TY - THES A1 - Gröschl, Christian T1 - Examination of stress and strain in glass structures during pressure treatment using FEM simulation and experimental tests N2 - Glass is an amorphous material. When compared to steel, both its density and weight is three times lower. Its high theoretical strength makes it stand out as a premier material for a variety of applications. One such application is acting as a pressure resistant vessel for gas storage. Because glass has a high theoretical strength this makes it potentially suitable to withstand much higher pressures than steel or composite vessels. As a result of its brittle character, glass breaks when reaching a critical stress level. Therefore, the stress distribution during pressure load needs to be homogeneous without local stress peaks. At those peaks an initial crack will occur and the material will break. This PhD thesis is primarily concerned with the determination of the strength of several structures made of single hollow glass fibers during inner pressure treatment. Therefore, different kinds of hollow glass structures with varying parameters of shape and dimension were examined concerning their strength by determining the burst pressure. The burst pressure method was compared to the tensile test method, which poses the common test method for examining the strength of a material. The conclusion reached was that both test methods lead to comparable results and therefore, the burst pressure method poses an adequate tool for examining the strength of a hollow material against inner pressure. Another tool used in this thesis is the Finite Elements Method (FEM) simulation of internal stress and expansion of glass structures during pressure treatment. FEM was used to validate the burst pressure test results. A few selected material parameters needed to be incorporated, most notably the Young’s Modulus. Therefore, the expansion of single glass fibers was measured with light microscope during pressure load. Within the parameters of expansion, wall thickness and applied pressure, the Young’s Modulus was calculated with the Barlow’s Formula. According to the results, different two-dimensional models from single fibers to complex structures with up to 1000 single fibers were constructed and simulated with the CFD software Comsol Multiphysics. The expansion as well as the principal stress during pressure load was calculated. Different dimensions as well as different geometries of the glasses were considered to find a structure with the highest possible free volume and at the same time as less stress peaks as possible. This calculation was made in order to determine the best structure for gas storage. For this purpose the calculations were done with different dimensions of round single fibers right up to hexagonal structures consisting of more than one thousand round single fibers, which resulted in constant expansion of the structure. Furthermore, the problem of occurring interspaces between round single fibers, regarding their burst pressure-decreasing influence, was approached. Closing these interspaces with glass or other materials to avoid unsolicited pressure load led to increased strength of the structure and low storage capacities due to the increased weight and less free inner volume. The behavior of hexagonal fibers was determined as single fiber as well as in bundled condition. The walls between two hexagonal single fibers with applied inner pressure showed homogeneously distributed stress. Merely the outer walls without counter pressure showed high deformation and high structural stress. Based on that knowledge, several structures were modeled varying in different aspects. The fibers with hexagonal shape showed optimal stress distribution and high storage capacities because of high free inner volume, provided that these fibers are surrounded by additional fibers with identical inner pressure. Reducing the wall thickness for even higher free inner volume led to similar distribution but higher stress and expansion. To overcome the problem with the high stress at the outer fibers, the influence of outer fibers with different shape and dimension was simulated as well as the influence of solid glass fibers at the outer layer of the structure. The results showed that a structure with hexagonal thin-walled fibers should be surrounded by round fibers with higher wall thickness. This way the high stress peaks at the outer fibers are lowered. The examined practical strength of glass is about 100 to 1000 times lower than the theoretical strength. This is caused by defects, which may occur at the glass surface by handling or inside the material by defective production. Since the modeled results are based on the theoretical strength, the optimal wall thickness with a good compromise of strength and free inner volume needs to be found in practical tests. If further handling of the structures is necessary, an outer layer of solid fibers works as a protection layer against damages at the outer hollow glass fibers and increases the strength. Additionally, the influence of collapsing fibers inside a structure on the remaining system has been modeled as well as the influence of defects like holes or cracks at the surface or manufacturing induced defects inside the material. Any kind of defect leads to areas of high stress, whereby failure occurrence will be encouraged. In order to approve the theoretical results, the simulated structures were compared to the previously manufactured and tested ones. Due to the burst pressure test results, the tested structures showed low strength compared to the theoretical strength. This was primarily caused by the existence of defects in the material and on the surface of the glass structures. Therefore, the production process needs to be optimized in order to prevent such defects. Furthermore, an additional protection against outer influence like air humidity or the physical contact to other materials is required. KW - Glass structures KW - Hollow fibres KW - Stress and strain PY - 2016 SP - 1 EP - 252 PB - Universitätsbibliothek CY - Magdeburg AN - OPUS4-39257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Zhang, Lei T1 - Microstructure-property relationship in microalloyed high-strength steel welds N2 - Hochfeste Stähle sind bevorzugte Werkstoffe für die Herstellung von sicheren und zuverlässigen Strukturen in der Industrie. Dabei ist das Schmelzschweißen die Hauptverbindungstechnologie für diese Werkstoffgruppe. Während der Entwicklung der hochfesten niedriglegierten (engl. HSLA) Stähle wurden in der Vergangenheit unterschiedliche Legierungskonzepte mit fortgeschrittenen Herstellungstechniken kombiniert und umfassend untersucht. Jedoch befassten sich nur wenige Studien damit, wie die unterschiedliche Zusammensetzung der Legierungen die Eigenschaften der hochfesten Schweißverbindungen dieser Stähle beeinflussen, selbst im Fall begrenzter Gehalte von Mikrolegierungselementen. In der Schweißpraxis dieser hochfesten Stähle sind die Herausforderungen an die sich ausbildenden Mikrostruktur und den resultierenden mechanischen Eigenschaften von sehr großem Interesse. Diesbezüglich liegt der Hauptfokus des Interesses beim Einfluss der Mikrolegierungselemente auf die Phasenumwandlung sowie die resultierende Performance der Schweißverbindung selbst. Geringes Erweichen (Softening) der Wärmeeinflusszone (WEZ) sowie ein begrenztes Austenitkörner-Wachstum sind dabei erwünschte Eigenschaften der Schweißnaht, jedoch liegt das Hauptaugenmerk auf der Sicherstellung hervorragender Zähigkeits- und Zugeigenschaften. Zum Erreichen dieses Zieles werden Mikrolegierungselemente wie Ti, Nb oder V bewusst zu diesen modernen hochfesten Stählen zulegiert. Der Fokus der vorliegenden Arbeit ist das Verständnis, wie die mechanischen Eigenschaften der Verbindungen dieser HSLA-Stähle von Unterschieden in den jeweiligen Legierungskonzepten abhängen, die durch moderne Schweißprozesse gefügt werden. Zunächst wurden dazu drei unterschiedlich mikrolegierte (Nb, Ti und Ti+V Zugabe) Stähle vom Typ S690QL untersucht. Lichtmikroskopische Untersuchungen bestätigten dabei, dass eine ähnliche Zusammensetzung aus angelassenem Bainit und Martensit in allen drei Grundwerkstoffen vorherrschte und unterschiedlich stark vergröberte Ausscheidungen der Mikrolegierungselemente beobachtet wurden. Diese Ausscheidungen wurden weiterführend mittels thermodynamischer Softwareberechnung analysiert und durch Transmissions-Elektronen-Mikroskopie (TEM) identifiziert. Die Ergebnisse der mechanischen Werkstoffprüfung zeigten, dass alle drei Stähle oberhalb der nach Norm geforderten Zähigkeits- und Zugfestigkeitswerte lagen, jedoch Unterschiede im Dehnungsverhalten aufwiesen. Die drei Stähle wurden dann anschließend unter Verwendung des gleichen Schweißzusatzes geschweißt. Dabei wurde das abgeschmolzene Schweißgut durch die Mikrolegierungselemente aus dem Grundwerkstoff infolge der hohen Aufmischung beeinflusst. Die erhöhte Aufmischung bildet dabei ein wesentliches Merkmal der verwendeten modifizierten Sprühlichtbogentechnik. Als Ergebnis zeigte der Nb-mikrolegierte Stahl eine genügend hohe Aufnahme von Legierungselementen aus dem Grundwerkstoff in das Schweißgut, um dessen Mikrostruktur im Fall steigender Abkühlraten von nadeligem Ferrit hin zu Bainit zu verändern. Dieses wiederum reduzierte die Zähigkeitseigenschaften des Schweißgutes dieses Nb-legierten Stahls. Dieses Verhalten wurde in den beiden anderen Stählen nicht beobachtet. Ein zweiter Hauptpunkt dieser Arbeit war die Ausbildung der Mikrostruktur in der Feinkorn- und Grobkorn-WEZ und deren Zähigkeitseigenschaften mit den sich verändernden Schweißparametern. Zu diesem Zweck wurden definierte Werkstoffzustände physikalisch simuliert, um die resultierende Mikrostruktur sowie das Austenitkorn-Wachstum zu charakterisieren. Die Mikrolegierungselemente bildeten dabei einen wesentlichen Faktor zur Begrenzung des Austenitkörner-Wachstums. Das Ausmaß der Austenit-Vergröberung in der WEZ war dabei stark abhängig von der Art und dem Volumenanteil der unterschiedlichen Ausscheidungen infolge der unterschiedlichen Mikrolegierung. Von allen dreiStählen zeigte die WEZ des Ti-legierten Grundwerkstoffes das geringste Kornwachstum als Folge des ausreichenden Umfangs von stabilen Ti-Ausscheidungen. Die Ausbildung von nadeligem Ferrit im Korn wurde dabei durch die Ti-Ausscheidungen unterstützt, da diese als bevorzugte Stellen der Nukleation des Ferrits dienten. Die Zähigkeit der WEZ erhöhte sich dabei infolge der Großwinkelgrenzen der feinen Ferrit-Platten. Aufgrund des kombinierten Effektes von Nb und Mo, welcher sich in der bevorzugten Ausbildung von unterem Bainit äußert, konnte die WEZ-Zähigkeit bei hohen Abkühlraten weiter verbessert werden. Im Fall eines größeren Wärmeeintrags bildete sich jedoch bevorzugt oberer Bainit, welcher wiederum die Zähigkeit reduzierte. Der abschließende experimentelle Teil der Arbeit konzentrierte sich auf das Verständnis der Mechanismen, die in bestimmten Fällen zur Erweichung (oder Softening) der WEZ führen. Dieses Erweichen äußerte sich in den unterschiedlichen Zugeigenschaften der geschweißten Verbindungen der Stähle. Dabei war die Bruchlage entweder in der erweichten WEZ oder im Grundwerkstoff, abhängig von den Schweißparametern sowie der Art des geschweißten Stahls. Im Ti-legierten Stahl führte dabei ein erhöhter Wärmeeintrag zur Vergrößerung der Erweichungszone. Dieses führte zu einer signifikanten Abnahme der Härte und anschließend zum Versagen in dieser erweichten Zone im Zugversuch. Die Veränderung der Bruchlage hin zum Grundwerkstoff wurde durch die Begrenzung des Wärmeintrags erreicht. Dieses Verhalten wurde nicht in den beiden anderen Stählen beobachtet. Dieses Verhalten zeigt, dass bereits kleine Unterschiede im Gehalt der Mikrolegierungselemente der Stähle zu großen Variationen in den Zugeigenschaften führten. Für alle drei Stähle, zeigten die Ti-enthaltenden Schweißverbindungen das am deutlichsten ausgeprägte Softening, gefolgt von den Ti+V-enthaltenden Schweißungen und schließlich den Nb-enthaltenden Schweißverbindungen. Das unterschiedliche Softening konnte dabei auf zwei Prozesse bezogen werden, die auch über zusätzliche Dilatometrie-Experimente gestützt wurden: die Phasenumwandlung und das Anlassverhalten. Im Ti-legiertem Stahl lag nach der Phasenumwandlung großformatiger Ferrit als Konsequenz der ursprünglich großen Austenitkörner vor. Dieses führte zu einer abgesenkten Härte dieses Stahls. Weiterhin resultierte die geringere Anlassbeständigkeit des Ti-legierten Stahls (gegenüber dem Nb-legierten Stahl) zu einem weiteren Softening der erweichten WEZ. Deswegen erwies sich diese Kombination aus Legierungszusammensetzung und Schweißwärmeeintrag als kritisch, gestützt durch die Experimente am gleichen S690QL Stahl. Die vorliegende Arbeit hebt den wesentlichen Einfluss der Mikrolegierungselemente auf die Schweißmikrostrukturen und die mechanischen Eigenschaften der Schweißverbindungen hervor. Die Kenntnis dieser empfindlichen Balance zwischen Legierungskonzept des entsprechenden Stahls und geeigneten Schweißparametern ist als kritisch für das fertige Produkt anzusehen. Dazu stellt diese Arbeit spezifische Empfehlungen und Ergebnisse zur Verfügung, um die korrekte Schweißpraxis zu gewährleisten als auch für die Zusammensetzung mikrolegierter hochfester Stähle. N2 - High-strength steels are favoured materials in the industry for production of safe and sustainable structures. The main technology used for joining the components of such steel is fusion welding. Steel alloy design concepts combined with advanced processing technologies have been extensively investigated during the development of High-Strength Low-Alloy (HSLA) steels. However, very few studies have addressed the issue of how various alloy designs, even with limited microalloy addition, can influence the properties of high-strength steel welds. In high-strength steel welding practices, the challenges regarding microstructure evolution and the resulting mechanical properties variation, are of great interest. The main focus is the debate regarding the role of microalloy elements on phase transformation and weld performance. Limited Heat Affected Zone (HAZ) softening and limited austenite grain coarsening are significant design essentials, but the primary goal is to ensure excellent toughness and tensile properties in the steel weld. To achieve this purpose, microalloy elements such as Ti, Nb, or V were intentionally added to modern high-strength steels. The focus of this work was to understand the mechanical properties of HSLA steels resulting from differences in alloy design after joining by modern welding processes. To begin, three microalloyed S690QL steels (Nb, Ti, and Ti+V addition) were investigated. Optical microscopy confirmed that similar mixtures of tempered bainite and martensite predominated the parent microstructure in the three steels, different types of coarse microalloy precipitates were also visible. These precipitates were analysed by using a thermodynamic-based software and then identified by Transmission Electron Microscopy (TEM). Results of mechanical testing revealed that all three steels performed above the standard toughness and tensile strength values, but with varied yielding phenomena. During the welding operation, each of the three steels was joined by using the same filler material. The fused weld metal was influenced by the high dilution of microalloyed elements in the base metal, this was significantly pronounced during the modified spray arc welding technique. As a result, the Nb-containing steel exhibited sufficient amounts of alloy pick-up to transition the microstructure in the weld metal from acicular ferrite to bainite as cooling rate was increased, leading to reduced toughness. This was not observed with the other two steels. A second focus was made on the microstructure Evolution and toughness properties of the coarse and fine grained HAZ as welding parameters changed. In order to characterise the microstructure and austenite grain growth behaviour, physical simulations were conducted. The microalloy precipitates were found to be a dominant factor restricting the austenite grain coarsening. The extent of Austenite coarsening in the HAZ is closely related to the type and volume fraction of each microalloy precipitate. Among the three steels, the Ti-containing HAZ exhibited the smallest extent of grain growth due to the sufficient amount of stable Ti-rich precipitates. Microalloy Addition also markedly influenced the subsequent phase transformation in the HAZ. The formation of intragranular acicular ferrite was promoted by Ti-rich precipitate, acting as favourable nucleation sites of ferrite. This structure enhanced the HAZ toughness owing to fine, high-angle boundaries of ferrite plates. The synergistic effect of Nb and Mo elements was beneficial to improve the HAZ toughness at fast cooling rates by promoting fine lower bainite formation. At high heat input, large upper bainite was formed which caused reduced toughness. The final set of experimental work was concentrated on understanding the HAZ softening mechanisms that influenced variations in the tensile properties of the welded joints. The tensile failure in the softened HAZ or base material depended on the welding parameters and the type of steel being joined. In Ti-containing steel, increased heat Input extended the softened zone width, which caused a significant decrease in hardness and then resulted in failure in this area. Therefore, limited heat Input was used to shift failure position to base material. But this was not observed in the other two steels. Hence, small differences in microalloy addition exhibited large variation in tensile properties. Among the three steels, Ti-containing welds were found to have the most pronounced softening, followed by Ti+V-containing welds and finally Nb-containing welds. This varied softening phenomenon was related to two significant processes supported by the results of additional dilatometry simulation: phase transformation and tempering behaviour. In the Ti-containing steel, the phase Transformation product ferrite was large-sized, as a consequence of initial large austenite grains. This led to the decreased corresponding hardness of the Ti-containing steel. Furthermore, lower tempering resistance in Ti-containing steel as compared to Nb-containing steel, resulted in additional softening effect in the softened HAZ. Therefore, steel alloy identification and heat Input during welding were critical, proven by the experimentation within the same S690QL steel grade. This work emphasised the influence of microalloy elements on weld microstructure and mechanical properties in welded joints. Knowledge of this delicate balance between steel alloy design and appropriate welding parameters is critical for the end product. Thus, this work provides specific recommendations and results to ensure proper welding practice and steel design of microalloyed high-strength steels. T3 - BAM Dissertationsreihe - 155 KW - Microalloyed steel KW - Weld microstructure KW - HAZ softening KW - Mechanical properties PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-391574 SN - 978-3-9818270-4-0 SN - 1613-4249 VL - 155 SP - 1 EP - 183 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-39157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Herbst, Tristan T1 - Konzept zur ganzheitlichen Nachhaltigkeitsbewertung des Abbruchs und der Aufbereitung von Mauerwerk N2 - Mit der vorliegenden Arbeit wurde ein methodisches Konzept zur ganzheitlichen Nachhaltigkeitsbewertung des Abbruchs und der Aufbereitung von Mauerwerk bereitgestellt. Das Bewertungskonzept ermöglicht einen ganzheitlichen Vergleich verschiedener Szenarien für den Abbruch und die Aufbereitung von Mauerwerk unter Berücksichtigung der Anwendung von Mauerwerkbruch und aussortierter Fremdstoffe zur Verwertung. Es kombiniert die Kosten-Wirksamkeitsanalyse, die Stoffflussanalyse, die Ökobilanzierung, die Betrachtung sozialer Aspekte und Wirtschaftlichkeitsbetrachtungen bei gleichzeitiger Berücksichtigung der Materialqualitäten. Das Bewertungskonzept basiert im Kern auf der Kosten-Wirksamkeitsanalyse (KWA) mit der Erweiterung um das Gesamtwirksamkeitswert-Kosten-Verhältnis. Hiermit können sowohl monetäre als auch nicht monetäre Effekte beurteilt werden. Ausgangspunkt der KWA ist ein klar definiertes Zielsystem. Im vorliegenden Fall wurden aus der EU-Abfallrahmenrichtlinie, dem Kreislaufwirtschaftsgesetz und der EU-Bauproduktenverordnung die vier Generalziele „Mensch und Umwelt“, „Ressourcenschonung“, „Ausreichende Materialqualität“ sowie „Wirtschaftlichkeit“ abgeleitet. Die Generalziele "Mensch und Umwelt" und "Ressourcenschonung" wurden weiter in Hauptziele, Ziele und Unterziele unterteilt. Die Quantifizierung und Beurteilung dieser beiden Generalziele erfolgt im Rahmen der Wirksamkeitsanalyse. Zur Quantifizierung der abstrakten Ziele wurden konkrete und messbare Zielkriterien ausgewählt, die üblicherweise bei der Ökobilanzierung und sozialorientierten Betrachtungen verwendet werden, z. B. Umweltauswirkungen, Material- und Energieverbrauch. Nach Ermittlung einer Gesamtwirksamkeit und den anfallenden Kosten für jedes Szenario wird das Gesamtwirksamkeit-Kosten-Verhältnis je Szenario errechnet. Dieses Verhältnis bildet die Grundlage für die abschließende Reihung der untersuchten Szenarien entsprechend ihrer nachhaltigkeitsbezogenen Wertigkeit im Sinne der europäischen und deutschen Kreislaufwirtschaft. Mit dem Konzept wird zukünftigen Nutzern eine strukturierte und methodische Bewertungsgrundlage als Planungsinstrument für Abbruchprojekte an die Hand gegeben. Gleichzeitig werden die Nutzer für bestehende Gestaltungsvarianten für den Abbruch und die Aufbereitung von Mauerwerk sowie für die vielfältigen Anwendungsmöglichkeiten von Mauerwerkbruch sensibilisiert. T3 - BAM Dissertationsreihe - 151 KW - Nachhaltigkeit KW - Kosten- und Wirksamkeitsanalyse KW - Mauerwerkbruch KW - Abbruch KW - Aufbereitung PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-384853 SN - 978-3-9817853-8-8 SN - 1613-4249 VL - 151 SP - 1 EP - 146 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-38485 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Oberleitner, Lidia T1 - Immunochemical determination of caffeine and carbamazepine in complex matrices using fluorescence polarization N2 - Pharmacologically active compounds are omnipresent in contemporary daily life, in our food and in our environment. The fast and easy quantification of those substances is becoming a subject of global importance. The fluorescence polarization immunoassay (FPIA) is a homogeneous mix-and-read format and a suitable tool for this purpose that offers a high sample throughput. Yet, the applicability to complex matrices can be limited by possible interaction of matrix compounds with antibodies or tracer. Caffeine is one of the most frequently consumed pharmacologically active compounds and is present in a large variety of consumer products, including beverages and cosmetics. Adverse health effects of high caffeine concentrations especially for pregnant women are under discussion. Therefore, and due to legal regulations, caffeine should be monitored. Automated FPIA measurements enabled the precise and accurate quantification of caffeine in beverages and cosmetics within 2 min. Samples could be highly diluted before analysis due to high assay sensitivity in the low μg/L range. Therefore, no matrix effects were observed. The antiepileptic drug carbamazepine (CBZ) is discussed as a marker for the elimination efficiency of wastewater treatment plants and the dispersion of their respective effluents in surface water. The development of a FPIA for CBZ included the synthesis and evaluation of different tracers. Using the optimum tracer CBZ-triglycine-5-(aminoacetamido) fluorescein, CBZ concentrations in surface waters could be measured on different platforms: one sample within 4 min in tubes or 24 samples within 20 min on microtiter plates (MTPs). For this study, a commercially available antibody was used, which led to overestimations with recovery rates up to 140% due to high cross-reactivities towards CBZ metabolites and other pharmaceuticals. For more accurate CBZ determination, a new monoclonal antibody was produced. In this attempt, methods for improving the monitoring during the production process were successfully applied, including feces screening and cell culture supernatant screening with FPIA. The new monoclonal antibody is highly specific for CBZ and showed mostly negligible cross-reactivities towards environmentally relevant compounds. Measurements at non-equilibrium state improved the sensitivity and selectivity of the developed FPIA due to slow binding kinetics of the new antibody. Additionally, this measure enables for CBZ determination over a measurement range of almost three orders of magnitude. The comprehensively characterized antibody was successfully applied for the development of sensitive homogeneous and heterogeneous immunoassays. The new antibody made the development of an on-site measurement system for the determination of CBZ in wastewater possible. After comprehensive optimization, this automated FPIA platform allows the precise quantification of CBZ in wastewater samples only pre-treated by filtration within 16 min. Recovery rates of 61 to 104% were observed. Measurements in the low μg/L range are possible without the application of tedious sample preparation techniques. Different FPIA platforms including MTPs, cuvettes and tubes were successfully applied. For the choice of the right format, the application field should be considered, e.g. desired sample throughput, usage for optimization or characterization of antibodies or if a set-up for routine measurements is sought for. For high sample throughput and optimization, FPIA performance on MTPs is advantageous. The best results for the application to real samples were obtained using kinetic FP measurements in cuvettes. T3 - BAM Dissertationsreihe - 154 KW - Antibody KW - Coffee KW - ELISA KW - Fluorophore tracer KW - Wastewater PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-392506 SN - 978-3-9818270-2-6 SN - 1613-4249 VL - 154 SP - 1 EP - 124 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-39250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Drzymala, Sarah T1 - Instrumental analysis, metabolism and toxicity of cis- and trans-zearalenone and their biotransformation products N2 - Trans-Zearalenone(ZEN)is a non-steroidal estrogenic mycotoxin which frequently contaminates cereal grains worldwide. Ingestion of food and feed containing ZEN causes numerous mycotoxicoses in animals and possibly humans with pronounced estrogenic effects. Due to the trans-configurated double bond, ZEN isomerizes to the cis-configuration upon the influence of light. This work investigates the instrumental analysis, metabolism and toxicity of ZEN and cis- ZEN. The first part focused on the determination of ZEN in edible oils. Due to a maximum level of 400 µg/kg ZEN in the European Union (EU), reliable analytical methods are needed. A comprehensive method comparison proved dynamic covalent hydrazine chemistry (DCHC) to be the most suitable approach. Thus, an automated solid phase extraction (SPE) coupled online to high performance liquid chromatography (HPLC) was developed with the novelty of a covalent SPE step comprising the DCHC principle. The automated online system allows an accurate, selective and reliable quantification of ZEN in edible oils in compliance with EU performance criteria while significantly reducing workload and thereby personnel costs. In contrast to ZEN, reference standards and analytical methods are missing for cis- ZEN which causes a lack of data on the occurrence, fate and risks of cis-ZEN. Therefore, a native and an isotopically labeled cis-ZEN standard were synthesized and implemented in an existing stable isotope dilution analysis HPLC tandem mass spectrometry (HPLC-MS/MS) method. Using this method, a large extent of cis-ZEN formation was observed for ZEN contaminated maize germ oils when exposed to daylight which confirms that cis-ZEN can be a relevant food contaminant and should be considered in the analysis of food and feed. Furthermore, this work investigated the in vitro phase I metabolism of ZEN and cis-ZEN in rat and human liver microsomes by using HPLC-MS and -MS/MS analyses. The metabolic pathways of cis-ZEN were found to be essentially similar to ZEN including reduction and oxidation reactions generating α- and β-cis- zearalenol as well as 13- and 15-OH-cis-ZEN. A previously unidentified oxidative metabolic pathway for both isomers of ZEN results in the formation of cis-ZEN-11,12-oxide and ZEN-11,12-oxide in human liver microsomes. The estrogenicity of cis-ZEN and its reductive metabolites was assessed using the E-Screen assay. cis-ZEN proved to be slightly more estrogenic than ZEN. Biotransformation of cis-ZEN to β-cis-ZEL corresponds to a detoxification, whereas metabolism to α-cis-ZEL resembles a metabolic activation as its estrogenicity considerably exceeds that of cis-ZEN. The catecholic metabolites can be expected to show a decreased estrogenicity as demonstrated for 15-OH- ZEN. Independent of the estrogenic effects, the catecholic and epoxidic metabolites identified in this work can be expected to act genotoxic and carcinogenic. The epoxides in particular could fundamentally change the widely accepted view of ZEN causing adverse effects exclusively through endocrine disrupting actions. T3 - BAM Dissertationsreihe - 152 KW - Hydrazinchemie KW - Isotopenstandard KW - SPE-HPLC Automatisierung KW - Zearalenon KW - Isomerisierung PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-386016 SN - 978-3-9817853-9-5 SN - 1613-4249 VL - 152 SP - 1 EP - 160 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-38601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Sobol, Oded T1 - Hydrogen assisted cracking and transport studied by ToF-SIMS and data fusion with HR-SEM N2 - For almost 150 years it is known that hydrogen has a deleterious effect on the mechanical properties of metallic components. Nowadays, the problem of hydrogen assisted degradation is highly relevant in energy related fields due to the massive use of steel as a structural component in these applications and its sensitivity to hydrogen. Since the discovery of hydrogen assisted cracking (HAC), researchers studied intensively and suggested possible explanations and mechanisms in order to define how hydrogen is affecting the material. In general, it is considered that hydrogen changes the mechanical properties more in terms of ductility (deformation capacities) than in strength (load capacities). Hydrogen concentration is one of three crucial factors in the degradation process, together with the microstructure of the material and the internal/external mechanical load. The relatively high concentration of hydrogen resulting in this loss of ductility can originate during production or before service (e.g. welding processes) and during service (i.e. catholically protected systems to eliminate corrosion processes in sour environments). In parallel to the theoretical work, tremendous efforts were, and are still, invested in searching for a proper method to elucidate, map and quantify the hydrogen in the microstructure, which is the basis for this work. For steels, the focus is mainly on the observations of diffusion processes and the interaction of hydrogen with the microstructure in regions with high local stresses/strains (for example around evolving cracks). The challenge for reaching this goal arises from the fact that accurate indication of hydrogen by means of position, unlike heavier atoms, can be made only by mass spectrometry or by interaction with another element (e.g. silver decoration, special coating and resonant nuclear reaction by nitrogen). In addition to this, the difficulty recording the hydrogen behavior while it rapidly diffuses through the material, leaving only the unpredicted failure, should be taken into account. Although using powerful characterization methods, models and computational simulations, the key to defining the mechanisms behind HAC is still under debate and not fully understood. The relationship between material and hydrogen is determined by three factors, i.e., the material structure and microstructure – determining the physical properties, the mechanical load applied on the material and the hydrogen concentration. It is well known that in order to have a complete definition of HAC these three factors must be examined locally with the minimal scale and the maximal resolution reachable. The major gap is the lack in such a characterization method or a technique by which one has the ability to detect and observe the hydrogen in the metallic microstructure. The commonly used techniques nowadays are capable of characterization of the microstructure without the ability to observe the hydrogen distribution. Global hydrogen concentration and localized hydrogen observation are possible by some techniques which are incapable of indicating a change in the structure or microstructure therefore a comprehensive overview can be gained only by combining several methods. In the presented research, secondary ion mass spectrometry (SIMS) was adopted as the main tool to detect and locally map the hydrogen distribution in two types of duplex stainless steel grades: EN 1.4462 (standard 2205 duplex stainless steel) and EN 1.4162 (2101 lean duplex stainless steel). The term duplex stainless steel (DSS) refers to the austenitic-ferritic microstructure of the steel where the combination of physical and mechanical properties of the two phases is achieved. The DSS was selected as a case study for this work due to the wide use of this grade in many energy and the lack of knowledge on hydrogen behavior in two-phase containing microstructures. ToFSIMS was exploited in-situ and ex-situ in three experimental approaches during or following an electrochemical charging procedure. This type of hydrogen charging was selected as it simulated a procedure of cathodic protection of most sub-water oil and gas extraction and delivery systems. The experimental procedures were: 1. Ex-situ charging followed by ToF-SIMS imaging for basic understanding of hydrogen distribution. 2. Ex-situ charging followed by in-situ mechanical loading to obtain information on hydrogen behavior around a propagating crack. 3. In-situ permeation of hydrogen through a steel membrane inside the ToF-SIMS to obtain information on diffusion behavior of hydrogen in a two-phase microstructure. The comprehensive view of the effect of hydrogen on steel was gained by using supplementary methods, such as high resolution scanning electron microscopy (HR-SEM), focused ion beam (FIB) and electron back-scattered diffraction (EBSD). The state of the art in this work lies in applying both: in-situ experimental approaches and data treatment of the ToF-SIMS raw data. The data treatment includes the combination of data from several sources (data fusion). The results for the ex-situ charging followed by static sample imaging and data fusion showed that when the analyzed surface is directly exposed to the electrolyte the degradation is pronounced differently in the ferrite, austenite and interface. The degradation mechanisms in the ferrite and austenite were reflected by the formation of cracks on the surface of both, where a high concentration of hydrogen was obtained. This result supports the assumption that hydrogen is attracted to highly deformed regions. The advantage of using in-situ charging/permeation in comparison to ex-situ charging is that the effect of hydrogen on the ferrite and austenite phases when the hydrogen is evolving from within the microstructure is realized, in comparison to when the analyzed surface is initially exposed directly to the electrolyte. In both experiments the ferrite was observed as a fast diffusion path for the hydrogen. The faster diffusion of hydrogen through the ferrite is expected due to the higher diffusion coefficient, however, a direct proof for the diffusion sequence in this scale was never shown. Most significant results were achieved by the ‘core’ experiments of this research. These experiments included the design of a novel dynamic mechanical loading device to apply an external load during SIMS imaging of a hydrogen precharged-notched sample. For the first time it was shown that plastic deformation induced by applying a mechanical load is resulting in a redistribution of hydrogen locally around the notch. T3 - BAM Dissertationsreihe - 160 KW - Duplex stainless steels KW - Hydrogen assisted cracking KW - Time-of-Flight secondary ion mass spectrometry KW - Data fusion PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-447331 SN - 1613-4249 VL - 160 SP - I EP - 180 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-44733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Seeger, Dirk M. T1 - Wasserstoffaufnahme und -diffusion in Schweißnahtgefügen hochfester Stähle N2 - Die im Rahmen dieser Arbeit vornehmlich untersuchten supermartensitischen Stähle werden im Offshore-Bereich als geschweißte Flowlines eingesetzt. Diese Stähle sollen nach dem Prinzip „Fitness for Purpose“ bisher verwendete höher legierte Werkstoffe ersetzen. Die neuen Stähle sind aufgrund ihrer Korrosionsbeständigkeit und Festigkeit sehr gut für das beabsichtigte Einsatzgebiet geeignet. Im Sour Service besteht jedoch die Gefahr der Wasserstoffaufnahme mit nachfolgender Rissbildung. Zur Beurteilung der Risssicherheit der Schweißverbindungen sowie des unbeeinflussten Werkstoffes im Anlieferungszustand werden Wasserstofftransportdaten benötigt. Diese werden im Rahmen dieser Arbeit mittels Permeationsexperimenten an Stahlmembranen unter realistischen Einsatzbedingungen quantifiziert, so dass die Ergebnisse in computergestützte Lebensdauerberechnungen Eingang finden können. Die Untersuchungen zeigten, dass der Diffusionskoeffizient des jeweiligen Werkstoffs bzw. Gefüges nicht von der chemischen Zusammensetzung der Prüflösung abhängt. Die Subsurface-Konzentration, das ist die in die Werkstoffe eintretende Wasserstoff- konzentration, hängt dagegen vom pH-Wert, von der Schwefelwasserstoffsättigung und von der Zusammensetzung der Prüflösung ab. Die Abhängigkeit der Subsurface-Konzentration von der chemischen Zusammensetzung der Prüflösung wird zudem entscheidend durch die Chloridionenkonzentration bestimmt. Darüber hinaus wurde festgestellt, dass die chemische Zusammensetzung supermartensitischer Stähle das Permeationsverhalten erheblich beeinflusst. Beim Vergleich des Permeationsverhaltens von wärmebehandelten Proben mit Proben realer Schweißnahtgefüge ergaben sich Differenzen in Höhe einer Größenordnung. Das bedeutet letztlich, dass das Permeationsverhalten von Wasserstoff in solchen Schweiß- verbindungen für jeden Fall, abhängig von der chemischen Zusammensetzung und Temperaturführung, separat zu untersuchen ist. Zusätzlich wurde die Wasserstoffdiffusion und -aufnahme in Schweißnahtgefügen höchstfester Feinkornbaustähle untersucht. Die Ergebnisse zeigten, dass diese Werkstoffe schon bei geringfügig abgesenkten pH-Werten, wie sie in Spalten oder Rissen aufgrund von Hydrolyse vorherrschen können, Wasserstoff aufnahmen. Die Subsurface-Konzentration war wiederum von der chemischen Zusammensetzung der Prüfelektrolytlösung abhängig. Generell waren die Diffusionskoeffizienten und die Subsurface-Konzentrationen stark vom Gefüge abhängig. Der Vergleich der Resultate der höchstfesten Feinkornbaustähle S 1100 und S 890 zeigte, dass die Wasserstoffpermeation bei diesen Werkstofftypen weniger große Unterschiede aufwies als bei den supermartensitischen Stählen. N2 - The mainly investigated supermartensitic stainless steels are experiencing first applications in the offshore technology as welded flowlines. These materials are intended to replace higher alloyed steels following the principle „Fitness for Purpose“. These new types of steels are very suitable for those applications, because of their corrosion resistance and of their strength. But specially for the use under sour service conditions there exists the risk of hydrogen uptake with subsequent cracking. To evaluate the cracking resistance of the welds as well as of the unaffected material in the as-delivered condition, it is necessary to determine hydrogen transport data. Within the scope of this research project, such data are quantified in permeation experiments carried out on steel membranes under realistic application conditions. This procedure allows it to use the results in computer-assisted lifetime calculations. It was found that the diffusion coefficients of the respective materials and structures do not depend on the chemical composition of the electrolytic solution. By contrast, the subsurface concentration, i. e. the hydrogen concentration infiltrating into materials, depends on the pH value, on the H2S-saturation and on the composition of the electrolytic solution. The concentration of chloride ions was found to be the strongest factor of influence for the dependence of the subsurface concentration on the chemical composition of the electrolytic solution. In addition, a major influence of the chemical composition of supermartensitic steels on the permeation behavior has been established. The comparison of the permeation behaviour between heat treated specimens and specimens with realistic weld microstructure revealed that especially the diffusion coefficients of the heat treated specimens increased by about ten times. This means that the hydrogen permeation behaviour in such joints must be determined separately in each individual case depending on chemical composition and on the heat control. Additionally, the hydrogen diffusion and uptake in welded microstructures of ultra-high strength fine-grained structural steels was examined. The respective results showed that hydrogen uptake took place by a slight decrease of the pH value. Such decrease could be caused by hydrolysis, e. g. in crevices. The subsurface concentration was also dependent on the chemical composition of the electrolyte. A generally strong dependency of the diffusion coefficient and the subsurface concentration on the microstructure was found. A comparison of the results of both investigated steels S 1100 and S 890 showed that the hydrogen permeation in these materials does not differ as much as in the supermartensitic stainless steels. T3 - BAM Dissertationsreihe - 5 KW - Wasserstoffaufnahme und -diffusion KW - Schweißnahtgefügen hochfester Stähle PY - 2005 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-1535 SN - 978-3-86509-271-3 SN - 1613-4249 VL - 5 SP - 1 EP - 144 PB - Wirtschaftsverlag NW CY - Bremerhaven AN - OPUS4-153 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Mente, Tobias T1 - Numerische Simulation der wasserstoffunterstützten Rissbildung in austenitisch-ferritischen Duplexstählen N2 - In der Offshore-Industrie werden seit langer Zeit austenitisch-ferritische Duplexstähle eingesetzt, da sie im Vergleich zu herkömmlichen austenitischen hochlegierten Stählen bessere Festigkeitseigenschaften aufweisen und gegenüber rein ferritischen hochlegierten Stählen eine bessere Verformbarkeit bei gleichzeitig verbesserter Korrosionsbeständigkeit, auch in aggressiver Umgebung, bieten. Dennoch zeigt das Schrifttum, dass es trotz dieser guten Eigenschaften zum Versagen von Bauteilen kommen kann, bei dem Wasserstoff für die Schadensursache eine entscheidende Rolle spielt. Zur Klärung der Schädigungsmechanismen unter Einfluss von Wasserstoff kann die numerische Simulation einen entscheidenden Beitrag leisten, da sich experimentelle Ergebnisse besser deuten und zwischen Labortests bis hin zu Bauteilversuchen übertragen lassen. Bisher wurden jedoch meistens makroskopische numerische Betrachtungen zur wasserstoffunterstützten Werkstoffschädigung in Duplexstählen durchgeführt. Die Duplexstähle bestehen jedoch nahezu aus gleichen Teilen an austenitischer und ferritischer Phase, welche unterschiedliche mechanische Eigenschaften als auch Transporteigenschaften für Wasserstoff aufweisen. Zugleich bedingt dies eine unterschiedliche Empfindlichkeit für eine wasserstoffunterstützte Werkstoffschädigung. Daher bestand die Aufgabe dieser Arbeit in der Erstellung eines numerischen Mesomodells eines realen Duplexgefüges, mit dem die Abbildung des Wasserstofftransportverhaltens, der mechanischen Spannungen und Dehnungen sowie der Rissinitiierung und des Rissfortschrittes in den einzelnen Phasen möglich ist. Zudem werden moderne Röntgenbeugungsexperimente genutzt, um den Einfluss von Wasserstoff auf die phasenspezifischen mechanischen Eigenschaften zu bestimmen. Für den Transport von Wasserstoff konnte eine deutliche Abhängigkeit von der Orientierung der austenitischen und ferritischen Phase im Gefüge gezeigt werden, wobei der Wasserstofftransport vornehmlich über die ferritische Phase erfolgt und der Wasserstoff im Austenit stärker getrappt wird. Die numerische Analyse der mechanischen Spannungen und Dehnungen in den Phasen des Duplexstahls zeigte, dass bei einer makroskopisch elastischen Beanspruchung des Duplexgefüges bereits lokal in den Phasen plastische Verformungen auftreten können. Damit verbunden ist ein erhöhtes Risiko für eine wasserstoffunterstützte Werkstoffschädigung bereits im makroskopisch elastischen Bereich, wenn ausreichend hohe Wasserstoffkonzentrationen im Duplexgefüge vorliegen. Die Ergebnisse der numerischen Simulation entsprechen den experimentellen Beobachtungen zum Wasserstofftransport und den lokalen Beanspruchungen in realen Duplexgefügen. Das Modell erlaubt somit die Identifikation risskritischer Bereiche und kritischer Kombinationen von Wasserstoffkonzentration und lokaler Beanspruchung im Duplexgefüge. Die Ergebnisse der simulierten wasserstoffunterstützten Werkstofftrennung stimmen mit experimentellen Beobachtungen zugehöriger Bruchtopographien überein. Insgesamt wird erstmalig eine numerische Simulation der wasserstoffunterstützten Werkstoffschädigung im Duplexstahl, unter Berücksichtigung der lokalen Beanspruchung und Wasserstoffverteilung in den spezifischen Phasen (Austenit / δ-Ferrit), durchgeführt. Die Ergebnisse korrelieren mit experimentellen Beobachtungen und erlauben somit ein besseres Verständnis für die Mechanismen der wasserstoffunterstützten Werkstoffschädigung in Duplexstählen. Die Simulationen unterstützen die Deutung experimenteller Ergebnisse und ermöglichen die Übertragbarkeit auf reale Bauteile. N2 - Duplex stainless steels have been used for a long time in the offshore industry, since they have higher strength than conventional austenitic stainless steels and they exhibit a better ductility as well as an improved corrosion resistance in harsh environments compared to ferritic stainless steels. However, despite these good properties the literature shows some failure cases of duplex stainless steels in which hydrogen plays a crucial role for the cause of the damage. Numerical simulations can give a significant contribution in clarifying the damage mechanisms. Because they help to interpret experimental results as well as help to transfer results from laboratory tests to component tests and vice versa. So far, most numerical simulations of hydrogen-assisted material damage in duplex stainless steels were performed at the macroscopic scale. However, duplex stainless steels consist of approximately equal portions of austenite and δ-ferrite. Both phases have different mechanical properties as well as hydrogen transport properties. Thus, the sensitivity for hydrogen-assisted damage is different in both phases, too. Therefore, the objective of this research was to develop a numerical model of a duplex stainless steel microstructure enabling simulation of hydrogen transport, mechanical stresses and strains as well as crack initiation and propagation in both phases. Additionally, modern x-ray diffraction experiments were used in order to evaluate the influence of hydrogen on the phase specific mechanical properties. For the numerical simulation of the hydrogen transport it was shown, that hydrogen Diffusion strongly depends on the alignment of austenite and δ-ferrite in the Duplex stainless steel microstructure. Also, it was proven that the hydrogen transport is mainly realized by the ferritic phase and hydrogen is trapped in the austenitic phase. The numerical analysis of phase specific mechanical stresses and strains revealed that if the duplex stainless steel is macroscopically loaded in the elastic range local plastic deformation occurs in both Austenite and δ-ferrite phase. Thus, there will be an increasing risk for hydrogen-assisted damage already in the macroscopic elastic range, if sufficiently high hydrogen concentrations are present in the microstructure. The results of the numerical simulations correlate well with experimental observations of the hydrogen transport and local stresses and strains in the duplex stainless steel microstructure. Therefore, the model allows identification of crack critical areas as well as crack critical combinations of local hydrogen concentration and local phase specific mechanical load. The results of the numerical fracture analyses agrees well with experimental observations on hydrogen-assisted cracking in duplex stainless steel with corresponding fracture topographies. Altogether, hydrogen-assisted material damage at the mesoscale level was simulated for the first time taking into account the local stresses and strains as well as the hydrogen distribution in the specific phases (austenite / δ-ferrite) of the duplex stainless steels. The results correlate well with experimental observations and thus allow a better insight in the mechanism of hydrogen-assisted material damage. The numerical simulations support the interpretation of experimental results and allow transferring results of laboratory tests to real components. T3 - BAM Dissertationsreihe - 129 KW - Duplexstahl KW - Numerische Simulation KW - Finite-Elemente-Methode KW - wasserstoffunterstützte Rissbildung PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-5006 SN - 978-3-9816668-9-2 VL - 129 SP - 1 EP - 225 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-500 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Bertovic, Marija T1 - Human Factors in Non-Destructive Testing (NDT): Risks and Challenges of Mechanised NDT T1 - Human Factors bei der zerstörungsfreien Prüfung (ZfP): Risiken und Herausforderungen mechanisierter ZfP N2 - Non-destructive testing (NDT) is regarded as one of the key elements in ensuring quality of engineering systems and their safe use. A failure of NDT to detect critical defects in safetyrelevant components, such as those in the nuclear industry, may lead to catastrophic consequences for the environment and the people. Therefore, ensuring that NDT methods are capable of detecting all critical defects, i.e. that they are reliable, is of utmost importance. Reliability of NDT is affected by human factors, which have thus far received the least amount of attention in the reliability assessments. With increased use of automation, in terms of mechanised testing (automation-assisted inspection and the corresponding evaluation of data), higher reliability standards are believed to have been achieved. However, human inspectors, and thus human factors, still play an important role throughout this process, and the risks involved in this application are unknown. The overall aim of the work presented in this dissertation was to explore for the first time the risks associated with mechanised NDT and find ways of mitigating their effects on the inspection performance. Hence, the objectives were to (1) identify and analyse potential risks in mechanised NDT, (2) devise measures against them, (3) critically address the preventive measures with respect to new potential risks, and (4) suggest ways for the implementation of the preventive measures. To address the first two objectives a risk assessment in form of a Failure Modes and Effects Analysis (FMEA) was conducted (Study 1). This analysis revealed potential for failure during both the acquisition and evaluation of NDT data that could be assigned to human, technology, and organisation. Since the existing preventive measures are insufficient to defend the system from identified failures, new preventive measures were suggested. The conclusion of the study was that those preventive measures need to be carefully considered with respect to new potential risks, before they can be implemented, thus serving as a starting point for further empirical studies. To address the final two objectives, two preventive measures, i.e. human redundancy and the use of automated aids in the evaluation of NDT data, were critically assessed with regard to potential downfalls arising from the social interaction between redundant individuals and the belief in the high reliability of automated aids. The second study was concerned with the potential withdrawal of effort in sequential redundant teams when working collectively as opposed to working alone, when independence between the two redundant individuals is not present. The results revealed that the first redundant inspector, led to believe someone else will conduct the same task afterwards, invested the same amount of effort as when working alone. The redundant checker was not affected by the information about the superior experience of his predecessor and—instead of expected withdrawal of effort—exhibited better performance in the task. Both results were in contradiction to the hypotheses, the explanations for which can be found in the social loafing and social compensation effects and in the methodological limitations. The third study examined inappropriate use of the aid measured in terms of (a) agreement with the errors of the aid in connection to the frequency of verifying its results and in terms of (b) the overall performance in the task. The results showed that the information about the high reliability of the aid did not affect the perception of that aid’s performance and, hence, no differences in the actual use of the aid were to be expected. However, the participants did not use the aid appropriately: They misused it, i.e. agreed with the errors committed by the aid and disused it, i.e. disagreed with the correct information provided by the aid, thereby reducing the overall reliability of the aid in terms of sizing ability. Whereas aid’s misuse could be assigned to low propensity to take risks and reduced verification behaviour because of a bias towards automation, the disuse was assigned to the possible misunderstanding of the task. The results of these studies raised the awareness that methods used to increase reliability and safety, such as automation and human redundancy, can backfire if their implementation is not carefully considered with respect to new potential risks arising from the interaction between individuals and complex systems. In an attempt to minimise this risk, suggestions for their implementation in the NDT practice were provided. N2 - Die zerstörungsfreie Prüfung (ZfP) wird als eines der wichtigsten Qualitätssicherungsmaßnahmen für technische Systeme und deren sichere Anwendung betrachtet. Wenn die ZfP kritische Defekte in sicherheitsrelevanten Anlagen, wie z.B. in der Kerntechnik, nicht entdeckt, kann dies zu katastrophalen Folgen für die Umwelt und den Menschen führen. Deshalb muss gewährleistet sein, dass die Verfahren der ZfP zuverlässig sind, d.h. dass sie alle kritischen Defekte entdecken können. Die Zuverlässigkeit der ZfP wird von menschlichen Faktoren beeinflusst, die jedoch bisher in diesem Feld selten betrachtet wurden. Durch den verstärkten Einsatz von Automatisierung beispielsweise bei der mechanisierten Prüfung (automatisierungsunterstütze Prüfung und die zugehörige Datenbewertung) wurde die Erreichung eines höheren Zuverlässigkeitsniveaus erwartet. Menschliche Faktoren sind trotz der Automatisierung immer noch bedeutsam für den gesamten Prüfprozess. Die Risiken der stärkeren Automatisierung der Prüfungen sind nicht vollständig bekannt. Das generelle Anliegen dieser Arbeit ist die erstmalige Feststellung der Risiken der mechanisierten ZfP und das Aufzeigen von Möglichkeiten, diese zu verringern. Die konkreten Ziele dieser Arbeit sind dementsprechend (1) die potenziellen Risiken bei der mechanisierten Prüfung aufzuzeigen und zu analysieren, (2) präventive Maßnahmen für diese Risiken abzuleiten, (3) diese präventiven Maßnahmen kritisch hinsichtlich neuer Risiken zu beleuchten sowie (4) Umsetzungsvorschläge aufzuzeigen. Für die ersten zwei Ziele wurde eine Risikoabschätzung mit der Fehlzustandsart- und auswirkungsanalyse (FMEA) durchgeführt (Studie 1). Diese Analyse ergab Fehlermöglichkeiten während der Datenaufnahme und –bewertung bei der mechanisierten ZfP, die dem Menschen, der Technik und der Organisation zugeordnet werden können. Weil die vorhandenen präventiven Maßnahmen unzureichend für die Vermeidung der identifizierten Fehler waren, wurden neue präventive Maßnahmen vorgeschlagen. Die Schlussfolgerung der Studie zeigt, dass vor der Umsetzung präventiver Maßnahmen eine sorgfältige Betrachtung hinsichtlich neuer potenzieller Risiken erfolgen muss. Dies war der Ausgangspunkt für die weiteren empirischen Untersuchungen. Für die letzten beiden Ziele wurden zwei präventive Maßnahmen untersucht: die menschliche Redundanz und die Anwendung automatisierter Assistenzsysteme bei der ZfP-Datenbewertung. Im Fokus lagen potenzielle Schwachstellen, die aus sozialer Interaktion der redundanten Individuen und aus dem Vertrauen in die hohe Zuverlässigkeit der automatisierten Assistenzsysteme entstehen können. In der zweiten Studie wurde die potenzielle Reduzierung der Anstrengung in sequentiellen redundanten Teams untersucht, indem die gemeinsame Aufgabenbearbeitung in Teams der individuellen Aufgabenbearbeitung gegenüber gestellt wurde. Die Ergebnisse zeigten, dass der erste redundante Prüfer, dem mitgeteilt wurde, dass ein anderer Prüfer die Prüfaufgabe nach ihm durchführen wird, die gleiche Anstrengung investierte wie der individuelle Bearbeiter. Der zweite redundante Prüfer (redundant checker) wurde durch die Information, dass sein Vorprüfer die höherwertige Erfahrung besitzt, nicht hypothesenkonform beeinflusst - anstelle der erwarteten Rücknahme der Anstrengung - zeigte er eine bessere Leistung bei der Durchführung der Aufgabe. Beide Ergebnisse stehen in Widerspruch zu den Hypothesen und können durch social loafing und social compensation Effekte sowie durch methodische Aspekte erklärt werden. In der dritten Studie wurde die unangemessene Nutzung eines automatisierten Assistenzsystems untersucht operationalisiert als (a) die Übereinstimmung mit Fehlern des Systems verbunden mit der Überprüfungshäufigkeit seiner Ergebnisse und (b) die Leistung bei der Aufgabe. Die Ergebnisse zeigten, dass die Information über die hohe Zuverlässigkeit des Systems die Wahrnehmung der Systemleistung nicht beeinflusste und folglich keine Unterschiede in der tatsächlichen Nutzung des Systems zu finden waren. Die Probanden nutzten jedoch das System nicht angemessen: sie stimmten den Fehlern des Systems zu (automation misuse) und sie lehnten korrekte Informationen des Systems ab (automation disuse). So reduzierten sie die Gesamtzuverlässigkeit des Systems, zumeist bei der Fehlergrößenbestimmung. Während misuse mit einer niedrigen Risikobereitschaft und eingeschränkten Überprüfungsverhalten auf Grund des automation bias erklärt werden kann, wird disuse dem möglichen Missverstehen der Aufgabe zugeordnet. Die Ergebnisse dieser Studien haben das Bewusstsein dafür erhöht, dass Methoden zur Erhöhung der Zuverlässigkeit und Sicherheit sowie Automatisierung und menschliche Redundanz versagen können, wenn die potenziellen Risiken ihrer Umsetzung aufgrund der Interaktion zwischen Mensch und Technik nicht bedacht werden. Um diese Risiken bei der Anwendung präventiver Maßnahmen zu minimieren, wurden Vorschläge für die ZfP-Praxis erarbeitet. T3 - BAM Dissertationsreihe - 145 KW - Failure modes and effects analysis KW - Zuverlässigkeit KW - Menschliche Faktoren KW - Zerstörungsfreie Prüfung KW - Fehlzustandsart- und auswirkungsanalyse KW - Personelle Redundanz KW - Human factors KW - Non-destructive testing KW - Human redundancy KW - Automation bias KW - Reliability PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:83-opus4-71292 SN - 978-3-9817502-7-0 DO - https://doi.org/10.14279/depositonce-4685 SN - 1613-4249 VL - 145 SP - 1 EP - 161 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-36090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Kanzler, Daniel T1 - Zuverlässigkeitsanalyse von digitalen Radiographie-Systemen bei der Prüfung von realen Materialdefekten N2 - Die zerstörungsfreie Prüfung (ZfP) ist aus solchen Bereichen unseres Lebens nicht mehr wegzudenken, in denen Schäden mit hohen Folgekosten oder Gefährdungen von Menschenleben entstehen können (Beispiele: Transportwesen, Energieerzeugung, Chemieindustrie). In der Praxis kann ein Prüfsystem an seine Grenzen geraten, z.B. bei kleinen Defekten. Defekte mit kritischer Größe werden möglicherweise nicht detektiert. Daher müssen probabilistische Bewertungsverfahren das Prüfsystem beschreiben. Es wird eine objektive Qualitätskennzahl gesucht, auf deren Basis die Anwendbarkeit der Prüfmethode definiert werden soll. Die Auffindwahrscheinlichkeit (engl. probability of detection - POD) erfüllt diese Anforderung. Die POD zeigt auf Basis des Zusammenhangs und der Streuung der Daten, ob das Verfahren für die Prüftätigkeit akzeptiert werden kann oder noch verbessert werden muss. Das ursprüngliche POD-Verfahren wurde für quasi eindimensionale Defekte in dünnen Luftfahrtbauteilen entwickelt. In der industriellen Realität ist diese Bewertung ein Balanceakt zwischen Statistik und Durchführbarkeit: Die Prüfung soll mit realen Defektdaten für die spätere Produktion des Bauteils (bzw. wiederkehrende Wartungsprüfung) bewertet werden. Doch die notwendige Gegenüberstellung zwischen Schliffdaten, für die Erfassung der wahren Defektgröße von räumlich ausgeprägten Defekten und dem Signal eines ZfP-Systems stellt sich als herausfordernde und kostenintensive Aufgabe heraus. Sowohl die Aufstellung eines gemeinsamen Koordiantensystems als auch die Beschreibung und Angleichung der Daten stellen eine notwendige Vorarbeit dar. In dieser Arbeit wird ein mögliches Vorgehen entwickelt, dass im Weiteren eingesetzt werden kann. Während in der Literatur zum Thema POD häufig die Begrenzung des Einsatzes einer eindimensionalen POD (POD mit einem Defektparameter) für reale Defekte bereits erkannt wurde, soll außerdem in dieser Arbeit das Verfahren auf der Signalseite umfassender erweitert werden, um die Einbeziehung realer Defekte in die POD-Bewertung zu ermöglichen. Hierfür werden mit Hilfe dieser Arbeit zwei wesentliche Neuerungen in der POD-Bewertung eingeführt: 1. Die Anzeigenfläche wird als wichtiges Indiz zur Detektion in die Bewertung eingeführt. Dabei zeigt der Ansatz einer Observer-POD, bei dem der Detektierbarkeit eines Defekts beschrieben wird, eine Möglichkeit in die Bewertung zu erweitern. Jedoch wird die notwendige Datenanzahl die für eine Observer-POD selten mit Experimenten erreicht. Daher schlagen wir die Einführung eines Glättungsalgorithmus vor, um auch auf der Basis von wenigen Daten die Flächenabhängigkeit zu erfassen. Der Algorithmus wird hierbei durch simulierte Daten auf seine Funktionsfähigkeit überprüft, bevor er auf reale Defekte angewendet wird. Gleichzeitig helfen die simulierten Daten einen Vergleich zu den vorhergegangenen Ansätzen zu ermöglichen. 2. Darüber hinaus reichen die Daten der realen Defekte häufig nicht aus, um die statistische Forderung zu gewährleisten, so dass es notwendig, wird künstliche Defekte mit einzubeziehen. Deshalb sollen die vorhanden künstlichen Defekte in Form von Referenzdefekten mit einbezogen werden, um die statistische Grundlage zu erhöhen. Für die Prüfung von Referenzdefekten sind jedoch wichtige Einflussgrößen (z.B. Oberflächenrauhigkeit) nicht vorhanden. Wegen der unterschiedlichen Aussagekraft der Daten und zur Vermeidung einer zu optimistischen Abschätzung, ist eine einfache Mischung der Daten ausgeschlossen. Um realen Defekten eine Möglichkeit dafür zu schaffen, dass die Eigenschaften der realen Defekte angemessen auf das Ergebnis der Bewertung des Verfahrens Einfluss nehmen können, wird eine gewichtete Kombination der Defektdaten für die Bewertung vorgestellt. Das Vorgehen wird am Beispiel der radiographischen Prüfung einer elektronenstrahlgeschweißten Naht durchgeführt. Die Schweißnaht verbindet den Deckel zur Außenwand eines Kupferbehältern, der für die spätere Endlagerung von verbrauchten Brennstäben aus Kernkraftwerken entwickelt wurde. Die Messergebnisse stammen aus von der Firma Posiva Oy, dem zuständigen Unternehmen für die Endlagerung von verbrauchten Brennstäben aus Kernkraftwerken in Finnland. Hierbei stellt die POD-Bewertung ein wichtiges Element in der Gesamtrisikobewertung für das Endlagersystem dar. T3 - BAM Dissertationsreihe - 153 KW - Radiographie KW - POD KW - Zuverlässigkeit KW - Zerstörungsfreie Prüfung (ZfP) KW - Probabilistische Bewertung PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-388723 SN - 978-3-9818270-1-9 SN - 1613-4249 VL - 153 SP - iii EP - 134 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-38872 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -