Hübert, Thomas A1 - Kemnitz, E. ED - Richter, K. ED - Van de Kulien, J.-W. T1 - Termite resistance of pine wood treated with nano metal fluorides N2 - Fluorides are well-known as wood preservatives. One of the limitations of fluoride-based wood preservatives is their high leachability. Alternative to current fluoride salts such as NaF used in wood protection are low water-soluble fluorides. However, impregnation of low water-soluble fluorides into wood poses a challenge. To address this challenge, low water-soluble fluorides like calcium fluoride (CaF2) and magnesium fluoride (MgF2) were synthesized as nanoparticles via the fluorolytic sol−gel synthesis and then impregnated into wood specimens. In this study, the toxicity of nano metal fluorides was assessed by termite mortality, mass loss and visual analysis of treated specimens after eight weeks of exposure to termites, Coptotermes formosanus. Nano metal fluorides with sol concentrations of 0.5 M and higher were found to be effective against termites resulting in 100% termite mortality and significantly inhibited termite feeding. Among the formulations tested, the least damage was found for specimens treated with combinations of CaF2 and MgF2 with an average mass loss less than 1% and visual rating of “1”. These results demonstrate the efficacy of low water-soluble nano metal fluorides to protect wood from termite attack. KW - Holzschutzmittel KW - Nanoparticles KW - Fluorides KW - Termites PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514325 DO - https://doi.org/10.1007/s00107-020-01522-z VL - 78 SP - 493 EP - 499 PB - Springer CY - Berlin AN - OPUS4-51432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -