TY - CONF A1 - Barnefske, Lena A1 - Petersen, Andreas A1 - Heidmann, Gerd A1 - Sturm, Heinz T1 - Development of a self-healing silicone rubber for high-voltage cable accessories N2 - One of the biggest problems in high-voltage silicone rubber insulation cable accessories is the damage on electrical treeing, initiated by partial discharges. The electrical treeing starts at unavoidable imperfections inside the material or at interfaces. The damage is usually irreversible and leads around the starting points to a partial destruction of the material. To prolong the lifetime and thereby to increase the assurance of the structural component commonly, for mechanical improvement constituted filler is modified to obtain a self-healing silicone rubber. Damage mechanism is analysed to address the filler to the damage mode. T2 - DGP-Frühjahrstagung und EPS-CMD27 CY - Berlin, Germany DA - 11.03.2018 KW - Self-healing silicone rubber KW - HV cable accessories PY - 2018 AN - OPUS4-45333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weise, Matthias A1 - Hertwig, Andreas A1 - Beck, Uwe T1 - Scanning White Light Interference Microscopy - Measurement of Topometry and Layer Thickness N2 - 3D coherence scanning interferometry (CSI) is anoptical, non-contact and rapide measurement technique using a defined bandwidth of white light at normal incidence. White light interference microscopy (WLIM) providest here-dimensional surface topometry data up to a resolution of 0.4 µm lateral and 0.1 nm vertical. Three operating modi, surface, films and advanced films, enable measurements of step heights, roughness, wear volume, cone angle, surface pattern and layer thickness. Traceability to SI system is ensured by certified standards (PTB/NIST) within a DAkkS DIN EN ISO/IEC 17025:2018 accredited lab. T2 - EFDS, V2019, Vakuum und Plasma, WS 4, Beschichtungen für Werkzeuge & Bauteile CY - Dresden, Germany DA - 08.10.2019 KW - DIN EN ISO/IEC 17025:2018 KW - Certified standards KW - White light interference microscopy(WLIM) KW - 3D coherence scanning interferometry (CSI) KW - Topometry PY - 2019 AN - OPUS4-49323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Silbernagl, Dorothee A1 - Szymoniak, Paulina A1 - Tavasolyzadeh, Zeynab A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - Interpenetrating networks with tuned thermal and mechanical properties N2 - Text Multiphoton lithography (MPL) has recently attracted significant research interest as a versatile tool capable of producing 2D and 3D micro- and nanoscopic features with high spatial resolution. The integrity of MPL microstructures, or their ability to respond to external stimuli, is of critical importance. However, achieving the desired properties of fabricated microcomponents for a specific application remains a challenge. In this work, we present new MPL materials based on epoxy-acrylate interpenetrating networks (IPNs). We aim at 3D microstructures, whose properties can be easily tuned by varying the ratio of the IPN components and fabrication parameters (Figure 1). The resulting library of 3D microstructures was investigated for their thermal and mechanical properties using highly-sensitive space-resolved methods. Flash scanning calorimetry revealed the influence of both, IPN composition and fabrication parameters, on glass transition temperature and material fragility. AFM force-distance curve and intermodulation methods were used to characterize the mechanical properties with a lateral resolution of 1 micron and 4 nm, respectively. The deformation, stiffness and elastic behavior are discussed in detail in relation to the morphology. Moreover, we found that some 3D IPN microstructures exhibit fully elastic behavior. Our funding encourages the further development of IPN systems as versatile and easily tunable MPL materials. T2 - Micro Nano Engineering (MNE conference) CY - Berlin, Germany DA - 25.09.2023 KW - Interpenetrating polymer network KW - Multiphoton Lithography KW - Two photon polymerisation KW - Direct laser writing KW - Polyethylene glycol diacrylate PY - 2023 AN - OPUS4-58879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kirner, Sabrina A1 - Bonse, Jörn A1 - Koter, Robert A1 - Spaltmann, Dirk A1 - Pentzien, Simone A1 - Krüger, Jörg T1 - Femtosecond laser-induced periodic surface structures on titanium nitride coatings for tribological applications N2 - Laser-induced periodic surface structures (LIPSS) were generated on titanium nitride (TiN) hardcoating surfaces (deposited on metallic substrates) upon irradiation with multiple linearly polarized femtosecond laser pulses in air (30 fs duration, 790 nm wavelength, 1 kHz pulse repetition rate). The conditions were optimized in a sample-scanning geometry for the processing of large surface areas (5 mm x 5 mm) covered homogeneously by nanostructures with sub-wavelength periods ranging between ~200 nm and 700 nm. For these nanostructures the coefficient of friction was characterized under reciprocating sliding condition against a ball of hardened steel at 1 Hz using different lubricants (regime of mixed friction). After 1000 cycles, the corresponding wear tracks were characterized by optical and scanning electron microscopy. High-resolution energy dispersive X-ray analyzes (EDX) allowed the visualization of chemical alterations within the wear tracks. For specific conditions, the nanostructures endured the tribological treatment. Our experiments provide a qualification of the tribological performance of the fs-LIPSS on TiN surfaces. T2 - E-MRS 2016 Spring Meeting, Symposium C: "Laser-material interactions for tailoring future applications" CY - Lille, France DA - 02.05.2016 KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures (LIPSS) KW - Tribology KW - Friction KW - Wear KW - Titanium nitride PY - 2016 AN - OPUS4-36042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mezera, Marek A1 - Mirabella, Francesca A1 - Wasmuth, Karsten A1 - Richter, Anja A1 - Schwibbert, Karin A1 - Bennet, Francesca A1 - Krüger, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Bonse, Jörn T1 - Influence of the pulse repetition rate on the chemical and morphological properties of laser generated surface structures N2 - Inter-pulse accumulation of heat could affect the chemical and morphological properties of the laser processed material surface. Hence, the laser pulse repetition rate may restrict the processing parameters for specific laser-induced surface structures. In this study, the evolution of various types of laser-induced micro- and nanostructures at various laser fluence levels, effective number of pulses and at different pulse repetition rates (1 – 400 kHz) are studied for common metals/alloys (e.g. steel or titanium alloy) irradiated by near-infrared ultrashort laser pulses (925 fs, 1030 nm) in air environment. The processed surfaces were characterized by optical and scanning electron microscopy (OM, SEM), energy dispersive X-ray spectroscopy (EDX) as well as time of flight secondary ion mass spectrometry (TOF-SIMS). The results show that not only the surface morphology could change at different laser pulse repetition rates and comparable laser fluence levels and effective number of pulses, but also the surface chemistry is altered. Consequences for medical applications are outlined. T2 - European Materials Research Society Spring 2021 Meeting CY - Online meeting DA - 31.05.2021 KW - Laser-induced pariodic surface structures KW - LIPSS PY - 2021 AN - OPUS4-52778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Anja A1 - Mezera, Marek A1 - Thiele, Dorothea A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Schwibbert, Karin T1 - Bacterial adhesion on ultrashort laser processed surfaces N2 - Bacterial biofilms are multicellular communities adhering to surfaces and embedded in a self-produced extracellular matrix. Due to physiological adaptations and the protective biofilm matrix itself, biofilm cells show enhanced resistance towards antimicrobial treatment. In medical and industrial settings, biofilms on e.g. for implants or for surfaces in food-processing industry can be a fertile source of bacterial pathogens and are repeatedly associated with persisting, nosocomial and foodborne infections. As extensive usage of antibiotics and biocides can lead to the emergence of resistances, various strategies are currently developed, tested and improved to realize anti-bacterial surface properties through surface functionalization steps avoiding antibiotics. In this study, contact-less and aseptic large-area ultrashort laser scan processing is employed to generate different surface structures in the nanometer- to micrometer-scale on technical materials, i.e. titanium-alloy, steel, and polymer. The processed surfaces were characterized by optical and scanning electron microscopy and subjected to bacterial colonization studies with Escherichia coli test strains. For each material, biofilm results of the fs-laser treated surfaces are compared to that obtained on polished (non-irradiated) surfaces as a reference. Depending on the investigated surfaces, different bacterial adhesion patterns were found, suggesting an influence of geometrical size, shape and cell appendages of the bacteria and – above all – the laser-processed nanostructure of the surface itself. T2 - European Materials Research Society Spring Meeting 2021 CY - Online Meeting DA - 31.05.2021 KW - Bacterial adhesion KW - Biofilm formation KW - Ultrashort laser processing KW - Laser-induced periodic surface structures (LIPSS) PY - 2021 UR - https://www.european-mrs.com/laser-material-processing-fundamental-interactions-innovative-applications-emrs AN - OPUS4-52765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Elert, Anna Maria A1 - Knigge, Xenia A1 - Cinar Ciftci, G. A1 - Radnik, Jörg A1 - Sturm, Heinz T1 - Direct laser writing of mussel inspired polydopamine N2 - Polydopamine (PDA) is one of the simplest and most versatile approaches for forming an excellent binding exterior to confer new functionalities to nearly any material surface. Inspired by nature, it mimics the behavior of mussels and can be easily deposited on virtually all types of inorganic and organic substrates, including superhydrophobic surfaces. Moreover, PDA exhibits high potential for surface modification and diversified secondary reactions that makes it extremely interesting for a wide range of application including biomedical field, e.g., drug delivery, adhesives, cell adhesion, biosensing. PDA has undergone significant expansion in its applications and is one of the most attractive areas within the materials field. Nevertheless, PDA integration in microdevices is still constrained by poor spatial and temporal control of excited deposition methods. Herein, we demonstrate a novel maskless approach for PDA micropatterning based on Direct Laser Writing that overcomes present limitations. The pattern is formed upon exposure of the dopamine solution by light produced by tightly-focused fs NIR laser that scans substrate surface accordingly to the selected pattern design. Neither strong oxidants, metal ions nor adjusting pH to alkaline is required by this technique to perform dopamine polymerization. Our method achieves the PDA micropatterns with the spatial resolution of 0.8 µm, at least an order of magnitude smaller than what is possible with other PDA microplanning techniques. Some examples of PDA patterns are shown in Figure 1. The here introduced PDA deposition technique will uniquely unravel applications of polydopamine and other catecholamine-based mussel-inspired materials in various multifunctional systems and microdevices (e.g., MEMS elements, microfluidics). The chemical nature of PDA was confirmed by locally recorded vibrational and x-ray photoelectron spectra. Moreover, the morphology and thickness of PDA microstructure can be controlled by the laser power and scanning velocity revealing the possibility of fabricating the structures with gradient. In most of the applied conditions the increase of the laser intensity and decrease of the scanning velocity would lead to the thicker PDA pattern. Different morphologies from smooth and bulky-like to grain like has been obtained. PDA was produced in the presence of tris buffer, phosphate buffer and DI water only. We also tested the effect of the solution pH applying pH 6.0, 7.0 and 8.5. Furthermore, the effect of antioxidants and purging of the solution with oxygen and nitrogen was investigated. Summarizing, we could see that the structures could be produced in all the given conditions, however their thickness and quality, morphology and roughness would differ. We did not observe negative impact of the antioxidants and nitrogen purging on the performance of PDA build up indicating that the PDA formation mechanism is different to common autooxidation. The current mechanism is based on the interaction of dopamine molecules with the photoinitiator added to solution as active to DLW laser light component. Apart from the glass substrate, we achieved PDA patterning at surfaces of different nature such as polychlorotrifluoroethylene, polydimethylsiloxane, polyethylene terephthalate, silicon wafers, and fluorinated glass coverslips. We also performed facile posts-modification of the PDA surface with protein enzymes like trypsin that was confirmed by XPS. Obtained bioactive pattern could be further integrated in the protein sensing devices. Presented in this work DLW-based microfabrication technique and the possibilities for further PDA surface post-functionalization empowers advanced applications of this material in single-molecule bioassays, sensors and other complex microdevices. T2 - MNE EUROSENSORS CY - Leuven, Belgium DA - 19.09.2022 KW - Polydopamine KW - Two-photon polymerisation KW - Micropatterning PY - 2022 AN - OPUS4-56421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mezera, Marek A1 - Richter, Anja A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Schwibbert, Karin T1 - Bacterial adhesion on femtosecond laser-induced periodic surface structures N2 - Biofilm formation in industrial or medical settings is usually unwanted and leads to serious health problems and high costs. Inhibition of initial bacterial adhesion prevents biofilm formation and is, therefore, a major mechanism of antimicrobial action of surfaces. Surface topography largely influences the interaction between bacteria and surfaces which makes topography an ideal base for antifouling strategies and eco-friendly alternatives to chemical surface modifications. Femtosecond laser-processing was used to fabricate sub-micrometric surface structures on silicon and stainless steel for the development of antifouling topographies on technical materials. T2 - Future Tech Week 2020 CY - Online meeting DA - 21.09.2020 KW - Laser-induced periodic surface structures (LIPSS) KW - Bacterial adhesion KW - Biofilm growth KW - Structural color KW - Femtosecond laser processing PY - 2020 UR - http://futuretechweek.fetfx.eu/wp-content/uploads/gravity_forms/2-5432af7ecff9e0243d7383ab3f931ed3/2020/09/BioCombs4Nanofibers_Poster-for-Future_Tech_Week_2020_08-09-2020_with_Reprint-permission_for_upload.pdf AN - OPUS4-51233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Elert, Anna Maria A1 - Knigge, Xenia A1 - Cinar Ciftci, G. A1 - Radnik, Jörg A1 - Sturm, Heinz T1 - Direct laser surface micropatterning with polydopamine N2 - Inspired by the chemistry of mussel adhesive proteins, polydopamine (PDA) is one of the simplest and most versatile approaches to confer new functionalities to nearly any material surface. Moreover, PDA exhibits high potential for surface modification and diversified secondary reactions that makes it extremely interesting for a wide range of application including biomedical field, e.g., drug delivery, adhesives, cell adhesion, biosensing. PDA has undergone significant expansion in its applications and is one of the most attractive areas within the materials field. Nevertheless, PDA integration in microdevices is still constrained by poor spatial and temporal control of excited deposition methods. Herein, we demonstrate a novel maskless approach for PDA micropatterning based on Direct Laser Writing (DLW) that overcomes present limitations. The pattern is formed upon exposure of the dopamine solution by light produced by tightly-focused fs NIR laser that scans substrate surface accordingly to the selected pattern design. Neither strong oxidants, metal ions nor adjusting pH to alkaline is required by this technique. Our method achieves the PDA micropatterns with the spatial resolution of 0.8 µm, at least an order of magnitude smaller than what is possible with other PDA microplanning techniques. The here introduced PDA deposition technique will uniquely unravel applications of polydopamine and other catecholamine-based mussel-inspired materials in various multifunctional systems and microdevices (e.g., MEMS elements, microfluidics). Adjustment of MPL parameters revealed that the morphology and thickness of resulted PDA microstructures can be controlled by altering the laser power and its scanning velocity. As a result, it also enables the production of micropatterns with structural gradient. Apart from the glass substrate, we achieved PDA patterning at surfaces of different nature such as polychlorotrifluoroethylene, polydimethylsiloxane, polyethylene terephthalate, silicon wafers, and fluorinated glass coverslips. The chemical nature of PDA was confirmed by locally recorded vibrational and x-ray photoelectron spectra. To ensure post-modification potential of MPL deposited PDA we demonstrated one-step deposition of micropatterns with trypsin. Obtained bio-functionalised surface can be further applied as a protein sensing active microelement. Presented in this work DLW-based microfabrication technique and the possibilities for further PDA surface post-functionalization empowers advanced applications of this material in single-molecule bioassays, sensors and other complex microdevices. T2 - Swiss ePrint 2022 CY - Buchs, Switzerland DA - 05.09.2022 KW - Polydopamine KW - Two-photon polymerisation KW - Micropatterning PY - 2022 AN - OPUS4-56422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Silbernagl, Dorothee A1 - Szymoniak, Paulina A1 - Tavasolyzadeh, Zeynab A1 - Sturm, Heinz A1 - Topolniak, Ievgeniia T1 - Interpenetrating networks with tuned thermal and mechanical properties N2 - Multiphoton lithography (MPL), an emerging microfabrication technique, shows great potential in a variety of applications ranging from tissue engineering to soft micro-robotics. Fabricated micro-objects often are expected to undergo shape morphing or bending. Furthermore, ensuring precise property tuning becomes detrimental for the functionality of MPL microstructures. Herein, we present novel MPL materials based on interpenetrating networks (IPNs), which effectively combine the advantages of acrylate and epoxy thermoset systems. A library of 3D MPL IPN microstructures with high 3D structural stability and tailored thermal and micromechanical properties is achieved. MPL laser velocity and fabrication power can be used to tune the morphology and therefore properties of IPN. New IPN microstructures with materials Young's moduli of 4 to 6 MPa demonstrate susceptibility to deformation with high to fully elastic response. Such soft elastic materials hold immense promise within morphable microsystems, soft micro-robotics and cell engineering applications. T2 - RSC Poster conference CY - Online meeting DA - 05.03.2024 KW - Multiphoton lithography KW - Interpenetrating polymer networks KW - AFM PY - 2024 AN - OPUS4-60060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Hodoroaba, Vasile-Dan A1 - Braun, Ulrike A1 - Pfeifer, Dietmar A1 - Sturm, Heinz T1 - Reinforced UV curable cycloaliphatic epoxy oligosiloxane resin nanocomposite for coating applications N2 - Coating materials are nowadays often required to deliver not only sufficient barrier performance and suited optical appearance but a broad range of other functional properties. The incorporation of inorganic nanoparticles (NPs) is known to improve many key characteristics and provide new functionalities in polymer materials. Presented work aims to prepare and characterize an organic-inorganic coating material designed to bring together advantageous properties of hybrid materials and reinforcement effect delivered from the inorganic NPs embedment. Siloxane-based hybrid resins hold great advantages as coating materials as their properties can be tuned between those of polymers and those of glasses, thus, the compositions with superior thermal and mechanical properties can be achieved. We used Cycloaliphatic Epoxy Oligosiloxane (CEOS) resin as a polymeric matrix where the network formation was achieved by UV induced cationic polymerisation. Boehmite Alumina (BA) nanoparticles were added to CEOS resin as a reinforcing agent and resultant material was processed into films either by bar-coating or by spin-coating depending on further characterization procedure. Two different types of BA NPs, hydrophilic and organophilic, were used in order to assess the impact of particles surface on the resin characteristics. CEOS synthesis by condensation reaction was confirmed using 13C and 29Si NMR. Changes in CEOS photocuring process, resulting from particles incorporation, were monitored by real-time IR spectroscopy. At the same time, the thermal behaviour was evaluated by DSC and TGA methods. Morphology of the coatings was investigated by means of SEM operated in transmission mode. It was observed that BA presence increased the epoxy conversion degree and glass transition temperature. Material formulations providing best film characteristics were determined with regard to the particle type and loading. Compared to the hydrophilic nanoparticles, organophilic BA NPs yield superior overall performance of the foils. T2 - HYMA Conference CY - Sitges, Spain DA - 11.03.2019 KW - Cycloalyphatic epoxy oligosiloxane KW - Nanocomposite KW - Boehmite KW - Photocuring PY - 2019 AN - OPUS4-47641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Koter, Robert A1 - Hartelt, Manfred A1 - Spaltmann, Dirk A1 - Kirner, Sabrina A1 - Pentzien, Simone A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Tribological properties of femtosecond laserinduced periodic surface structures on metals N2 - Laser-induced periodic surface structures (LIPSS, ripples) were generated on steel and titanium surfaces upon irradiation with multiple linear polarized femtosecond laser pulses (pulse duration 30 fs, central wavelength 790 nm). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning geometry for the processing of large surface areas covered homogeneously by the nanostructures. The irradiated surface regions were subjected to optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM) revealing sub-wavelength spatial periods. The nanostructured surfaces were tribologically tested under reciprocal sliding conditions against a sphere of hardened 100Cr6 steel at 1 Hz using paraffin oil and engine oil as lubricants. After 1000 sliding cycles at a load of 1.0 N, the corresponding wear tracks were characterized by OM and SEM. For specific conditions the laser-generated nanostructures endured the tribological treatment. Simultaneously, a significant reduction of the friction coefficient was observed in the laser-irradiated (LIPSS-covered) areas when compared to the non-irradiated surface, indicating the potential benefit of laser surface structuring for tribological applications. T2 - SPIE Photonics West Conference, Symposium "Laser Applications in Microelectronic and Optoelectronic Manufacturing" (LAMOM) XXI CY - San Francisco, CA, USA DA - 13.02.2016 KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures (LIPSS) KW - Tribology KW - Friction KW - Wear PY - 2016 AN - OPUS4-36041 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gräf, S. A1 - Kunz, C. A1 - Büttner, T.N. A1 - Naumann, B. A1 - Boehm, A.V. A1 - Gnecco, E. A1 - Bonse, Jörn A1 - Neumann, C. A1 - Turchanin, A. A1 - Müller, F.A. T1 - Large-area fabrication of low- and high-spatial-frequency laser-induced periodic surface structures on carbon fibers N2 - The properties of fiber-reinforced polymers (CFRP) or concretes (ECC) strongly depend on the interface between the fiber and the surrounding matrix. Different methods such as plasma oxidation, chemical or electrolytic etching and chemical vapor deposition have been investigated to increase, for example, the bonding strength. The present study deals with the functionalization of the fiber surface based on laser-induced periodic surface structures (LIPSS). They can be characterized as a modulation of the surface topography on the nano- and microscale that results from the irradiation of the surface with linearly polarized laser radiation close to the ablation threshold. According to their spatial period, LIPSS are classified into low-spatial frequency LIPSS (LSFL) and high-spatial frequency LIPSS (HSFL). The great potential of both types of LIPSS structures regarding functional surface properties was demonstrated in numerous investigations. The objective of the present study was the homogenous manufacturing of both types of LIPSS on large areas of carbon fiber arrangements without damage. The results are discussed based on a detailed analysis of the topographic and chemical surface properties. T2 - 15th International Conference on Laser Ablation (COLA 2019) CY - Hawaii, USA DA - 08.09.2019 KW - Laser-induced periodic surface structures (LIPSS) KW - Carbon fibers KW - Femtosecond laser ablation KW - Surface functionalization PY - 2019 AN - OPUS4-49676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Elert, Anna Maria A1 - Knigge, Xenia A1 - Cifci, G. C. A1 - Radnik, Jörg A1 - Sturm, Heinz T1 - Polydopamine micropatterning for selective substrate bio-functionalization N2 - Inspired by the chemistry of mussel adhesive proteins, polydopamine (PDA) exhibits strong adhesion to nearly any kind of organic or inorganic surface and shows high ability for surface post-modification and secondary reactions. As a result, PDA has been widely used as a base adlayer to enable versatile surface chemistry and functionalization. It has shown great potential in wide range of applications including biomedical field (e.g., drug delivery, adhesives, photothermal therapy, bone and tissue engineering, cell adhesion, biosensing). However, implementation of PDA in microdevices is still hindered by insufficient spatial and temporal control of excited deposition methods. In this work we present a novel approach to fabricate tunable micropatterned substrates where mussel-inspired chemistry provides base for various surface modification [2]. Current approach applies Multiphoton Lithography (MPL) to initiate local PDA formation, and, therefore, does not require use of microstamp or photomask. As a result, the microstructures of complex designs can be produced with the spatial resolution down to 0.8 μm (Figure 1). The desired design can be easily altered by adjusting the stl model or the fabrication code. Unlike the conventional deposition of PDA based on dopamine auto-oxidation, our method does not require presence of strong oxidants, metal ions or alkaline pH. Herein-demonstrated deposition approach will significantly facilitate applications of polydopamine and other mussel-inspired materials in microdevices and high-resolution active microcomponents (e.g., in MEMS and microfluidics). Adjustment of MPL parameters revealed that the morphology and thickness of resulted PDA microstructures can be controlled by altering the laser power and its scanning velocity. As a result, it also enables the production of micropatterns with structural gradient. Apart from the glass substrate, we performed PDA patterning at surfaces of different nature such as polychlorotrifluoroethylene, polydimethylsiloxane, polyethylene terephthalate, silicon wafers, and fluorinated glass coverslips. We tested different composition of dopamine solution for its ability of PDA buildup. Solutions containing Tris buffer, phosphate buffer or DI water only as well as different pH (6.0, 7.0 and 8.5) could be successfully applied for high-precision PDA micropatterning. Moreover, the effect of antioxidants and purging of the solution with oxygen and nitrogen was investigated. In all cases, no decrease of deposition efficiency was observed. The chemical nature of PDA was confirmed by locally recorded vibrational and x-ray photoelectron spectra. To ensure post-modification potential of MPL deposited PDA we demonstrated one-step deposition of micropatterns with trypsin. Obtained bio-functionalised surface can be further applied as a protein sensing active microelement. T2 - Laser Precision Microfabrication CY - Dresden, Germany DA - 07.06.2022 KW - Polydopamine KW - Two-photon polymerisation KW - Micropatterning PY - 2022 AN - OPUS4-55064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Hodoroaba, Vasile-Dan A1 - Benemann, Sigrid A1 - Pfeifer, Dietmar A1 - Sturm, Heinz T1 - Novel Boehmite-embedded organic/inorganic hybrid nanocomposite: cure behaviour, morphology and thermal properties N2 - Hybrid materials have attracted growing interest during the last decade, particularly due to their extraordinary properties. Cycloalyphatic-epoxy oligosiloxane (CEO) resin was shown to be a good candidate as a barrier material for the encapsulation purposes. Incorporation of inorganic nanoparticles such as Boehmite (BA) into polymers was observed to modify their specific characteristics, in particular, thermal, thermo-oxidative and barrier ones. In this work, novel BA-embedded organic inorganic hybrid nanocomposite material was engineered by combining the advantageous properties of hybrid polymers and nanoparticle enhancement effect. Impacts of particles on the photocuring kinetics, degree of crosslinking and the resultant changes in the thermal properties of the cured films were investigated. CEO synthesis via condensation reaction was confirmed by 1H and 29Si NMR. The particle distribution within the films was verified by SEM including transmission mode coupled with EDX elemental analysis. Photocuring kinetics and thermal properties of the films were studied by in situ FTIR spectroscopy and DSC with TGA, respectively. T2 - Deutschen Physikalischen Gesellschaft CY - Berlin, Germany DA - 11.03.2018 KW - Boehmite KW - Nanocomposite KW - Cycloalyphatic epoxy oligosiloxane KW - CEO PY - 2018 AN - OPUS4-44520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Mechanical and chemical alteration of polymer matrix induced by nanoparticles in epoxy-boehmite nanocomposites N2 - Inorganic nanoparticles are used to improve the performance of epoxy as the matrix phase in fiber-reinforced composites used for aerospace applications. The effectiveness of nanofillers on property enhancement of thermosetting polymers depends on many factors including the interaction between the functional groups of nanofillers and the polymer reactants. In the current work, we study the effect of boehmite nanoparticles (BNPs) on properties of anhydride-cured bisphenol-A-diglycidyl ether (DGEBA). Dynamic mechanical thermal analysis (DMTA) and a high-resolution force measurement approach called intermodulation atomic force microscopy (ImAFM) were carried out to investigate the thermomechanical and nanomechanical properties of this material, respectively. It was found that BNPs lead to decrease of glass transition temperature (Tg) and crosslink density of the polymer network meanwhile significantly enhancing the Young’s modulus. Besides formation of a soft interphase near the particles, significant changes in local stiffness of polymer matrix far from the interphase was observed with ImAFM. Thus, boehmite induces long-range chemical alteration on the matrix. This effect has a higher impact on overall composite properties compared to the formation of interphase which is only a short-range effect. The local chemical evaluations on the soft interphase using an infrared-AFM method (NanoIR) revealed the accumulation of anhydride hardener near the boehmite interface. Based on these observations the effect of boehmite on the curing of epoxy is hypothesized to be governed by the strong interaction between boehmite and the anhydride. This interaction causes changes the ratio of reactants in the epoxy mixture and hence alteration of curing pathway and the network architecture. In future studies we examine this hypothesis by measuring the thermomechanical properties of cured epoxies in which the epoxy-hardener ratio is systematically altered and further comparing to those properties of nanocomposites shown in the current study. T2 - HYMA 6th International Conference on Multifunctional, Hybrid and Nanomaterials CY - Sitges, Spain DA - 11.03.2019 KW - Nanomechanics KW - Polymer nanocomposites KW - Boehmite KW - AFM KW - Epoxy PY - 2019 AN - OPUS4-50692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epperlein, Nadja A1 - Menzel, Friederike A1 - Schwibbert, Karin A1 - Koter, Robert A1 - Bonse, Jörn A1 - Sameith, Janin A1 - Krüger, Jörg A1 - Toepel, Jörg T1 - Influence of femtosecond laser produced nanostructures on biofilm growth on steel N2 - Large area periodic surface structures were generated on steel surfaces using 30-fs laser pulses at 790 nm wavelength. Two types of steel exhibiting a different corrosion resistance were used, i.e. a plain structural steel (corrodible) and a stainless steel (resistant to corrosion). Homogeneous fields of laser-induced periodic surface structures (LIPSS) were realized utilizing laser fluences close to the ablation threshold while scanning the sample under the focused laser beam in a multi-pulse regime. The nanostructures were characterized with optical and scanning electron microscopy. For each type of steel, more than ten dentical samples were laser-processed. These samples were subjected to microbial adhesion tests, investigating bacterial adhesion behavior on the laser structures in comparison to polished reference surfaces. Short term experiments (<24h) were carried out to determine initial biofilm development. E. coli as a typical bacterium representing pathogenic bacteria and Shewanella putrefaciens as metal corrosive bacterium were used for biofilm development analyses. Bacterial cell adhesion was determined microscopically after DAPI cell staining (DNA staining). Comparison of the coverage areas between nanostructured and polished surfaces revealed differences in cell adhesion behavior and biofilm structure. T2 - E-MRS 2016 Spring Meeting, Symposium C: "Laser-material interactions for tailoring future applications" CY - Lille, France DA - 02.05.2016 KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Biofilms KW - Steel PY - 2016 AN - OPUS4-36045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fortini, Renata A1 - Sturm, Heinz A1 - Meyer-Plath, Asmus A1 - Kehren, Dominic T1 - Development of a method for measuring the flexural rigidity of nanofibers N2 - Toxicological studies have shown that some types of carbon nanotubes may provoke asbestos-like effects including chronic inflammation and lung cancer. Inhaled carbon nanotubes may reach the deep lung tissue. Alveolar macrophages are responsible to remove such foreign objects from the alveoli in a process called phagocytosis. If a macrophage fails to uptake a nanotube completely, cell lesions give rise to inflammation. It is currently assumed that short, long and flexible, and granularly agglomerated (tangled) nanofibres are clearable by macrophages, whereas biodurable long and rigid nanotubes persist in the lung tissue. The flexural rigidity of nanofibres is therefore believed to an important material property that governs fibre toxicity and needs to be investigated. The present work aims at determining the rigidity of nanofibres by detecting their resonance frequencies using a Dynamic Scanning Electron Microscope (DySEM) setup. By depositing and fixing a nanofibre to an oscillating support, it can be excited to vibrations and treated as a cantilevered beam. This way, its elastic modulus can be determined via Euler-Bernoulli’s beam theory. Multi-walled carbon nanotubes (MWCNTs) were deposited on high frequency piezoelectric quartz crystals mounted on a scanning electron microscope (SEM) holder. When introduced into the SEM chamber and connected to a frequency-sweeping waveform generator, the quartz crystal actuates the deposited fibre. A lock-in amplified processes the secondary electron detector signal resulting from the electron beam modulated by the vibrating nanofibre. Whenever a fibre resonance is detected, the SEM image of the fibre is stored to identify the fibre oscillation mode. The found resonance frequencies and modes allow determining the elastic modulus according. Since the frequency spacing of resonances is predicted by Euler-Bernoulli, the mode number can be checked and elastic modulus values be averaged. A significant number of MWCNTs have been classified according to their level of rigidity. The applicability and reliability of the method will be discussed. T2 - International Conference on Multifunctional, Hybrid and Nanomaterials CY - Sitges, Spain DA - 11.03.2019 KW - Carbon nanotubes KW - Rigidity KW - Resonance KW - Nanofibers KW - Bending modulus PY - 2019 AN - OPUS4-49196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagel, Dorothee A1 - Sturm, Heinz T1 - Long range influence of boehmite nanoparticles on the nanomechanics of epoxy matrix used in carbon-fiber composites N2 - Boehmite nanoparticles (AlOOH) were recently found to improve properties such as crack resistance, shrinkage and compressive strength in epoxy composites. Concentration and surface modification of boehmite nanoparticles are key factors for abovementioned enhancements. To understand the underlying mechanisms, more detailed research of micro- and nanoscopic mechanical properties is required. The presented study aims to investigate the influence of concentration and surface modification of boehmite on the stiffness of the bulk epoxy by means of AFM-based approaches: Force-Distance curves (FDC) on the sub- microscale and Intermodulation AFM and amplitude-dependent force spectroscopy (ADFS) on the nanoscale. For this purpose, stiffness-maps of epoxy filled with boehmite, with and without surface modification (HAc-boehmite) were obtained by FDC. These measurements showed a slight increase in overall stiffness of composite with increasing the nanoparticle content. The stiffening effect was observed to be intensified with HAc-boehmite. Since the lateral resolution of FDC is not high enough to distinguish nanoparticles, this effect was assumed to be due to the inevitable inclusion of nanoparticles in the measurement. By using Intermodulation-AFM, yielding ADFS stiffness maps with the resolution of <10 nm, we were able to calculate the average stiffness of bulk epoxy without the interference of nanoparticles. It was expected that the stiffness of regions faraway from particles would be equal to neat epoxy. In contrast, the results showed a drastic increase in stiffness of epoxy with increasing boehmite concentration (0, 1, 2.5, and 15%) especially in case of introducing 15wt% HAc-boehmite. Another important observation was formation of a spatial structure with non-homogenous stiffness distribution in bulk epoxy with HAc-boehmite. The underlying mechanisms of described observations are not fully understood yet. One hypothesis is the local increase in crosslinking density which we aim to investigate in our further studies by combining Dynamic Mechanical Thermal Analysis (DMTA) and Intermodulation-AFM. T2 - Frontiers in Polymer Science CY - Seville, Spain DA - 17.05.2017 KW - AFM KW - Boehmite KW - Epoxy nanocomposite PY - 2017 AN - OPUS4-50688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Silbernagl, Dorothee A1 - Sturm, Heinz A1 - Ghasem Zadeh Khorasani, Media A1 - Schönhals, Andreas T1 - Competition of mobilization and immobilization effects of segmental dynamics in epoxy/Boehmite nanocomposites N2 - The polymer matrix region near a filler surface, termed as the interface, witnessed increasing interest, due to its possible influence on the macroscopic properties of the nanocomposite. The interphase is expecting to have different segmental dynamic, as compared to the pure matrix, which can percolate into the entire system. Here, the segmental dynamics of epoxy/Boehmite nanocomposite was studied by Broadband Dielectric Spectroscopy. It was found that an artificial relaxation process is present in the nanocomposite, on the contrary to the pure epoxy system. It was assigned to constrained fluctuations of polymer chains in the interfacial region, due to the nanofiller. However, the overall dynamic Tg of the system decreased with increasing filler concentration, indicating higher segmental mobility. This was in accordance with Temperature Modulated DSC investigations of specific heat capacity of the system, which was found to increase with increasing filler concentration, up to 10 wt%, indicating increasing mobility of the polymer matrix segments. Surprisingly, for the highest filler content, the heat capacity decreases, implying a formation of an immobilized rigid amorphous phase in the interfacial region. T2 - Spring Meeting of German Physical Society CY - Berlin, Germany DA - 12.03.2018 KW - Nanocomposites PY - 2018 AN - OPUS4-44503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -