TY - CONF A1 - Würth, Christian T1 - Understanding Nucleation and Optical Properties of Upconverting Nanoparticles N2 - Non-linear optical emitters are promising materials for energy applications and biotechnologies. Solid-state multi-band emitters like lanthanide doped up-conversion nanoparticles (UCNPs) show excellent photostability, are excitable in the near infrared (NIR), and show emission bands from the UV to SWIR spectral regions. The optical properties of these materials strongly depend on the excitation power density, i.e., the number of photons absorbed per time interval. The upconversion (ΦUC) and downshifting quantum efficiencies (ΦDS) of these materials, the excitation power dependent population, and the deactivation dynamics are influenced by nanoparticle architecture, doping concentration, and the microenvironment. We studied the fundamental changes of the luminescence properties of ß-NaYF4 UCNPs doped with Yb3+ and Er3+ depending on size, different surroundings such as aqueous and organic media, and different surface chemistries. We obtained further insights into shelling procedures, FRET optimization, influence of doping concentration, and advantages of different sensitizer ions. T2 - NaNaX CY - Hamburg, Germany DA - 16.09.2019 KW - UpConversion KW - Optical properties KW - Nanoparticle KW - Nanomaterial PY - 2019 AN - OPUS4-49700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haferkamp, Sebastian A1 - Emmerling, Franziska T1 - Insights into mechanochemical Knoevenagel condensations N2 - Mechanochemistry paves the way to simple, fast, and green syntheses. Despite considerable effort, there is a lack in understanding of the underlying mechanisms. In situ investigations help to understand these mechanisms, which occur during a mechanochemical reaction. Here we present a universal strategy for simultaneous real-time in situ analysis, combining X-ray diffraction, Raman spectroscopy, and thermography. The potential of of our approach is shown for diffrent model reactions. T2 - Adlershofer Forschungsforum 2019 CY - Berlin, Germany DA - 11.11.2019 KW - Mechanochemistry KW - In situ KW - Knoevenagel condensation PY - 2019 AN - OPUS4-49694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lüth, Peter T1 - CEQAT-DGHS Interlaboratory tests for method validation and measurement uncertainty determination N2 - An explosion in a chemical plant or a fire on a dangerous goods vessel - the reason for such accidents can be numerous. Prevention starts in the laboratory where chemicals are tested for their hazardous properties in order to be able to assess the risks involved in their handling. For this purpose, test methods have been developed and published. They are applied globally nowadays. Safety experts, manufacturers, suppliers, importers, employers or consumers must be able to rely on the validity of safety-related test methods and on correct test results and assessments in the laboratory. Interlaboratory tests play a decisive role in assessing the reliability of test results. Participation in interlaboratory tests is not only a crucial element of the quality assurance of laboratories; as such it is explicitly recommended in DIN EN ISO/IEC 17025. In addition, interlaboratory tests are also used to develop and validate test methods and can be used for the determination of the measurement uncertainty. Interlaboratory tests on different test methods have been performed by Bundesanstalt für Materialforschung und –prüfung (BAM) and Physikalisch-Technische Bundesanstalt (PTB) in collaboration with the QuoData GmbH during the last 10 years. Significant differences between the results of the participating laboratories were observed in all interlaboratory tests. The deviations of the test results were not caused only by laboratory faults but also by deficiencies of the test method (see interlaboratory test reports of the CEQAT-DGHS Centre for quality assurance for testing of dangerous goods and hazardous substances: www.ceqat-dghs.bam.de). In view of the interlaboratory test results the following conclusions can be drawn: • To avoid any discrepancy on classification and labelling of chemicals it should become state of the art to use validated test methods and the results accompanied by the measurement uncertainty. • A need for improvement is demonstrated for all examined test methods. Thus, interlaboratory tests shall initially aim at the development, improvement and validation of the test methods (including the determination of the measurement uncertainty) and not on proficiency tests. • The laboratory management and the practical execution of the tests need to be improved in many laboratories. • The term "experience of the examiner" must be seen critically: A "long experience with many tests" is not necessarily a guarantee for correct results. T2 - Eurachem International Workshop Uncertainty from sampling and analysis for accredited laboratories CY - Berlin, Germany DA - 19.11.2019 KW - Gefahrgut KW - Gefahrstoff KW - Ringversuch KW - Prüfmethode KW - Validierung KW - Qualitätssicherung KW - Messunsicherheit KW - Dangerous goods KW - Hazardous substances KW - Interlaboratory comparison KW - Quality assurance KW - Round robin test KW - Test method KW - Validation KW - Measurement uncertainty PY - 2019 UR - https://www.eurachem.org/index.php/events/completed/277-wks-mu2019#posters AN - OPUS4-49832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakir, Nasim T1 - Numerical and Experimental Observation of the melt pool behaviour for laser beam welded thick plates in partial penetration mode N2 - The geometry of the melt pool in laser beam welding plays a major role to understand the dynamics of the melt and its solidification behavior. In this study, a butt configuration of 20 mm thick structural steel and transparent quartz glass was used to observe the weld pool geometry in the partial penetration mode by means of a high-speed camera. The observations show that the dimensions of the weld pool vary depending on the depth. The areas close to the weld pool surface take a teardrop-shape. A bulge-region and its temporal evolution were observed approximately in the weld pool root. Additionally, a 3D transient thermal-fluid numerical simulation was performed to obtain the weld pool shape and to understand the formation mechanism of the observed bulging effect. The model considers the local temperature field, the effects of phase transition, thermo-capillary convection, natural convection and temperature-dependent material properties. The numerical results showed good accordance and were furthermore used to improve the understanding of the experimentally observed bulging effect. T2 - 5th International Symposium on Visualization in Joining & Welding Science through Advanced Measurements and Simulation CY - Osaka, Japan DA - 21.11.2019 KW - Partial penetration KW - Laser beam welding KW - Melt pool behaviour PY - 2019 AN - OPUS4-49896 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sommer, Konstantin T1 - Microstructure Characterization of Additively Manufactured Austenitic Steel 316L N2 - Additive manufacturing processes (AM) offer different advantages compared to conventional manufacturing processes. In this work the microstructure of austenitic steel 316L, manufactured with Selective Laser Melting (SLM), and the powder, used for the process, were investigated. T2 - BAM workshop on Additive Manufacturing CY - Berlin, Germany DA - 13.05.2019 KW - 316L KW - Selective laser melting KW - Microstructure analysis KW - Metal powder characterization PY - 2019 AN - OPUS4-49884 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Backes, Sebastian T1 - Scanning characterization of polymer coating layers using contact resonance with piezoresistive microprobes N2 - The motivation and the measurement setup for large fast-scanning piezoresistive cantilevers are presented. The theory behind the measurements of mechanical properties through contact resonance is explained. Results of such measurements on two kinds of polymer are compared to results from force distance curves. Noise, time-dependency and dependency of the results on the vibration mode are identified as challenges of contact resonance. T2 - 19th International Conference and Exhibition (European Society for Precision engineering and Nanotechnology/EUSPEN) CY - Bilbao, Spain DA - 03.06.2019 KW - Force distance curves KW - Contact resonance KW - Lubricants KW - Photoresist PY - 2019 AN - OPUS4-49903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meierhofer, F. T1 - Citric-Acid-Based Carbon Dots with Luminescence Quantum Yields > 50%: spectral tuning of the luminescence by ligand exchange and pH adjustment N2 - We report the synthesis and characterization of carbon nanodots (CDs) with high quantum yield (>50%) and tailored optical absorption as well as emission properties. A well-described protocol with polyethyleneimine (PEI) as amine precursor is used as a reference to a new CD system which is stabilized by aromatic 2,3-diaminopyridine (DAP) molecules instead. The DAP stabilizer is installed in order to red-shift the absorption peak of the n-π* electron transition allowing efficient radiative recombination and light emission. Size, shape, and chemical composition of the samples are determined by (HR)TEM, EDX and FTIR-spectroscopy. Optical parameters are investigated using UV-VIS, PL and QY measurements. Several parameters such as concentration, excitation wavelength and pH are studied. Zeta-potential analysis indicate that pH-induced (de-)protonation processes of functional moieties directly affect the n-π* energy bands. This results in unique pH-dependent absorption and emission characteristics which are discussed on the specific chemical composition of each CD system. T2 - MRS 2019 CY - Boston, MA, USA DA - 03.12.2019 KW - Nanoparticle KW - Carbon dot KW - Surface chemistry KW - Fluorescence KW - PH KW - Ligand KW - FTIR KW - Synthesis KW - Characterization PY - 2019 AN - OPUS4-49968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Procedures to Quantitatively Characterize Morphological Features of Triply Periodic Minimal Surface Structures N2 - Additively manufactured (AM) metallic sheet-based Triply Periodic Minimal Surface Structures (TPMSS) meet several requirements in both bio-medical and engineering fields: Tunable mechanical properties, low sensitivity to manufacturing defects, mechanical stability, and high energy absorption. However, they also present some challenges related to quality control. In fact, the optimization of both the AM process and the properties of TPMSS is impossible without considering structural characteristics as manufacturing accuracy, internal defects, and as well as surface topography and roughness. In this study, the quantitative non-destructive analysis of TPMSS manufactured from Ti-6Al-4V alloy by electron beam melting was performed by means of laboratory X-ray computed tomography (XCT). T2 - International conference on tomography of material and structures 2022 CY - Grenoble, France DA - 27.06.2022 KW - Additive manufacturing KW - Scaffold KW - Lightweight structures KW - Computed tomography PY - 2022 AN - OPUS4-55229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kupsch, Andreas T1 - Evolution of CFRP stress cracks observed by in situ X-ray refractive imaging N2 - Modern air-liners and wind turbine rotor blades are made up primarily of fiber reinforced plastics. Failure of these materials heavily impairs the serviceability and the operational safety. Consequently, knowledge of the failure behavior under static and cyclic loads is of great interest to estimate the operational strength and to compare the performance of different materials. Ideally, the damage evolution under operational load is determined with in-situ non-destructive testing techniques. Here, we report in-situ synchrotron X-ray imaging of tensile stress induced cracks in carbon fiber reinforced plastics due to inter-fiber failure. An inhouse designed compact tensile testing machine with a load range up to 15 kN was integrated into the beamline. Since conventional radiographs do not reveal sufficient contrast to distinguish cracks due to inter-fiber failure and micro cracking from fiber bundles, the Diffraction Enhanced Imaging (DEI) technique is applied in order to separate primary and scattered (refracted) radiation by means of an analyzer crystal. This technique allows fast measurements over large fields-of-view and is ideal for in-situ investigations. T2 - 12th BESSY@HZB User Meeting 2020 CY - Online meeting DA - 10.12.2020 KW - Carbon Fiber Reinforced Plastics KW - Crack evolution KW - Diffraction Enhanced Imaging KW - In situ tensile test KW - X-ray refraction PY - 2020 AN - OPUS4-51802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul T1 - Machine learning assisted characterization of a Low Temperature Co-fired Ceramic (LTCC) module measured by synchrotron computed tomography. N2 - The 5G technology promises real time data transmission for industrial processes, autonomous driving, virtual and augmented reality, E-health applications and many more. The Low Temperature Co-fired Ceramics (LTCC) technology is well suited for the manufacturing of microelectronic components for such applications. Still, improvement of the technology such as further miniaturization is required. This study focuses on the characterization of inner metallization of LTCC multilayer modules, especially on the vertical interconnect access (VIA). Critical considerations for this characterization are delamination, pore clustering in and at the edge of the VIA, deformation, and stacking offset. A LTCC multilayer consisting of a glassy crystalline matrix with silver based VIAs was investigated by synchrotron x-ray tomography (CT). The aim of this study is to propose a multitude of structural characteristic values to maximize the information gained from the available dataset. Data analysis has been done with the open source software ImageJ as well as several additional plugins. The high-resolution CT data was evaluated through 2D slices for accessibility reasons. The segmentation of all 2000 slices to assess the different regions e.g. pores, silver and glass ceramic was done by a supervised machine learning algorithm. A quantitative evaluation of shape, deformation, and porosity of the VIA with respect to its dimensions is presented and the suitability of the characterization approach is assessed. T2 - 54. Metallographie Tagung CY - Online meeting DA - 16.09.2020 KW - Machine Learning KW - LTCC KW - Synchrotron Tomography PY - 2020 AN - OPUS4-51299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sprengel, Maximilian T1 - Using Neutron Diffraction to Monitor Stress Relaxation in Additively Manufactured 316L N2 - The relaxation of residual stress in laser powder bed fused stainless steel 316L parts was monitored using monochromatic and time-of-flight neutron diffraction. T2 - ISIS student meeting CY - Online meeting DA - 26.10.2020 KW - Stainless Steel KW - Residual Stress KW - Additive Manufacturing PY - 2020 AN - OPUS4-51469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evsevleev, Sergei T1 - Micromechanical response of multi-phase Al-alloy matrix composites under uniaxial compression N2 - Aluminum alloys are extensively used in the automotive industry. Particularly, squeeze casting production of Al-Si alloys is employed in the conception of metal matrix composites (MMC) for combustion engines. Such materials are of a high interest since they allow combining improved mechanical properties and reduced weight and hence improve efficiency. Being a multiphase material, most MMCs show complex micromechanical behavior under different load conditions. In this work we investigated the micromechanical behavior of two MMCs, both consisting of a near-eutectic cast AlSi12CuMgNi alloy, one reinforced with 15%vol. Al2O3 short fibers and the other with 7%vol. Al2O3 short fibers + 15%vol. SiC particles. Both MMCs have complex 3D microstructure consisting of four and five phases: Al-alloy matrix, eutectic Si, intermetallics, Al2O3 fibers and SiC particles. The in-situ neutron diffraction compression experiments were carried out on the Stress-Spec beamline and disclosed the evolution of internal phase-specific stresses in both composites. In combination with the damage mechanism revealed by synchrotron X-ray computed tomography (SXCT) on plastically pre-strained samples, this allowed understanding the role of every composite’s phase in the stress partitioning mechanism. Finally, based on the Maxwell scheme, a micromechanical model was utilized. The model perfectly rationalizes the experimental data and predicts the evolution of principal stresses in each phase. T2 - MLZ User Meeting 2020 CY - Online meeting DA - 09.12.2020 KW - Metal matrix composite KW - Neutron diffraction KW - Damage mechanism KW - Load transfer KW - Computed tomography PY - 2020 AN - OPUS4-52032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano-Munoz, Itziar T1 - Influence of the scanning strategy on the residual stress state in IN718 additive manufactured parts N2 - Laser Powder Bed Fusion (L-PBF) is an additive manufacturing technique enabling the design of complex geometries that are unrivalled by conventional production technologies. Nevertheless, L-PBF process is known to induce a high amount of residual stresses (RS) due to the high temperature gradients present during powder melting by laser. High tensile residual stresses are to be found the edges whereas the bulk material shows balancing compressive RS. Literature shows that the RS is highly sensitive to the process parameters. In particular, this study presents the characterization of the RS state in two L-PBF parts produced with a rastering scan vector that undergoes 90° or 67° rotation between subsequent layers. T2 - MLZ User Meeting 2020 CY - Online meeting DA - 08.12.2020 KW - Laser Powder Bed Fusion KW - IN718 KW - EBSD analysis KW - Residual stress state PY - 2020 AN - OPUS4-51821 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eddah, Mustapha T1 - Synchrotron Multi-energy HDR tomography for LTCC systems N2 - LTCCs (Low-temperature co-fired ceramics) consist of three-dimensionally distributed, hermetically bonded ceramic and metallic components with structure sizes within [10; 100] µm. A non-destructive imaging technique is needed that provides 3D, sharp, high-contrast resolution of these structures, as well as porosity and defect analysis, which is made difficult by the very different X-ray absorption coefficients of the individual components of the microstructure. A HDR method is being developed that allows a combination of different tomograms, each with X-ray energies adapted to individual materials. T2 - Bessy II User Meeting CY - Berlin, Germany DA - 22.06.2023 KW - LTCC KW - Synchrotron tomography KW - Data fusion KW - In-situ tomography PY - 2023 AN - OPUS4-57795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - The role of reinforcement orientation on the damage evolution of short fibre reinforced metal matrix composite under compression N2 - In the present study, internal damage to an AlSi12CuMgNi alloy reinforced with planar random Al2O3 short fibres was investigated after compression testing. Due to the alloy composition, this composite contains a second reinforcement phase in the form of eutectic Si, which builds interpenetrated networks in the volume and increases the creep resistance and load-bearing capacity of the material. Materials with their fibre plane parallel and transversal to the load direction were characterized in order to investigate the dependence of load partition and damage on fibre plane orientation. In-situ compression testing during neutron diffraction measurements showed that internal damage is strongly influenced by the load partition between matrix and reinforcement. Moreover, micro-computed tomography was performed in the same material after ex-situ compression for damage analysis. In the case of a fibre plane perpendicular to the applied load, breakage and interconnected cracks appeared in a significantly higher volume fraction than with a fibre plane parallel to load. T2 - RACIRI Summer School CY - Repino, Russia DA - 22.08.2016 KW - Metal matrix composite KW - Computed tomography KW - Neutron diffraction KW - Load transfer PY - 2016 AN - OPUS4-38107 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano-Munoz, Itziar T1 - High temperature in-situ heat treatment of a refractory material by means of synchrotron refraction radiography N2 - The stress–strain behavior of certain ceramics, such as aluminum titanate (AT, Al2TiO5), has features that are unusual for brittle material. In particular, a substantial nonlinearity under uniaxial tension, and load–unload hysteresis caused by the increase of the incremental stiffness at the beginning of unloading. These features are observed experimentally and attributed to microcracking. In this study, we investigate the mechanical response of an AT material at room and high temperature. Microstructure and microcracking are analyzed by means of electron microscopy, and both synchrotron micro computed tomography (µCT) and refraction radiography (SXRR). Synchrotron refraction radiography is combined with in-situ heating at high-temperatures (up to 1400°C) to be able to monitor the relative closure of microcracks as a function of increasing/decreasing temperatures. T2 - 21st European Conference on Composite Materials (ECCM21) CY - Nantes, France DA - 02.07.2024 KW - Refractory materials KW - Microcracking KW - Synchrotron µCT and refraction radiography KW - In-situ heating up to 1400°C PY - 2024 AN - OPUS4-60576 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias T1 - Residual stress analysis in selective laser melted parts of superalloy IN718 N2 - Additive Manufacturing (AM) by Selective Laser Melting (SLM) offers ample scope for producing geometrically complex parts in comparison to the traditional subtractive manufacturing strategies. Developing during the manufacturing process, residual stresses may limit the application of SLM parts by reducing the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. The present study aims to evaluate the bulk residual stresses in SLM parts by using neutron diffraction measurements performed at E3 line -BER II neutron reactor- of Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. Together with microstructure characterization and distortion measurements, it is possible to describe the stress state throughout the whole sample. The sample was measured in as-build condition (on a build plate) and after releasing from the build plate. The used material is the nickel based superalloy 718. This alloy is widely used in aerospace and chemical industries due to its superior corrosion and heat resistant properties. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component. The normal and transversal component exhibits a rather compressive behavior while the longitudinal was tensile in the center part of the sample and became compressive towards the tip. As expected, the absolute values of all stress components decreased after releasing the sample from the building plate. A surface scan utilizing a coordinate-measuring machine (CMM) allowed us to present top surface distortion before and after releasing. The top surface showed a distortion around ±80µm after releasing. Microstructure evolution in the scanning-building cross-section is largely dominated by columnar grains. In addition, many small random orientated grains are prominent in the regions of a laser overlap during SLM. In summary, for the sample of superalloy 718 manufactured by SLM, a small distortion occurred when removing the sample from the build plate whereby the residual stress state decreases. Moreover, the observed columnar grains in the building direction could give a reason for the lowest stress values in that normal direction. However, the most important parameter controlling the residual stresses is the temperature gradient. Hence, future investigations are planned for a different scan strategy to distribute the laser impact in a more homogenous manner. T2 - 19th HERCULES Specialized Course CY - Grenoble, France DA - 15.05.2017 KW - Additive manufacturing KW - Selective laser melting KW - Residual stresses KW - Distortion KW - Microstructure PY - 2017 AN - OPUS4-40388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miliūtė, Aistė T1 - How experimental and computational methods allow us to design negative thermal expansion materials N2 - Combined experimental and computational methods allow comprehensive understanding, design, and tailoring of material properties. We focus on a well-known negative thermal expansion (NTE) material, zirconium vanadate (ZrV2O7), and address synthesis, characterisation and validation of results with computational simulations. Experimental and computational X-ray diffraction and Raman spectroscopy data highlighted differences between phase-pure and multiphase ceramics. These techniques allowed us to distinguish subtle differences in the structure of the material. Based on ab initio simulated phonon data, unaffected by impurities or instrumental errors, we could interpret the Raman spectra and visualise Raman active atom vibrations. These computational models allowed better insight and further experimental improvement while high-quality experimental data granted the validation and improvement of computational simulation strategy. T2 - Application of Neutrons and Synchrotron Radiation in Engineering Materials Science CY - Hamburg, Germany DA - 23.03.2025 KW - NTE KW - Sol-gel KW - Ab initio KW - Raman KW - XRD PY - 2025 AN - OPUS4-62832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Kromm, Arne A1 - Nadammal, Naresh A1 - Bode, Johannes A1 - Cabeza, Sandra T1 - Influence of deposition hatch length on residual stress in selective laser melted Inconel 718 N2 - The present study aims to evaluate the bulk residual stresses in SLM parts by using neutron diffraction measurements performed at E3 line -BER II neutron reactor- of Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. Together with microstructure characterization and distortion measurements, it is possible to describe the stress state throughout the whole sample. The sample was measured in as-build condition (on a build plate) and after releasing from the build plate. The used material is the nickel based superalloy 718. This alloy is widely used in aerospace and chemical industries due to its superior corrosion and heat resistant properties. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component. The normal and transversal component exhibits a rather compressive behavior while the longitudinal was tensile in the center part of the sample and became compressive towards the tip. As expected, the absolute values of all stress components decreased after releasing the sample from the building plate. A surface scan utilizing a coordinate-measuring machine (CMM) allowed us to present top surface distortion before and after releasing. The top surface showed a distortion around ±80µm after releasing. Microstructure evolution in the scanning-building cross-section is largely dominated by columnar grains. In addition, many small random orientated grains are prominent in the regions of a laser overlap during SLM. In summary, for the sample of superalloy 718 manufactured by SLM, a small distortion occurred when removing the sample from the build plate whereby the residual stress state decreases. Moreover, the observed columnar grains in the building direction could give a reason for the lowest stress values in that normal direction. However, the most important parameter controlling the residual stresses is the temperature gradient. Hence, future investigations are planned for a different scan strategy to distribute the laser impact in a more homogenous manner. T2 - WAM2018 CY - Grenoble, France DA - 09.04.2018 KW - Additive manufacturing KW - SLM KW - Residual stress KW - In718 PY - 2018 AN - OPUS4-44694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano-Munoz, Itziar T1 - Synchrotron X-Ray Refraction detects microstructure and porosity evolution during in-situ heat treatments N2 - The complexity of any microstructural characterization significantly increases when there is a need to evaluate the microstructural evolution as a function of temperature. To date, this characterization is primarily performed by undertaking elaborative ex-situ experiments where the material’s heating procedure is interrupted at different temperatures or times. Moreover, these studies are often limited to a region smaller than the representative elementary volume, which can lead to partial or even biased interpretations of the collected data. This limitation can be greatly overcome by using in-situ synchrotron X-ray refraction (SXRR). In this study, SXRR has been combined with in-situ heat treatment to monitor the porosity evolution as a function of temperature. This technique is a robust and straightforward method for time-resolved (3-5 min required per scan) evaluation of thermally induced microstructural changes over macroscopically relevant volumes. T2 - AAM2022, Alloys for Additive Manufacturing Symposium CY - Munich, Germany DA - 12.09.2022 KW - Synchrotron X-Ray Refraction KW - In situ heating KW - AlSi10Mg KW - Laser powder bed fusion KW - Thermally induced porosity PY - 2022 AN - OPUS4-55779 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wieder, Frank T1 - X-ray refraction radiography applied to Dental Fibre Posts N2 - Fibre-Matrix-Debonding in glass fibre reinforced dental posts can play an important role for their mechanical performance and long term stability… We show that synchrotron X-ray refraction radiography (SXRR) allows analysis of large samples (up to several millimetres) without compromising the detectability of sub micrometer defects. T2 - HZB User Meeting 2021 CY - Online meeting DA - 09.12.2021 KW - X-ray refraction KW - Fiber reinforced dental post KW - Fiberglass composite KW - Non-destructive testing PY - 2021 AN - OPUS4-54092 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano-Munoz, Itziar T1 - Synchrotron X-Ray Refraction during in-situ heat treatments N2 - For the first time, synchrotron X-ray refraction radiography (SXRR) has been paired with in-situ heat treatment to monitor microstructure and porosity evolution as a function of temperature. T2 - HZB User Meeting 2021 CY - Online meeting DA - 09.12.2021 KW - Synchrotron refraction radiography KW - Laser powder bed fusion KW - AlSi10Mg alloy KW - In-situ heat treatment KW - Porosity growth PY - 2021 AN - OPUS4-53973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kang, M. T1 - Influence of mica particle content in composites for high voltage applications produced by additive manufacturing and mold casting N2 - The insulation system of high voltage electrical devices like generators and electrical motors has to withstand thermal, electrical, ambient and mechanical influences (TEAM) during operation. Especially the dielectric properties have to satisfy the requirements also under elevated temperatures and extreme environments. To provide this high quality, the conventional fabrication process uses partly manually applied insulation tapes combined with a cost-intensive and under safety concerns at least problematic vacuum pressure impregnation step (VPI). In order to reduce process costs by increasing the degree of automation and avoiding the VPI process, additively manufactured (AM) insulations were studied. This study focuses on the fabrication of ceramic/polymer compounds via AM technique. The AM technology used a rotating screw extrusion print head with air pressure to supply the paste. Plate-like samples with dimensions of 55 mm x 55 mm x1mm thickness were produced. This work focuses on the homogeneously high viscous paste with 12.5 to 50 volume % ratio of filler particles. Three types of mica powders as ceramic filler materials with different particle sizes from micro to mm scale were evaluated. The controlled volume % ratio of particles affects the paste viscosity which enables stacking of paste layers with a viscosity close to clay pastes. The mixed pastes were cured by heating and UV light to increase mechanical properties. A TG/DTA was performed, and electrical properties were investigated. First experiments with respect to the dielectric properties such as volume resistance, permittivity and dielectric strength revealed promising results and the possibility to use AM techniques for the fabrication of high voltage insulations for electrical machines. T2 - MaterialsWeek 2021 CY - Online meeting DA - 07.09.2021 KW - HV-Insulation KW - Polymer-Ceramic-Composite KW - Additive manufacturing PY - 2021 AN - OPUS4-54368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stargardt, Patrick T1 - Comparison of design concepts for ceramic oxide thermoelectric multilayer generators N2 - Multilayer thermoelectric generators are a promising perspective to the conventional π-type generators. Ceramic multilayer technology is well established for production of microelectronics and piezo-stacks. Key features of ceramic multilayer technology are full-automation, cost-effectiveness, and the co-firing of all materials in one single step. This requires similar sintering temperatures of all used materials. The development of multilayer thermoelectric generators is a subject of current research due to the advantages of this technology. One of the challenges is the compatibility of the different materials with respect to the specific design. The presented study compares three different designs of multilayer generators based on a given set of material properties. Dualleg, unileg and transverse multilayer generators are compared to conventional π-type generators., the designs are evaluated regarding the expected maximum output power and power density using analytical calculations and FEM simulations. Additionally, the complexity of the production process and material requirements are assessed and design optimizations to simplify production are discussed. Besides the theoretical aspects, unileg multilayer generator prototypes were produced by tape-casting and pressure-assisted sintering. These prototypes are compared to other multilayer generators from literature regarding the power factors of the used material system and the power density. Improvements of the power output by design optimizations are discussed T2 - 18th European Conference on Thermoelectrics CY - Barcelona, Spain DA - 13.09.2022 KW - Thermoelectric oxides KW - Thermoelectric generator design PY - 2022 AN - OPUS4-55820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus T1 - An optical criterion for the assessment of Full-Notch Creep Test (FNCT) fracture surfaces N2 - The full-notch creep test (FNCT) is a common method to evaluate the environmental stress cracking (ESC) behavior of high-density polyethylene (PE-HD) container materials . The test procedure as specified in ISO 16770 provides a comparative measure of the resistance against ESC using the time to failure of specimens mechanically loaded in a well-defined liquid environment. Since the craze-crack damage mechanism underlying the ESC process is associated with brittle failure, the occurrence of globally brittle fracture surfaces is a prerequisite to consider an FNCT measurement as representative for ESC . Therefore, an optical evaluation of FNCT fracture surfaces concerning their brittleness is essential. Due to the experimental setup, an inevitable increase of the true mechanical stress and the associated appearance of small ductile parts on fracture surfaces is induced in any case. Hence, an FNCT experiment is considered as 'valid', if the corresponding fracture surface is predominantly brittle . Based on laser scanning microscopy (LSM) height data of FNCT fracture surfaces , a universal and easy-to-use phenomenological criterion was developed to assess the validity of distinct FNCT experiments. This criterion is supposed to facilitate a quick evaluation of FNCT results in practical routine testing. T2 - PPS Europe-Africa 2019 Regional Conference (PPS 2019) CY - Pretoria, South Africa DA - 18.11.2019 KW - Full-Notch Creep Test (FNCT) KW - Polyethylene, PE-HD KW - Fracture surface analysis KW - Environmental stress cracking (ESC) KW - Optical criterion KW - Brittle fracture PY - 2019 AN - OPUS4-50940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Fries, S. G. A1 - Agudo Jácome, Leonardo T1 - Thermodynamic study of a refractory complex concentrated alloy (rCCA) using the CALPHAD method N2 - Multi-principal-element alloys (MPEAs), have recently come to the attention of the scientific community due to their potential for improving properties such as, e.g. mechanical strength and oxidation resistance in high temperature structural applications. The AlMo0.5NbTa0.5TiZr refractory (r)CCA is one such candidate, showing a two-phase microstructure after a two-stage heat treatment under argon atmosphere at a controlled cooling rate. Since the application conditions intended for this alloy require a long-term high temperature (> 700 °C) mechanical and oxidation resistance, it becomes necessary to assess the possible phase development in this regime. The diagrams reveal that two BCC-based phases could form during alloy solidification, where one phase would be enriched with Mo, Nb and Ta while the other phase, with Al, Ti and Zr. Activity oxides diagrams show that a stable form of aluminum oxide (α-Al2O3, Pearson symbol: hR10, corundum) can be formed. T2 - EUROMAT 2019 CY - Stockholm, Sweden DA - 01.09.2019 KW - Chemically Complex Alloy KW - CALPHAD KW - Electromicroscopy PY - 2019 AN - OPUS4-50730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kranzmann, Axel T1 - Corrosion of VM12 SHC in Salt melt N2 - Alkali and alkaline earth chlorides are discussed as heat storage media and are characterized by their low price and high availability. Disadvantages are a high corrosion rate and formation of Cr6+ ions in the melt, as observed in various binary chlorine salt melts. In our work the system NaCl-KCl-MgCl2 is considered. The storage capacity in this salt system is between 2 and 3 MWh per 10 t salt, depending on composition, melting temperature and working temperature. At the same time the system offers a eutectic line, which allows a high variance of the composition and possibly different corrosion rates can be observed. Corrosion tests in melts were carried out and the corrosion layers investigated. The tests with chloride melts on 12% Cr steel show an inner corrosion zone of up to 40 µm depth after 96 hours. The corrosion mechanisms and potential solutions are discussed. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Salt melt KW - Corrosion KW - VM12 SHC PY - 2019 AN - OPUS4-50759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Terborg, R. A1 - Hodoroaba, Vasile-Dan T1 - Determination of Thin Film Thickness and Composition using Energy Dispersive EPMA N2 - Electron probe microanalysis (EPMA)is a non-destructive technique which assumes a sample of homogenous (bulk) chemical composition and can, therefore, not be used for thin film samples. However, in combination with one of the possible thin film software packages, STRATAGEM, the thickness as well as the composition of such films on a substrate can be determined. This has been demonstrated for FeNi on Si and SiGe on Al2O3 film systems. For both systems five samples with different elemental composition and a reference were produced and characterised by the Korean research institute KRISS using inductively coupled plasma mass spectrometry (ICP-MS), Rutherford backscattering (RBS), and transmission electron microscopy (TEM). In 2021, a new and open source thin film evaluation programme called BADGERFILM has been released. It can also be used to determine thin film composition and thickness from intensity ratios of the unknown sample and standards (k-ratios). In this contribution, we re-evaluated the data acquired for the FeNi and SiGe systems using the BADGERFILM software package and compared the resulting composition and thickness with the results of the established STRATAGEM software and other reference methods. With the current evaluation, the BADGERFILM software shows good agreement with the composition and thickness calculated by STRATAGEM and provided by the KRISS. These results between two well-known layered material systems analysed with available conventional EMPA approaches (STRATAGEM and direct thickness measurement by TEM) and a new one (BADGERFILM) proves that reliable non-destructive thin film analysis is possible. In this way, we validate the performance of the new software, which is not at all self-explanatory for such complex quantification algorithms lying behind the final quantified results. T2 - EMAS 2023 - 17th European Workshop on Modern Developments and Applications in Microbeam Analysis CY - Krakow, Poland DA - 07.05.2023 KW - Thin films KW - BADGER film KW - Electron probe microanallysis (EPMA) KW - FeNi thin film KW - Al2O3 thin films PY - 2023 UR - https://www.microbeamanalysis.eu/events/event/60-emas-2023-17th-european-workshop-on-modern-developments-and-applications-in-microbeam-analysis AN - OPUS4-57484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Towards automated electron microscopy image segmentation for nanoparticles of complex shape by convolutional neural networks N2 - In this contribution different ways are explored with the aim to generate suitable training data for ‘non-ideal’ samples using various approaches, e.g., computer-generated images or unsupervised learning algorithms such as generative adversarial networks (GANs). We used these data to train simple CNNs to produce segmentation masks of SEM images and tested the trained networks on real SEM images of complex nanoparticle samples. The novel use of CNN for the automated analysis of the size of nanoparticles of complex shape and with a high degree of agglomeration has proved to be a promising tool for the evaluation of particle size distribution on a large number of constituent particles. Further development and validation of the preliminary model, respectively larger training and validation data sets are necessary. T2 - Microscopy and Microanalysis 2020 CY - Online meeting DA - 03.08.2020 KW - Nanoparticles KW - Automatisation KW - Image segmentation KW - Convolutional neural networks KW - Electron microscopy PY - 2020 AN - OPUS4-51114 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian T1 - Digital material representation of alloy 2618A for the lifetime assessment of radial compressor wheels N2 - The concept of digital material representation is introduced and the aluminium alloy 2618A is discussed as an example of this concept regarding the simulation of material ageing based on nanoscaled precipitates. T2 - Microscopy Conference 2019 (MC2019) CY - Berlin, Germany DA - 01.09.2019 KW - Alloy 2618A KW - Degradation KW - Coarsening KW - Transmission electron microscopy KW - Digital material representation PY - 2019 AN - OPUS4-48954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis T1 - Assessing the low cycle fatigue behaviour of additively manufactured Ti-6Al-4V: Challenges and first results N2 - The understanding of process-microstructure-property-performance (PMPP) relationships in additive manufacturing (AM) of metals is highly necessary to achieve wide-spread industrial application and replace conventionally manufactured parts, especially regarding safety-relevant applications. To achieve this understanding, reliable data and knowledge regarding material’s microstructure-property relationships (e.g. the role of defects) is needed, since it represents the base for future more targeted process optimizations and more reliable calculations of performance. However, producing reliable material data and assessing the AM material behaviour is not an easy task: big challenges are e.g. the actual lack of standard testing methods for AM materials and the occasional difficulties in finding one-to-one comparable material data for the conventional counterpart. This work aims to contribute to end this lack of reliable material data and knowledge for the low cycle fatigue behaviour of the most used titanium alloy in aerospace applications (Ti-6Al-4V). For this purpose, two sets of test specimens were investigated. The first set was manufactured from cylindrical rods produced by an optimized DED-L process and the second was manufactured from a hot formed round bar. The test specimens were cyclically loaded until failure in the low-cycle-fatigue (LCF) regime. The tests were carried out according to ISO 12106 between 0.3 to 1.0 % axial strain amplitude from room temperature up to 400°C. The LCF behaviour is described and compared between materials and with literature values based on cyclic deformation curves and strain-based fatigue life curves. Besides, the parameters of Manson-Coffin-Basquin relationship were calculated. The microstructures (initial and after failure) and fracture surfaces were comparative characterized. Thereby, the focus lied on understanding the role of grain morphology and defects on the failure mechanisms and fatigue lifetimes. For this latter characterization, optical microscopy (OM), scanning electron microscopy (SEM) and micro computed tomography (µCT) were used. T2 - 4th International Symposium on Fatigue Design and Material Defects CY - Online meeting DA - 26.05.2020 KW - Ti-6Al-4V KW - Additive manufacturing KW - Low cycle fatigue KW - Micro computed tomography KW - Microstructure PY - 2020 AN - OPUS4-50893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul A1 - Hodoroaba, Vasile-Dan T1 - Wire-Print as a Novel Sample Preparation Approach for Accurate Morphological Characterization of Constituent Particles of Graphene-Related 2D-Materials N2 - Graphene and graphene-oxide (GO) are used for instance in catalysis, biomedical applications, in inks and as composite materials. To ensure product quality and safe-by-design principles within the various application fields, the commercial material must be characterized and specified through well-known and standardized procedures. The accurate morphological characterization of 2D materials is a challenging task, requiring careful sample preparation on a substrate either as a powder or from liquid suspension. These must be isolated, homogeneously distributed, with good statistics of the counted particles. Various sample preparation approaches have been reported in the literature, e.g. electrospray, substrate surface treatment, embedding the particulate material and polishing the cross-section, or addition of ligands to the suspended nanostructures. In this study, a novel deposition procedure for graphene-related 2D materials (GR2Ms) was systematically tested for its efficacy. The quantitative analysis of the size and shape distribution of the materials was conducted using electron microscopy and was successfully tested in XPS and EDS experiments. The technique is an extension of the conventional drop-casting method and has been designated "wire-print" deposition. The result of such a wire-print deposition for a graphene-based suspension is shown in Figure, where various treatment conditions have been tested with a repetition of up to 10 times per condition, all together 86 spots on a silicon wafer of 10 mm². T2 - Graphene Week 2025 CY - Vicenza, Italy DA - 22.09.2025 KW - Graphene-related 2D materials (GR2M) KW - Sample peparation KW - Imaging KW - Electron Microscopy KW - Wire-print deposition method PY - 2025 AN - OPUS4-64248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stargardt, Patrick T1 - Bulk vs thermal sprayed alumina for insulation applications: A comparison of electrical and dielectrical properties N2 - Additive manufacturing (AM) processes are opening new design possibilities for large scale electrical devices such as power generators. Conventional manufacturing methods use copper rods which are wrapped, vacuum impregnated, bend and welded. These processes are labor-intensive and time-consuming. The introduction of AM methods for manufacturing the copper conductor and electrical insulation can reduce the size of the generator head, the most complex part of the generator. In this study, the electrical and dielectrical properties of additively deposited ceramic layers are investigated and compared with the properties of conventionally fabricated bulk ceramics. The ceramic layers are thermally deposited by atmospheric plasma spraying of a commercially available alumina powder. Bulk ceramics are fabricated by dry pressing and sintering of the same powder. Microstructure and porosity were analyzed by scanning electron microscopy (SEM). Electrical and dielectrical properties such as DC resistance, dielectric strength, dielectric loss, and relative permittivity were determined according to the standards. The microstructures of sprayed and sintered alumina show significant differences with respect to grain form and porosity. The density of the bulk ceramic is lower than the density of the sprayed layer due to the coarse particle size (d50 = 33 μm). Therefore, data from dense samples of the same chemical composition but lower particle size alumina powder were used for comparison. T2 - Keramik 2022 CY - Online meeting DA - 07.03.2022 KW - High Voltage Insulation KW - Thermal Spray KW - Dielectric Spectroscopy KW - Atmospheric Plasma Spraying PY - 2022 AN - OPUS4-54446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Laquai, René A1 - Schaupp, Thomas A1 - Müller, Bernd R. A1 - Griesche, Axel A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - 3D imaging of hydrogen assisted cracking using analyser-based imaging N2 - To better understand the mechanism of hydrogen assisted cracking (HAC), it is important to investigate the 3D structure of the cracks non-destructively. Since, cracks introduced by HAC are usually very small, conventional x-ray imaging methods often lack the required spatial resolution. However, the detection of those cracks can be enhanced by taking advantage of refraction at interfaces within the sample. To image this refractive deflection we employ analyser based imaging (ABI). In this work we aim at proving the enhanced crack detection of ABI by investigating an alluminum alloy weld. T2 - BESSY User Meeting 2015 CY - Berlin, Germany DA - 09.12.2015 KW - X-ray refraction KW - Synchrotron KW - Analyser-based imaging KW - Hydrogen assisted cracking KW - Welding PY - 2015 AN - OPUS4-38278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Bernd R. T1 - Evidence of damage evolution during creep of Al–Mg alloy using synchrotron X-ray refraction N2 - In order to provide further evidence of damage mechanisms predicted by the solid-state transformation creep (SSTC) model, direct observation of damage accumulation during creep of Al–3.85Mg was made using synchrotron X-ray refraction (SXRR). X-ray refraction techniques capture the specific surface (i.e. surface per unit volume) with a field of view comparable to the specimen size but with microscopic sensitivity. A significant rise of the internal specific surface with increasing creep time was observed, providing evidence for the creation of a fine grain substructure, as predicted by the SSTC model. T2 - Tenth Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 05.12.2018 KW - Aluminium alloys KW - Creep KW - Damage KW - Synchrotron X-ray refraction KW - Electron microscopy KW - Subgrain structure PY - 2018 AN - OPUS4-46861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Bacterial adhesion on ultrashort pulse laser processed surfaces ― more than size matters! N2 - Bacterial biofilms are aggregates of bacterial cells, often attached to a surface and enclosed by a self-produced extracellular matrix which confers increased stress tolerance and resistance to cleaning. Biofilm formation leads to biofouling which gives rise to high costs in numerous technical settings due to biocorrosion and biodegradation. However, biofilms can also be attractive for industrial settings such as wastewater treatment systems or for soil bioremediation processes. Hence, the control of bacterial adhesion to a surface is of major concern. Surface topography strongly influences bacterial adhesion. Therefore, one promising way to achieve bacteria-guiding surfaces lies in the contactless and aseptic large-area laser processing of technical surfaces. We used short and ultrashort pulsed laser systems to generate different surface textures, mainly high-spatial-frequency and low-spatial-frequency laser-induced periodic surface structures, LIPSS (HFSL and LFSL), on Ti, Ti-alloy, steel, and polymers (PET and PE). Pristine (polished) and laser processed samples were subjected to bacterial adhesion experiments with two different Escherichia coli strains and Staphylococcus aureus as test organisms. The bacterial strains differed in their cell wall structure (grampositive vs. gramnegative strains), in size, shape, the occurrence of cell appendages, and in their biofilm forming capabilities. Adhesion patterns were analyzed microscopically and compared regarding the respective test strain and surface topography. Our results revealed that adhesion behavior strongly depends not only on the material’s topography and chemistry, but also on the specific bacterial strain, the presence of cell appendages, and ambient growth conditions. T2 - 13th International Conference on Photoexcited Processes and Applications, ICPEPA-13 CY - Lecce, Italy DA - 14.09.2025 KW - Biofilm KW - Bacterial adhesion KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser pulses PY - 2025 AN - OPUS4-64166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Voss, Heike T1 - ReguΛarity - A free software for the objective quantification of the regularity of periodic surface structures generated by femtosecond laser irradiation N2 - The precise laser-based surface structuring on the micro- and nanoscale allows to create functional properties for innovative applications, e.g., in medicine, optics and biology. Among the various types of surface structures, laser-induced periodic surface structures (LIPSS) are characterized by their versatility and the relatively simple manufacturing process. However, the fabrication of highly regular LIPSS patterns remains challenging. The systematic investigation of LIPSS formation, as well as of the resulting functional properties requires a precise evaluation of the surface morphology, especially with regard to periodicity and regularity. Existing quantification methods such as Fast Fourier Transformation (FFT) tend to lack automation and objectivity, especially when dealing with large data sets and multi-scale structures. Although automated approaches exist with the Gini coefficient and the P³S method, their limited availability restricts a broader scientific use. We therefore introduce ReguΛarity as an innovative open-source software solution for objective, rapid and reproducible evaluation of structured surfaces concerning their regularity. In order to provide comprehensive surface morphological analysis, our software uses advanced image-processing techniques and integrates the already developed tools such as P³S method, Gini coefficient, FFT analysis, and the calculation of DLOA (Dispersion of LIPSS Orientation Angle). The software allows to evaluate any relevant image format as provided, e.g., by standard scanning electron micrographs. An intuitive PyQt5-based interface, enhanced by multi-threading capabilities, facilitates efficient data processing. Interactive features such as region-of-interest selection and plotting provide flexible adaptation to diverse applications. ReguΛarity offers a robust analysis tool that will contribute to the further development of precise laser-based surface structuring and to the optimization of the desired functional properties in both research and industry. T2 - 13th International Conference on Photoexcited Processes and Applications, ICPEPA-13 CY - Lecce, Italy DA - 14.09.2025 KW - Laser-induced periodic surface structures (LIPSS) KW - Laser processing KW - Fourier transformation KW - Regularity PY - 2025 AN - OPUS4-64176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gräf, S. T1 - Ion marker implantation as key to understand the formation of femtosecond LIPSS on steel N2 - Ultrashort laser (fs-laser) pulses can be used to generate laser-induced periodic surface structures (LIPSS, ripples) on different types of materials. A variety of potential applications of these grating-like LIPSS have already been demonstrated in the field of surface functionalization. Examples include structural colours (e.g. for optical effects or safety features), beneficial friction and wear reduction, modification of the wetting behaviour of surfaces, and antibacterial or cell adhesion promoting properties for medical implants. Despite decades of research, however, some aspects regarding the formation mechanism are still unclear and the subject of controversial debate. This involves the two main models of coherent electromagnetic scattering and matter reorganization, which are used for explaining aspects of LIPSS formation and phenomenology. One major issue is to quantify the actual amount of material removal during the fs-laser processing due to the lack of an independent depth reference and to visualize the so-called heat-affected zone accompanying intense fs-laser irradiation. In the present study, near-surface implantation of Mn and N ions into different material depth of Mn-free austenitic stainless steel alloy FeCrNiMo18-12-2 was used to create reference layers of a defined thickness containing the respective elements. LIPSS (type low-spatial frequency LIPSS, LSFL) were fabricated on the polished substrate surfaces in an air environment by fs-laser irradiation (λ = 1025 nm, τ = 300 fs, frep = 100 kHz, F = 1.5 J/cm2). The implanted layers subsequently served as a kind of coordinate system to assess the material removal during the formation process via cross-sectional Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Spectroscopy (EDXS). Using both analysis methods enabled in particular to determine the position of peaks and valleys of the LIPSS topography in relation to the initial surface before fs-laser irradiation. This confirmed the selective ablation in the LIPSS valleys. Moreover, linking changes in the material’s microstructure, e.g., the crystallinity and near surface elemental composition before and after fs-laser treatment, gave additional insights regarding the transient cooling rates, as recently shown for NiTi alloys. T2 - 13th International LIPSS Workshop CY - Enschede, Netherlands DA - 29.10.2015 KW - Energy dispersive X-ray analysis (EDX) KW - Ion implantation KW - Laser-induced periodic surface structures (LIPSS) KW - Steel KW - Transmission electron microscopy (TEM) PY - 2025 AN - OPUS4-64900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Bacterial adhesion on ultrashort pulse laser processed surfaces ― more than size matters! N2 - Bacterial biofilms are aggregates of bacterial cells, often attached to a surface, and enclosed by a self-produced extracellular matrix which confers increased stress tolerance and resistance to cleaning. Biofilm formation leads to biofouling which gives rise to high costs in numerous technical settings due to biocorrosion and biodegradation. However, biofilms can also be attractive for industrial settings such as wastewater treatment systems or for soil bioremediation processes. Hence, the control of bacterial adhesion to a surface is of major concern. Surface topography strongly influences bacterial adhesion. Therefore, one promising way to achieve bacteria-guiding surfaces lies in the contactless and aseptic large-area laser processing of technical surfaces. We used short and ultrashort pulsed laser systems to generate different surface textures, mainly high-spatial-frequency and low-spatial-frequency laser-induced periodic surface structures, LIPSS (HFSL and LFSL), on Ti, Ti-alloy, steel, and polymers (PET and PE). Pristine (polished) and laser processed samples were subjected to bacterial adhesion experiments with two different Escherichia coli strains and Staphylococcus aureus as test organisms. The bacterial strains differed in their cell wall structure (grampositive vs. gramnegative strains), in size, shape, the occurrence of cell appendages, and in their biofilm forming capabilities. Adhesion patterns were analyzed microscopically and compared regarding the respective test strain and surface topography. Our results revealed that adhesion behavior strongly depends not only on the material’s topography and chemistry, but also on the specific bacterial strain, the presence of cell appendages, and ambient growth conditions. T2 - 13th International LIPSS Workshop CY - Enschede, Netherlands DA - 29.10.2025 KW - Bacterial adhesion KW - Biofilm KW - Laser-induced periodic surface structures (LIPSS) KW - Ultrashort laser pulses PY - 2025 AN - OPUS4-64632 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Voss, Heike T1 - Morphology and regularity of high-spatial frequency laser-induced periodic surface structures (HSFL) on titanium materials N2 - Titanium and its alloys are known to enable the straightforward laser‐based manufacturing of ordered surface nanostructures, so‐called high-spatial frequency laser‐induced periodic surface structures (HSFL). These structures exhibit sub‐100 nm spatial periods – far below the optical diffraction limit. The resulting surface functionalities are usually enabled by both, topographic and chemical alterations of the nanostructured surfaces. For exploring these effects, HSFL were processed on different titanium materials (bulk, film) upon irradiation with near‐infrared ps‐laser pulses (1030 nm wavelength, ≈1 ps pulse duration) under different laser scan processing conditions in normal air atmosphere. Here, we extend our previous work on chemical analyses of HSFL on titanium materials towards a more detailed large-area morphological and topographical surface characterization. For this purpose, scanning electron or atomic force microscopic images are subjected to a regularity analysis using our ReguΛarity software. The results are assessed with respect to the influences of sample- or laser-related parameters on the regularity of the HSFL. T2 - 13th International Conference on Photoexcited Processes and Applications, ICPEPA-13 CY - Lecce, Italy DA - 14.09.2025 KW - Laser-induced periodic surface structures (LIPSS) KW - Laser processing KW - Ulltrashort laser pulses KW - Titanium PY - 2025 AN - OPUS4-64173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gräf, S. T1 - Ion marker implantation for tracing the formation of femtosecond LIPSS on steel N2 - An ion marker experiment is conducted to investigate the formation of low spatial frequency laser-induced periodic surface structures (LIPSS) on stainless steel surfaces upon scan-processing with femtosecond laser pulses (300 fs, 1025 nm, 100 kHz) focussed to a spot diameter of ~20 µm. Defined concentration depth profiles of 14N^+- and 55Mn^+-ions were implanted below the polished surface of a cast Mn- and Si-free stainless steel AISI 316L using an acceleration energy of 380 keV. This generated two distinct “depth-tracer-layers” ~135 nm (55Mn) and ~340 nm (14N) below the sample surface. The sample morphology and microstructure were evaluated before and after LIPSS-processing using scanning and transmission electron microscopy techniques in top-view and cross-sectional geometry. Energy-dispersive X-ray spectroscopy (EDXS) allowed to visualize the depth distribution of the marker elements, the steel constituents, and of oxygen involved through the laser processing in ambient air. These experiments revealed that the LIPSS on this metal are predominantly formed by material removal through locally varying ablation and, to a lesser extent, by local melt displacement effects prior to the re-solidification. Moreover, the processing in air leads to the formation of a less than 10 nm thick laser-induced oxide layer covering the steel surface. Our new tracer ion approach contributes to the ongoing debate on the relevance of electromagnetic or hydrodynamic effects during the formation of LIPSS. T2 - E-MRS Spring Meeting 2025 CY - Strasbourg, France DA - 26.05.2026 KW - Laser-induced periodic surface structures (LIPSS) KW - Steel KW - Ion implantation KW - Transmission electron microscopy (TEM) KW - Energy dispersive X-ray analysis (EDX) PY - 2025 AN - OPUS4-63274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Sophie T1 - Optimization of Solid-State-Reactions of Calcium Cobaltite Ca3Co4O9 N2 - Calcium cobaltite is a promising p-type oxide thermoelectric material for high temperature applications due to its high figure of merit between 600 °C and 900 °C in air. The solid-state-reaction is well known for large scale powder synthesis of functional materials. As a high temperature process, the powder synthesis consumes a lot of energy. In different studies, different synthesis conditions were used for the preparation of calcium cobaltite powder. This study showed that a higher energy input (elevated temperatures, longer dwell times, or repeated calcinations) during powder synthesis does not increase but decrease the Seebeck coefficient and the electrical conductivity. The same correlation was determined for the densification. As a higher energy input leads to a larger grain size and therefore to a reduced sinter activity, it can be concluded that the thermoelectric properties are correlated with the sinter activity of the powder. These results can be used to minimize the energy demand for the powder synthesis of Ca₃Co₄ O₉. T2 - 14th European Conference on Thermoelectrics CY - Lisbon, Portugal DA - 20.09.2016 KW - Thermoelectrics KW - Solid-State-Reaction KW - Calcium cobaltite PY - 2016 AN - OPUS4-37543 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias T1 - Influence of deposition hatch length on residual stress in selective laser melted Inconel 718 N2 - Additive Manufacturing (AM) by Selective Laser Melting (SLM) offers ample scope for producing geometrically complex parts in comparison to the traditional subtractive manufacturing strategies. Developing during the manufacturing process, residual stresses may limit the application of SLM parts by reducing the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. The present study aims to evaluate the bulk residual stresses in SLM parts by using neutron diffraction measurements performed at E3 line -BER II neutron reactor- of Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. Together with microstructure characterization and distortion measurements, it is possible to describe the stress state throughout the whole sample. The sample was measured in as-build condition (on a build plate) and after releasing from the build plate. The used material is the nickel based superalloy 718. This alloy is widely used in aerospace and chemical industries due to its superior corrosion and heat resistant properties. Obtained results indicated different residual stress states for each of the transversal, longitudinal and normal component. The normal and transversal component exhibits a rather compressive behavior while the longitudinal was tensile in the center part of the sample and became compressive towards the tip. As expected, the absolute values of all stress components decreased after releasing the sample from the building plate. A surface scan utilizing a coordinate-measuring machine (CMM) allowed us to present top surface distortion before and after releasing. The top surface showed a distortion around ±80µm after releasing. Microstructure evolution in the scanning-building cross-section is largely dominated by columnar grains. In addition, many small random orientated grains are prominent in the regions of a laser overlap during SLM. In summary, for the sample of superalloy 718 manufactured by SLM, a small distortion occurred when removing the sample from the build plate whereby the residual stress state decreases. Moreover, the observed columnar grains in the building direction could give a reason for the lowest stress values in that normal direction. However, the most important parameter controlling the residual stresses is the temperature gradient. Hence, future investigations are planned for a different scan strategy to distribute the laser impact in a more homogenous manner. T2 - HZB User Meeting 2017 CY - Berlin, Germany DA - 15.12.2017 KW - AM KW - SLM KW - IN 718 KW - Neutron diffraction KW - Residual stress KW - Hatch length KW - Microstructure PY - 2017 AN - OPUS4-43475 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shashev, Yuri T1 - Optimizing the performance of phase gratings for better visibility in Talbot- Lau interferometry N2 - We investigated the efficiency of phase gratings, i.e., the visibility upon variation of different parameters. Rotating around an axis parallel to the grid lines of the phase grating changes the grating’s shape and thereby the initial distribution of phase shifts. This yields high visibilities for shorter propagation distances than derived from box shapes. Tilting the grating in the scattering plane allows continuous tuning of the grating’s height that corresponds to an ideal phase shift for a particular photon energy. This opens the way for tuning the design energy suitable for the material under investigation. Our study included simulations for monochromatic sources with the sampling procedure. T2 - PhD Day 2015 CY - Berlin, Germany DA - 14.7.2015 KW - Talbot-Lau interferometry PY - 2015 AN - OPUS4-38325 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob T1 - The heat treatment of L-PBF Inconel 718: A manyfold problem N2 - The interest to additively manufacture Nickel-based superalloys has substantially grown within the past decade both academically and industrially. More specifically, additive manufacturing processes such as laser powder bed fusion (LPBF) offer the ability to produce dense parts within a single manufacturing step. In fact, the exceptional freedom in design associated with the layer-based nature of the processes is of particular interest for the complex shapes typically required in turbine applications. In certain cases, the overall part performance can be achieved by tailoring the microstructure and the crystallographic texture to the specific application. However, these advantages must be paid at a price: the large local temperature gradients associated with the rapid melting and solidification produce parts that inherently contain large residual stress in the as-manufactured state. In addition, the presence of pores in the final part may further affect the in-service part failure. As among Nickel-based alloys Inconel 718 exhibits excellent weldability, this alloy has been widely studied in open research in the domain of LPBF. However, significant microsegregation of the heavier alloying elements such as Niobium and Molybdenum accompanied by dislocation entanglements may preclude the application of conventional heat treatment schedules. Therefore, different post processing heat treatments are required for laser powder bed fused Inconel 718 as compared to conventional variants of the same alloy. In this study, we investigated two different heat treatment routes for LPBF Inconel 718. In a first routine, the samples were stress relieved and subsequently subjected to hot isostatic pressing (HIP) followed by a solution heat treatment and a two-step age (referred to as FHT). In a second routine, the samples were subjected to a single-step direct age post stress relieving heat treatment (referred to DA). We investigated the consequences of such heat treatment schedules on the microstructure, texture, and mechanical behavior. We show that by applying a DA heat treatment the typical columnar microstructure possessing a crystallographic texture is retained, while an equiaxed untextured microstructure prevails in case of an FHT heat treatment. We further evaluate how these heat treatments affect the mechanical behaviour on the macroscopic and microscopic scale. T2 - 4th European Symposium on Superalloys and their Applications EuroSuperalloys 2022 CY - Bamberg, Germany DA - 18.09.2022 KW - Electron Backscatter Diffraction KW - Additive Manufacturing KW - Laser Powder Bed Fusion KW - Mechanical Behavior KW - Heat Treatment KW - X-Ray Diffraction PY - 2022 AN - OPUS4-55811 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sprengel, Maximilian T1 - Heat treatment induced residual stress relaxation in additively manufactured L-PBF 316L stainless steel N2 - Residual stress relaxation as a function of heat treatment strategies in laser based powder bed fused 316l samples. T2 - Eleventh Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 04.12.2019 KW - Additive Manufacturing KW - Residual Stress KW - Neutron Diffraction KW - 316L PY - 2019 AN - OPUS4-49851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Léonard, Fabien T1 - On nominal-actual comparisons for additive manufacturing applications N2 - Nominal-actual comparisons are routinely performed to compare a manufactured specimen to a reference specimen. X-ray Computed Tomography (CT) has brought a profound change in the way that tolerance verifications are performed in industry, by allowing the inner and outer geometries of an object to be measured, without the need for external access or destructive testing. As a results, CT is increasingly used in additive manufacturing applications, where a nominal-actual comparison performed between the digital model (CAD file), used as an input for the 3D printer, and the CT volume from the printed part, can provide invaluable information as to the accuracy of the printing process. However, the nominal-actual comparison process is somewhat different when applied to additively manufactured specimens by comparison to conventionally manufactured specimens. T2 - 9th Conference on Industrial Computed Tomography CY - Padova, Italy DA - 14.02.2019 KW - Computed tomography KW - X-ray computed tomography PY - 2019 AN - OPUS4-47833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Léonard, Fabien T1 - Metrology for Additively Manufactured Medical Implants: The MetAMMI project N2 - Additive manufacturing (AM) offers an effective solution to the medical sector. It enables the production, on demand, of customised implants which match the patient’s anatomy, with grafts that promote bone growth, as well as surgical guides that help the surgeons. The objective of this project is to provide a comprehensive basis to enable the safe use of medical AM products with traceable and reliable dimensionalmeasurements. This will guarantee the reliability of medical AM products to notified bodies and facilitate acceptance of AM in the medical sector for a better quality of life. T2 - BPWT/BAM Workshop " Innovative Materialien und Qualitätskontrolle für additive Fertigung" CY - Berlin, Germany DA - 12.09.2018 KW - Additive manufacturing KW - X-ray computed tomography PY - 2018 AN - OPUS4-45926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - In-Situ Compression CT on Additively Manufactured in 625 Lattice Structures N2 - The porosity and the surface roughness are recently discussed problems for SLM parts. The influence of SLM process parameters on porosity is well studied for different materials. Nevertheless, the build angle (i.e. the angle between part orientation and build plate) needs to be understood as an additional SLM process parameter, as it has been shown, that the microstructure and hence the mechanical performance of various materials depend on the build angle. The inherent build angle of each strut as a part of a lattice structure is the motivation to investigate the influence of the build angle on the porosity and roughness on round-shaped (1 mm diameter) struts by means of CT. Conventional Coordinate Measuring Machine (CMM) has the limitation towards small and round shaped samples. The need for Computed Tomography (CT) regarding investigations of SLM parts will increase because no other non-destructive technique allows the assessment of complex geometries with inner laying surfaces. We used CT to assess the pores and the strut surface. Seven struts out of the nickel alloy Inconel 625 with build angles from 30° to 90° were studied. It was found that the number of pores is smaller, and the size of pores is larger for the 90° strut. In case of 30° strut, the number of pores is increased towards down-skin side, additionally, this strut orientation showed to have the largest number of attached powder particles. The elongated pores exist exclusively near the strut surface. While the roughness at the down-skin surface is highly depending of the biud angle, the roughness at the up-skin surface is the same for all struts. The mechanisms of pore and surface roughness formation is not mainly driven by gravity. T2 - ISAM Konferenz 2019 CY - Dresden, Germany DA - 29.01.2019 KW - Computed Tomography KW - Additive Manufacturing KW - Metals KW - Microstructure PY - 2019 AN - OPUS4-47327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kupsch, Andreas T1 - Optimizing visibility of phase gratings for Talbot-Lau X-ray imaging N2 - We investigated the efficiency of phase gratings, i.e., the visibility upon variation of different parameters. Rotating around an axis parallel to the grid lines of the phase grating changes the grating’s shape and thereby the initial distribution of phase shifts. This yields high visibilities for shorter propagation distances than derived from box shapes. Tilting the grating in the scattering plane allows continuous tuning of the grating’s height that corresponds to an ideal phase shift for a particular photon energy. This opens the way for tuning the design energy suitable for the material under investigation. Our study included simulations for monochromatic sources with the sampling procedure for rectangular and triangular phase gratings. T2 - User-Meeting CY - Berlin, Germany DA - 8.12.2016 KW - Talbot-Lau interferomerty KW - Phase grating KW - Synchrotron radiation PY - 2016 AN - OPUS4-39096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröter, Felix T1 - Fluorescence? Not on my Shift! Excitation- Shifted UV Raman Microspectroscopy N2 - Spectroscopic analysis of samples provides elemental information, which is useful when the sample is homogenous. But many samples are not and consequently the creation of maps detailing the spatial composition of materials is needed. Raman microscopy can be used for this exact purpose but suffers a big drawback. The inherently weak Raman scattering results in long measurement times, especially when maps with many data points are created. This is due to the long exposure times needed when visible light lasers are used. A shift to UV-Lasers significantly increases the Raman intensity, as it scales with the fourth power of the inverse of the laser wavelength. But UV excitation often leads to fluorescence which can obscure the relatively weak Raman signal. Consequently, UV-Raman can only be used with specially prepared samples, for example through photo-bleaching, or with samples producing no fluorescence background in the measurement region. A solution is proposed that uses shifted-excitation Raman difference spectroscopy (SERDS) in a confocal microscope to obtain fluorescence-free Raman spectra. This is possible due to the collection of two Raman spectra at different excitation wavelengths. SERDS then allows for the calculation of just the Raman signal from the difference spectrum, which eliminates any fluorescence backgrounds, as they are not excitation wavelength dependent. The presented approach employs a polarized beamsplitter to irradiate the same spot with two lasers of different wavelengths which share the same beam path in the microscope. Consequently, a SERDS UV Raman Microscope is created, which utilizes the speed of UV-Raman without the drawbacks of possible broad fluorescence backgrounds. Here we present the instruments methodology and some first results. T2 - ANAKON 2025 CY - Leipzig, Germany DA - 10.03.2025 KW - UV Raman Spectroscopy KW - UV Raman Microspectroscopy KW - Confocal Microscopy KW - Excitation-Shifted Raman Spectroscopy PY - 2025 AN - OPUS4-62734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evsevleev, Sergei T1 - Stress-induced damage evolution in aluminum matrix composites N2 - Two metal matrix composites, both consisting of a near-eutectic cast AlSi12CuMgNi alloy, one reinforced with 15%vol. Al2O3 short fibers and the other with 7%vol. Al2O3 short fibers + 15%vol. SiC particles were studied. Distribution, orientation, and volume fraction of the different phases was determined by means of synchrotron computed tomography. The load partitioning between phases was investigated by in-situ neutron diffraction compression tests. The internal damage of the eutectic Si phase and Al2O3 fibers after ex-situ compression tests was directly observed in CT reconstructed volumes. Significant debonding between Al-matrix and SiC particles was found. Those observations allowed rationalizing the load transfer among the constituent phases of two different composites. Finally, based on the Maxwell scheme, a micro-mechanical model was utilized for the composite with one and two ceramic reinforcements. The model rationalizes the experimental data, and predicts the evolution of principal stresses in each phase. T2 - The 4th International Congress on 3D Material Science 2018 CY - Elsinore, Denmark DA - 10.06.2018 KW - Computed Tomography KW - Aluminium KW - Metal Matrix Composite KW - Load Partition PY - 2018 AN - OPUS4-45397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul T1 - Morphological Analysis of Graphene Oxide by SEM and Correlative Field-Flow Fractionation Coupled with Multi-Angle Light Scattering N2 - Since the first free-standing monolayer graphene sheet was successfully prepared in 2004 [1], graphene and graphene oxide materials achieved the necessary technical readiness level to be considered for use in commercial products. Moreover, the focus has shifted from fundamental research towards expanding the applicability of graphene-related 2D materials (GR2M) and to improve their competitiveness with established materials [2]. Significant advances have been made especially in applications regarding optoelectronics, energy storage materials, chemical additives, sensor applications etc. [3]. Composite products containing graphene and functionalized graphene such as inks and dyes have shown enhanced performance regarding longevity, wettability, and can be tailored for specific purposes through dedicated functionalization. For accurate physico-chemical characterization, GR2M products in their raw form or as part of composites present challenges in terms of sample preparation, choice of analytical method and evaluation of data. For instance, in the context of imaging, these challenges encompass: (a) the selection of images magnifications being representative for all the flakes ranging in size from hundreds of nanometers to micrometers; (b) the selection of representative flakes for adequate statistics, which may involve the separation of overlapping/agglomerating flakes by segmentation; and (c) the classification of diverse morphologies such as irregularly shaped/crumpled flakes, porous flakes and particulate features present in the sample. The complexity of the analytical task has needed the introduction of specific ontology for 2D materials to identify the proper descriptors characterizing confidently the morphological features of interest. Regarding light scattering techniques such as Dynamic Light Scattering (DLS) and Multi-Angle Light Scattering (MALS) commonly used for process control in industry as a first measure, an alternative approach would be necessary. This is in part due to the use of the standard sphere-model for 2D materials as appearing to be inappropriate, whilst a disc-shape model potentially yields more suitable results. Standardization efforts are underway to establish a baseline for accurate characterization of aimed measurands with sufficient statistics. To date, the measurement methods recommended by standardization bodies for the morphological-structural characterization of GR2M’s are AFM, Raman Spectroscopy and SEM and/or TEM. The acquisition of statistically relevant numbers of flakes for a thorough characterization using TEM and AFM is particularly time-consuming. The size distribution of graphene oxide- and graphene-containing inks was investigated by using a correlative approach coupling Centrifugal Field-Flow Fractionation (CF3) [4] with MALS. Up to now, promising results for Field-Flow Fractionation have been achieved only with respect to the separation into size classes of GO samples as well as of graphene oxide mixed with graphene by Asymmetrical Field-Flow Fractionation (AF4) [5], [6]. Besides the online characterization by MALS, the eluting size fractions obtained by CF3 were also collected and subsequently measured by SEM. Successful separation into size fractions allows us to apply ensemble techniques such as MALS to samples that were previously not measurable according to best-practices. In this study, the following material sub-classes have been observed with SEM: (i) nano-graphite mixed with graphene flakes, (ii) graphene oxide few- and multi-layer flakes with diverse and highly complex morphology, and (iii) graphene oxide of well-defined size and shape with >95% single- and bilayer content were investigated. Data on the class size ranges was obtained by MALS after separation with CF3 and consideration of a disc-shape model. Significant effort was invested into the sample preparation for CF3 measurements to achieve a recovery rate of >80%, well above the recommended 70% by ISO/TS 21362:2018 for validation purposes. The material fractions collected after the CF3 measurement were separately deposited on a silicon wafer and the size results of the SEM analysis were correlated with the corresponding mean sizes obtained with MALS. T2 - Microscopy and Microanalysis 2025 CY - Salt Lake City, UTAH, USA DA - 27.07.2025 KW - Advanced Material KW - CF3 KW - SEM KW - Morphology PY - 2025 AN - OPUS4-64084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Singh, Shobhit T1 - Accelerated Creep Testing in High- Temperature Alloys N2 - This study introduces an innovative method for efficiently determining the creep properties of high-temperature materials through high-throughput testing, employing digital image correlation [1,2]. The focus is on the AlCoCrFeNiTi alloy [3-5], synthesized by directional solidification, known for its exceptional strength and unique properties. Experimental investigations, including compression, and bending creep tests, were conducted at 750°C. Capitalizing on the inhomogeneous stress and strain distribution within a cantilever subjected to bending, we leverage this characteristic to extract multiple creep curves from a single test. Stresses at key points were determined using existing analytical solutions [5,6]. Uniaxial tests spanning 300 to 500 MPa initial stress were complemented by bending tests designed to induce similar stress levels. A detailed comparison between bending and uniaxial creep is presented, including the results of verification studies on additional alloys. This methodology not only expedites testing but also minimizes material usage, energy consumption, and manual labour. This research showcases a reliable and time-efficient approach to exploring the creep behavior of high-temperature materials. The technique is particularly advantageous for characterizing precious alloys with limited dimensions. Microstructural heterogeneity may exist in specimens tested under bending load, however, it can still be correlated to the mechanical properties with modern high-resolution characterization methods. Stress and resulting strain can be directly compared in a single specimen, ensuring uniform manufacturing, and heating history. This method eliminates the possible errors due to testing with different rigs, which could impair the accuracy of studies based on individual tests. T2 - International Conference on Creep and Fracture of Engineering Materials and Structures CY - Bengaluru, KA, India DA - 28.07.2024 KW - Digital Image Correlation KW - Creep KW - High-Temperature Materials PY - 2024 AN - OPUS4-60925 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Correlative chemical imaging to reveal the nature of different commercial graphene materials N2 - Different synthesis techniques were developed which led to other graphene-related materials such as graphene oxide (GO) or elemental-doped graphene. Further chemical functionalization can enhance but also alter or reduce specific properties of the graphene. To reveal the nature of these materials a proper physico‑chemical characterization with different analytical techniques is crucial. Single-layer GO flakes provided by Graphenea (Spain) were prepared for systematic image analysis. These flakes were disposed on an alignment-marked SiO2 substrate and correlatively imaged by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and Raman spectroscopy. The high lateral resolution and/ or extreme surface sensitivity of the mentioned techniques is necessary to explore monolayers. The ToF-SIMS images match well with the SEM and AFM images and provide information about the chemistry. With 2D Raman spectroscopy it is possible to differentiate between the number of stacked single-layer flakes. This is visualized in a 3D image. Well-defined GO flakes could be used as a reference material for imaging of graphene-like structures but also of other types of 2D materials. In addition to these monolayer GO flakes, commercial graphene-containing inks (Haydale) with a more complex morphology were also correlatively imaged. ToF-SIMS and SEM images were merged to identify the origin of different chemical fragments. The findings correlate closely with the expectation that the specific functionalizations (with fluorine and nitrogen as marker elements) are present only on the graphene flakes as presumed from the SEM images. Energy-dispersive X-ray spectroscopy (EDX) supports these results, yet with a much lower sensitivity compared to ToF-SIMS. T2 - Joint Regulatory Risk Assessors Summit – Advancing Safety & Sustainability Assessments of Advanced Materials CY - Paris, France DA - 19.06.2025 KW - ToF-SIMS KW - Imaging KW - Graphene-related 2D materials KW - SEM/EDX KW - Auger electron spectroscopy KW - Raman spectroscopy PY - 2025 UR - https://macrame-project.eu/macrame-meetings-workshops/jointrras/#Agenda AN - OPUS4-63656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - Reliable analysis of the elemental composition of graphene oxide flakes with energy dispersive spectroscopy (SEM/EDS) and x-ray photoelectron spectroscopy (XPS) N2 - Suspensions of graphene-related 2D materials (GR2M) are broadly used for further applications like printable electronics. The reliable quantification of the composition of graphene-related 2D materials as liquid suspensions is still a challenging task, which can hinder the commercialisation of the products. Specific parameters to be measured are defined, e.g. the oxygen-to-carbon (O/C) concentration ratio, the trace metal impurities, or the functional groups present [1], but reference protocols are still missing. One of the central methods for the quantification is X-ray photoelectron spectroscopy (XPS) as a rather expensive method. Therefore, the development of cheaper alternatives is highly desired. One attractive alternative of XPS is energy-dispersive spectroscopy (EDS) which is usually coupled with scanning electron microscopy (SEM). This combination is one of the most widely used methods in analytical laboratories. In this contribution the results of a systematic study on the capability of SEM/EDS to reliably quantify the O/C ratio in a well-defined and well-characterized graphene oxide material [2] are presented. The robustness of the SEM/EDS results obtained at various measurement conditions (various excitation energies) is tested by comparing the results to the established XPS analysis [3], which has been carried out on the same samples. It is demonstrated that for samples prepared by drop-casting on a substrate, both surface-sensitive XPS analysis and bulk-characterising EDS result in very similar elemental composition of oxygen and carbon for thick spots. Further, the effect of untight deposited material enabling co-analysis of the (silicon) substrate, is evaluated for both methods, XPS and EDS. The last results clearly show the influence of the substrate on the analysis of the results and stressed out the importance of the sample preparation. T2 - E-MRS Spring Meeting CY - Strasbourg, France DA - 26.05.2025 KW - Graphene oxide KW - Reliable Analysis KW - Ionic Liquid KW - Reference Material PY - 2025 AN - OPUS4-63336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian T1 - Influence of heat treatment and creep loading on an Al-Cu-Li alloy N2 - The influence of heat treatment and creep loading on the microstructure of an Al-Cu-Li alloy was investigated. Especially the formation of different precipitates (T1 and Theta') were characterized and the microstructural changes under different ageing conditions (with and without external strain) were investigated to determine the effect od stress on the ageing process. T2 - 19th International Microscopy Congress (IMC19) CY - Sydney, Australia DA - 09.09.2018 KW - Aluminium KW - Degradation KW - Coarsening KW - Dark-field transmission electron microscopy PY - 2018 AN - OPUS4-46131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg T1 - Knowledge Infrastructure supporting image-based characterisation of 2D graphene materials N2 - To better understand the relationship between image features and biological effects such as toxicity,we have developed a method combining image thresholding and pixel-wise segmentation to create annotated datasets. These datasets are used to train machine learning models and establish human–AI learning loops for material classification and structure detection. We employ deep learning architectures such as ResNet, EfficientNet, and U-Net to automate the classification and segmentation of SEM/TEM images of 2D nanomaterials, with targeted manual annotation focusing on key structures (graphene flakes, agglomerates, contaminants, etc.). This approach ensures reproducible, large-scale analysis, which is essential for studying the links between structure and biological response. Finally, our methodology aligns with OECD requirements and contributes to the Safe and Sustainable by Design (SSbD) framework, aiming to enhance product reliability and sustainability. T2 - Joint Regulatory Risk Assessors Summit – Advancing Safety & Sustainability Assessments of Advanced Materials CY - Paris, France DA - 19.06.2025 KW - Graphene KW - 2D materials KW - Knowledge infrastructure KW - Imaging KW - Machine learning PY - 2025 UR - https://macrame-project.eu/macrame-meetings-workshops/jointrras/#Agenda AN - OPUS4-63682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra T1 - Advanced screening method using volume-specific surface area (VSSA) for nanomaterial classification of powders N2 - The EU recommendation for a definition of nanomaterial (2011/696/EU) should allow the identification of a particulate nanomaterial based on the number-based metric criterion according to which at least 50% of the constituent particles have the smallest dimension between 1 and 100 nm. Within the European Project NanoDefine (www.nanodefine.eu) a two-tier approach has been developed, whereby firstly a screening method is applied for the rough classification as a nanomaterial or non-nanomaterial, and for borderline cases a confirmatory method (imaging methods or field flow fractionation) must be considered. One of the measurement methods well suited to particulate powder is the determination of volume-specific surface area (VSSA) by means of gas adsorption as well as skeletal density. The value of 60 m2/cm3 corresponding to spherical, monodisperse particles with a diameter of 100 nm constitutes the threshold for decisioning if the material is a nanomaterial or non-nanomaterial. The correct identification of a nanomaterial by VSSA method (positive test) is accepted by the EU recommendation. However, the application of the VSSA method is associated also by some limitations. The threshold of 60 m2/cm3 is dependent on the particle shape. For particles containing micro-pores or having a microporous coating, false positive results will be produced. Furthermore, broad particle size distributions – as typically for ceramic materials – as well as multi-modal size distributions make necessary to adjust the threshold. Based on examples of commercially available ceramic powders, the applicability of the VSSA approach will be tested (in relation with SEM and TEM measurements) in order to expand the actual knowledge and improve the method. T2 - Jahrestagung der Deutschen Keramischen Gesellschaft mit Symposium Hochleistungskeramik CY - München, Germany DA - 10.04.2018 KW - VSSA KW - Nanoparticles PY - 2018 AN - OPUS4-45097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul T1 - Fine iron oxide nanoparticles as a candidate reference material for reliable measurement of particle size N2 - Background, Motivation and Objective Nanomaterials are at the core of some of the 21st century’s most promising technologies. In order to utilize and rationally design materials at the nanoscale the reliable characterization of their physico-chemical properties is highly important. Furthermore, the European Commission has taken measures via the REACH Regulations to control the classification of nanomaterials. REACH Annexes which entered into force in January 2020 require manufacturers to register nanomaterials that are traded in larger quantities (at least 1 ton). Every powder or dispersion where 50% (number distribution) of the constituent particles have sizes ≤ 100 nm in at least one dimension are defined as a nanomaterial. This creates a need for both industrial manufacturers and research and analytical service facilities to reliably characterize potential nanomaterials. Currently, BAM is working on developing reference nanoparticles, which shall expand the scarce list of worldwide available nano reference materials certified for particle size distribution, but also targeting other key parameters such as shape, structure (including porosity) and functional properties. Thus, candidate materials are considered to complement the already available spherical and monodisperse silica, Au and polystyrene reference nanoparticles, e.g. iron oxide and titanium oxide, with an average atomic number between those of silica and gold. Particularly for the imaging by electron microscopies, new nanoparticles of well-defined size in the range of 10 nm are decisive for the accurate particle segmentation by setting precise thresholds. Statement of Contribution/Methods Synthesis: Highly monodisperse iron oxide nanoparticles can be synthesized in large quantities by thermal decomposition of iron oleate or iron acetylacetonate precursors in high boiling solvents such as octadecene or dioctyl ether in the presence of oleic acid and oleylamine as capping agents. Scanning Electron Microscope: An SEM of type Supra 40 from Zeiss has been used including the dedicated measurement mode transmission in SEM (STEM-in-SEM) with a superior material contrast for the nanoparticle analysis. The software package ImageJ has been used for the analysis of the STEM-in-SEM images and to determine the particle size distribution. Dynamic Light scattering (DLS): Particles in suspension were measured in comparison by means of Zetasizer Nano (Malvern Panalytical; cumulants analysis) and NanoFlex (Microtrac; frequency power spectrum). Results/Discussion In this study iron oxide nanoparticles synthesized at BAM and pre-characterized by DLS, SEM (including the transmission mode STEM-in-SEM) are presented. The particles are spherical and highly monodisperse with sizes slightly larger than 10 nm. T2 - Nanosafe 2020 CY - Online meeting DA - 16.11.2020 KW - Reference nanomaterials KW - Imaging techniques KW - Size and size distribution KW - Reliable characterization KW - Iron oxide nanoparticles PY - 2020 AN - OPUS4-51767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schusterbauer, Robert T1 - Correlative chemical imaging to reveal the nature of different commercial graphene materials N2 - Since the original report in 2004 by Novoselov and Geim, Graphene gained incredible attention due to its fascinating properties. In the past 20 years, the synthesis and functionalization of graphene has evolved significantly[3]. Different synthesis techniques were developed which led to other graphenerelated materials such as graphene oxide (GO) or elemental-doped graphene. Further chemical functionalization can enhance but also alter or reduce specific properties of the graphene. To reveal the nature of these materials a proper physico‑chemical characterization with different analytical techniques is crucial. Single-layer GO flakes kindly provided by Graphenea (Spain) were prepared for systematic image analysis. These flakes were disposed on an alignment-marked SiO2 substrate and correlatively imaged by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and Raman spectroscopy. The high lateral resolution and/ or extreme surface sensitivity of the mentioned techniques is necessary to explore monolayers. The ToF-SIMS images match well with the SEM and AFM images and provide information about the chemistry. With 2D Raman spectroscopy it is possible to differentiate between the number of stacked single-layer flakes. This is visualized in a 3D image (Figure b). Well-defined GO flakes could be used as a reference material for imaging of graphene-like structures but also of other types of 2D materials. In addition to these monolayer GO flakes, commercial graphene-containing inks (Haydale) with a more complex morphology were also correlatively imaged. ToF-SIMS and SEM images were merged to identify the origin of different chemical fragments. The findings correlate closely with the expectation that the specific functionalizations (with fluorine and nitrogen as marker elements) are present only on the graphene flakes as presumed from the SEM images. Energy-dispersive X-ray spectroscopy (EDX) supports these results, yet with a much lower sensitivity compared to ToF-SIMS. T2 - MaterialsWeek 2024 CY - Limassol, Cyprus DA - 17.06.2024 KW - Graphene oxide flakes KW - ToF-SIMS KW - SEM KW - Raman KW - Correlative imaging PY - 2024 AN - OPUS4-60681 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias T1 - Investigations of Aged Metal Seals for Interim Storage N2 - The storage of spent fuel and high level radioactive waste in Germany is performed in interim storage containers with double lid systems. The lids are bolted and equipped with metal seals (e.g. Helicoflex®) to ensure the safe enclosure of the inventory. The used metal seals have a layered structure consisting of three components as can be seen schematically in the cross-sectional view in Fig. 1. In the center a helical spring is positioned that is surrounded by two C-shaped jackets and is mainly responsible for generation of the required restoring force. The inner jacket is made of stainless steel and homogenizes the restoring force of the helical spring. The outer jacket is made of silver or aluminium which both are soft metals in comparison to the contact partners (lid and container body). During bolting of the lid to the container body the seal is compressed. The generated restoring force of the helical spring causes a plastic deformation of the outer jacket and adapts to the surfaces of the lid and the container body. Hence, leakage paths are closed and the sealing function is generated. Typical durations for existing interim storage licenses in Germany are 40 years, but it can be expected that they have to be extended to longer periods as a final repository will not be available before the end of the running licence periods. This extension of license periods requires a solid understanding of the long-term behaviour of the seals under storage conditions. To meet this challenge long-term investigations have been started at Bundesanstalt für Materialforschung und –prüfung (BAM) in 2009. These tests focus on seals assembled in test flanges which are stored at temperatures ranging from room temperature to 150 °C for accelerated ageing. The aged seals are tested repeatedly after certain ageing steps and the leakage rate as indicator for sealing performance, the remaining seal force, and the useable resilience upon decompression are determined. In the poster an update on the performed investigations in respect to earlier publications (Grelle et al. 2019, Goral et al. 2023) will be given and the implications of the results for resilient long term safety will be presented. Additionally, a focus will be laid on the currently planned further investigations and the question “What is additionally needed for evaluation of an interim storage period extension in regard to the used metal seals?” will be addressed. T2 - safeND2023: Forschungssymposium des BASE CY - Berlin, Germany DA - 13.09.2023 KW - Metal seal KW - Interim storage KW - Ageing PY - 2023 AN - OPUS4-58568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fernandez-Poulussen, D. A1 - Hodoroaba, Vasile-Dan T1 - Holistic, reliable and practical Characterization Framework for Graphene Family Materials, a correlated approach including Imaging based techniques N2 - ACCORDs is an Horizon Europe project working in the development of an imaging-based characterization framework (ACCORDs framework) for the holistic correlative assessment of Graphene Family Materials (GFMs) as a representative of 2D nanomaterials (NMs) to assess and predict 2D NMs health and environmental risks. The ACCORDs framework will operationalise safe and sustainable by design (SSbD) strategies proposed in past or ongoing H2020 projects or within OECD by correlating low-, medium-, and high-resolution physico-chemical-biological imaging-based methods with non-imaging methods in a tiered approach. ACCORDs will deliver the ACCORDs framework and user guidance, new imaging-based characterisation methods, reference in vitro tests, new reference 2D NMs for different matrices, a new minimum information reporting guideline for FAIR data sharing and reuse of images as well as an atlas with reference images for diagnostics of compromised safety of GFMs/GFM products. The new guidelines and standard proposals will be submitted to standardisation bodies to allow creation of regulatory ready products. The novelty of ACCORDs is in translating the principles of medical imaging-based diagnostics to 2D material hazard diagnostics. ACCORDs will accelerate industrial sectors in the area of aviation, marine construction, drone production, flexible electronics, photovoltaics, photocatalytics and print inks-based sensors. The value ACCORDs proposes to the graphene industry are practical, easy, imaging-based tools for GFM quality monitoring next to the production line with a possibility to be correlated with advanced highresolution imaging characterization methods in case hazard i.e. deviation from controls (benchmark values) are diagnosed. The ACCORDs framework and tools will contribute to the European Green Deal by addressing the topic: “Graphene: Europe in the lead” and to a new European strategy on standardization, released on 2nd February, 2022. T2 - MaterialsWeek 2024 CY - Limassol, Cyprus DA - 17.06.2024 KW - Graphene KW - Graphene-related 2D materials KW - SSbD KW - Imaging KW - ACCORDs PY - 2024 AN - OPUS4-60573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Towards Standardised Procedures for Morphology Measurement of 2D-Materials by Imaging N2 - The industry uptake of graphene-related 2D materials (GR2M) material increases, and international standardization is critical to enable commercialization. Reliable, accurate, and reproducible measurements are important due to the multiple production routes and producers of the material to maintain quality in manufacture. Several standards are under development within ISO/TC 229 ‘Nanotechnologies’, i.e. ISO/AWI TS 23879 “Structural characterization of graphene oxide flakes: thickness and lateral size measurement using AFM and SEM” or ISO DTS 23359 “Chemical characterization of graphene in powders and suspensions”, which focus on determining the dimensional and chemical properties of GR2M. Interlaboratory comparisons are required to develop best practice and understand the associated measurement uncertainties. In this contribution challenges and solutions for the accurate measurement of the lateral size of GR2M will be discussed based on the results of a recently completed interlaboratory comparison organized under the pre-standardisation platform of VAMAS (www.vamas.org/twa41/documents/2023_vamas_twa41_project13_GO_SEM.pdf). Aspects related to sample preparation, measurement conditions, and image analysis with different approaches to extract the corresponding size and shape descriptors will be presented. A discussion on the measurement uncertainty budget associated to the final result will be also included. T2 - Graphene Week 2025 CY - Vicenza, Italy DA - 22.09.2025 KW - Graphene-related 2D materials (GR2M) KW - Interlaboratory comparison KW - VAMAS KW - Lateral size KW - ISO/TC 229 Nanotechnologies PY - 2025 AN - OPUS4-64250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis A1 - Shakeel, Yusra T1 - NFDI-MatWerk PP18 / IUC02 Reference Data: Creep Data of a single crystalline Ni-Base Alloy N2 - Reference datasets in the MSE domain represent specific material properties, e.g., structural, mechanical, … characteristics. A reference dataset must fulfill high-quality standards, not only in precision of measurement but also in a comprehensive documentation of material, processing, and testing history (metadata). This Infrastructure Use Case (IUC) of the consortium Materials Science and Engineering (MatWerk) of National Research Data Infrastructure (NFDI) aims to develop, together with BAM and other Participant Projects (PP), a framework for generating reference material datasets using creep data of a single crystal Ni-based superalloy as a best practice example. In a community-driven process, we aim to encourage the discussion and establish a framework for identifying reference material datasets. In this poster presentation, we highlight our current vision and activities and intend to stimulate the discussion about the topic reference datasets and future collaborations and work. T2 - All-Hands-on-Deck congress from the NFDI-MatWerk CY - Siegburg, Germany DA - 08.03.2023 KW - Referenzdaten KW - Reference data KW - Creep KW - Syngle Crystal alloy KW - Metadata schema PY - 2023 AN - OPUS4-57146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis A1 - Hammerschmidt, T. A1 - Gedsun, A. A1 - Forti, M. A1 - Olbricht, Jürgen A1 - Stotzka, R. A1 - Skrotzki, Birgit T1 - IUC02 Framework for Curation and Distribution of Reference Datasets using Creep Data of Ni-Base Superalloys as an Example N2 - In our current view, reference datasets in the MSE domain represent specific material properties, e.g., structural, mechanical, … characteristics. A reference dataset must fulfill high-quality standards, not only in precision of measurement but also in a comprehensive documentation of material, processing, and testing history (metadata). This Infrastructure Use Case (IUC) aims to develop a framework for generating reference material datasets using creep data of a single crystal Ni-based superalloy as a best practice example. In a community-driven process, we aim to encourage the discussion and establish a framework for the creation and distribution of reference material datasets. In this poster presentation, we highlight our current vision and activities and intend to stimulate the discussion about the topic reference datasets and future collaborations and work. T2 - NFDI-MatWerk Conference CY - Siegburg, Germany DA - 27.06.2023 KW - Referenzdaten KW - Reference data KW - Syngle Crystal alloy KW - Creep KW - Metadata schema PY - 2023 AN - OPUS4-57923 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beckmann, Jörg T1 - THz- and MIR FTIR Spectroscopy on Polyethylene, N2 - THz and mid IR spectroscopy of high-molecular PE (HMW) and ultra high-molecular PE (UHMW) reveals modifications of the molecular structure. Characteristic absorption bands are changed if the two materials are exposed by -Co60 radiation up to 600 kGy and subsequently stored at an annealing temperature of 398 K until for 729 days. UHMW-PE and HMW-PE behave differently during the ageing process because of their molecular weight and inherent structure distinctions. The spectroscopic data offer characteristic absorption bands, which have been used to describe the complete ageing process in more detail. For instance, the integral absorption in the B1u THz-region can be used to describe quantitatively the reduction of crystallinity. The formation of trans vinylene unsaturation and the decay of vinyl during ageing can be observed in detail in the mid IR range. T2 - IRMMW-THz 2018 (43rd) Conference CY - Nagoya, Japan DA - 09.09.2018 KW - Gamma-Co60 radiation KW - THz and mid IR spectroscopy PY - 2018 AN - OPUS4-46442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mrkwitschka, Paul T1 - Standardized Chemical Composition Analysis of Graphene Oxide Flakes with SEM/EDS and XPS Works Reliably N2 - Reliable quantification of the chemical composition of graphene-related 2D materials as powders and liquid suspensions is a challenging task. Analytical methods such as XPS, ICP-MS, TGA and FTIR are recommended to be used in ongoing projects at standardization bodies. The specific parameters to be measured are also defined, e.g. the oxygen-to-carbon (O/C) concentration ratio, the trace metal impurities, or the functional groups present [1]. In this contribution, for the first time, the results of a systematic study on the capability of SEM/EDS to reliably quantify the O/C ratio in a well-defined and well-characterized graphene oxide material [2] are presented. It is expected that the quantitative EDS analysis of light elements emitting characteristic X-ray lines below 1 keV to be provided with significantly larger measurement uncertainties than the analysis of elements with an atomic number of 11 (Na) or above [3]. The robustness of the SEM/EDS results obtained at various measurement conditions (various excitation energies) is tested by comparing the results to the established XPS analysis [4], which has been carried out on the same samples. A crucial step in sample preparation from liquid suspension with graphene oxides flakes onto a substrate for analysis with both XPS and EDS. It is demonstrated that if a closed and enough thick drop-cast deposited spot is succeeded to be deposited on a substrate, both surface-sensitive XPS analysis and bulk-characterizing EDS result in very similar elemental composition of oxygen and carbon. Hence, theoretical, expected O/C atomic ratio values for pure graphene oxide of ~0.5 [1] are achieved (with both methods), see Figure 1. Further, the effect of untight deposited material enabling co-analysis of the (silicon) substrate, is evaluated for both methods, XPS and EDS. To note that all the EDS results in this study have been quantified standardless. The effect of the variation of beam voltage on the result of the quantification of the O/C ratio is shown in Figure 2. No clear tendency is visible by varying the kV, which is a confirmation of the quality of the standardless analysis at the used EDS spectrometer. The results of this study demonstrate the reliability of the reference measurement protocol for SEM/EDS to be introduced into ISO/DTS 23359, including the dedicated sample preparation, particularly for the cases when the concentration of the GO flakes in stock liquid suspension is low. Further, also the consideration of this GO material as one of the very few available as a commercial material on the market as the very first GO reference material with regard to its morphology as well as chemical composition. Both the standard measurement procedure and the candidate reference material will immensely contribute to characterise reliably the chemical composition of graphene-related 2D materials with SEM/EDS as one of the most widely used methods in analytical laboratories. T2 - Microscopy and Microanalysis 2025 CY - Salt Lake City, UTAH, USA DA - 27.07.2025 KW - Graphene oxide flakes KW - SEM/EDS KW - XPS KW - O/C ratio KW - Impurities PY - 2025 AN - OPUS4-64085 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chemello, Giovanni T1 - Towards Reproducible Analysis Workflows for Reliable Structural and Chemical Composition of Industrial Graphene N2 - The scientific and technological interest in graphene has been growing more and more in the late years due to its outstanding properties and diverse promising applications. However, graphene implementation into the industrial market is still limited and many challenges are yet to be addressed before this material can become suitable for the large-scale production. One of the most crucial challenge to overcome is to develop reliable and reproducible ways to characterize the material properties which can heavily affect the product performance. In our study the chemical composition of nine different samples of industrial graphene, graphene oxide and functionalized graphene were investigated. The samples were analysed both in form of powder and pellets. A comparative characterisation of the chemical composition was performed through X-ray Photoelectron Spectroscopy (XPS) and Energy Dispersive X-ray Spectroscopy (EDX). XPS depth resolution is in the order of 10 nm, while for EDX the analysis was performed at two different energy levels, i.e. 5 keV and 15 keV, and thus varying the analysis depth from 200 nm to 2000 nm. The XPS measurement area is 300x700 µm² while the EDX measurement was performed by analysing a grid of 25 locations (5x5) of 150 x 150 ?m2 area, covering the whole pellet surface of 5 mm diameter and then calculating the mean of the elemental concentration. The results of the elemental concentration values from XPS and EDX analyses show a good agreement for all the elements presents in the samples, despite the different spatial resolutions of the two techniques. Therefore, the samples appear homogeneous both in the lateral and vertical directions. The results relative to powder and pellets samples do not differ in a significant way except for a slight increase in the carbon content regarding the pellet samples, probably due to a minor contamination effect introduced through pressing. Nevertheless, pellets samples appear to be quite representative for the material while being much more convenient in terms of handling and safety compared to nano-powders and providing a regular flat surface for EDX analysis. Finally, this approach correlating XPS and EDS represents a simple, fast and reliable way for characterizing the chemical composition and the homogeneity of industrial graphene. This study is part of the project Standardisation of structural and chemical properties of graphene (ISO-G-SCoPe) which has received funding from the EMPIR programme co-financed by the Participating States and from the European Union?s Horizon 2020 research and innovation programme under Grant agreement No. 19NRM04. T2 - SALSA Make and Measure... and Machines CY - Online meeting DA - 16.09.2021 KW - Graphene KW - XPS KW - EDX KW - Graphene functionalisation PY - 2021 UR - https://fakultaeten.hu-berlin.de/en/mnf/forschung_internationales/grs/salsa/SALSA_MM AN - OPUS4-53463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chatzigiannakis, Emmanouil T1 - Influence of composition on the thermal ageing behaviour of EPDM N2 - Ethylene-propylenene-diene copolymer rubbers (EPDM) are used in a wide range of sealing applications e.g. in automotive industry or in containers for dangerous goods. Investigations with regard to the ageing behavior and lifetime prediction of commercial EPDM rubber seals consisting of 48 % polypropylene (PP) and 4.1 % of 5-ethylidene-2-norbornene (ENB) were conducted [1]. However, structural parameters (monomer ratio, diene type, curing agent etc.) and additives (filler, plasticizer etc.) are known to affect the ageing behavior of rubber compounds [2, 3]. The aim of the current study was to elucidate the influence of each component on the overall deterioration of material properties after thermal ageing. Therefore, different EPDM mixtures were prepared at BAM, the reference being an EPDM with 48 % PP and 4.1 % ENB reinforced with Sillitin. Five more formulations were prepared in order to assess the effect of (i) filler type (carbon black or sillitin), (ii) curing agent (sulfur or peroxide), (iii) plasticizer, (iv) ethylene-propylene ratio and (v) ENB content. Initially, the properties of the unaged materials were investigated by tensile testing, hardness and density measurements, TGA, DSC and DMA. Sulfur vulcanization resulted in higher elongation at break due to the flexibility of the sulfidic crosslinks. Carbon black resulted in better reinforcement compared to Sillitin. A higher ethylene and ENB content lead to higher hardness due to higher crystallinity and higher crosslink density, respectively. Thermal ageing for up to 30 days (with 10 days intervals) took place in circulating hot air ovens at 125 °C. Pronounced crosslinking was found to take place in all peroxide-cured materials, as the unreacted double bonds of the ENB units acted as starting points for oxidation and crosslinking. Increasing the ethylene content resulted in an increase in the ageing resistance of EPDM. This improvement was attributed to the higher crystallinity that inhibits oxygen diffusion and to the smaller number of chain scissions which occur in the PP units. Although significant loss of the plasticizer was observed, the remaining plasticizer adequately improved the tensile properties of the material. The filler type did not significantly affect the ageing behavior of EPDM. Finally, the lower thermal stability of the sulfidic crosslinks resulted in desulfurization and, thus, in an increase in the crosslinking density. To sum up, it has been shown that the monomer composition, curing agent and additives used in EPDM formulations greatly influence the properties and ageing resistance of these materials. T2 - 12. Kautschuk Herbst Kolloquium CY - Hanover, Germany DA - 22.11.2016 KW - Degradation KW - Elastomer KW - Compound PY - 2016 AN - OPUS4-38484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chemello, Giovanni T1 - Correlative analysis through XPS and EDX measurements for accurate chemical composition of industrial Graphene N2 - The scientific and technological interest in graphene has been growing more and more in the late years due to its outstanding properties and diverse promising applications. However, graphene implementation into the industrial market is still limited and many challenges are yet to be addressed before this material can become suitable for the large-scale production. One of the most crucial challenge to overcome is to develop reliable and reproducible ways to characterize the material properties which can heavily affect the product performance. In our study the chemical composition of nine different samples of industrial graphene, graphene oxide and functionalized graphene were investigated. The samples were analysed both in form of powder and pellets. A comparative characterisation of the chemical composition was performed through X-ray Photoelectron Spectroscopy (XPS) and Energy Dispersive X-ray Spectroscopy (EDX). XPS depth resolution is in the order of 10 nm, while for EDX the analysis was performed at two different energy levels, i.e. 5 keV and 15 keV, and thus varying the analysis depth from 200 nm to 2000 nm. The XPS measurement area is 300x700 µm² while the EDX measurement was performed by analysing a grid of 25 locations (5x5) of 150 x 150 ?m2 area, covering the whole pellet surface of 5 mm diameter and then calculating the mean of the elemental concentration. The results of the elemental concentration values from XPS and EDX analyses show a good agreement for all the elements presents in the samples, despite the different spatial resolutions of the two techniques. Therefore, the samples appear homogeneous both in the lateral and vertical directions. The results relative to powder and pellets samples do not differ in a significant way except for a slight increase in the carbon content regarding the pellet samples, probably due to a minor contamination effect introduced through pressing. Nevertheless, pellets samples appear to be quite representative for the material while being much more convenient in terms of handling and safety compared to nano-powders and providing a regular flat surface for EDX analysis. Finally, this approach correlating XPS and EDS represents a simple, fast and reliable way for characterizing the chemical composition and the homogeneity of industrial graphene. This study is part of the project ?Standardisation of structural and chemical properties of graphene? (ISO-G-SCoPe) which has received funding from the EMPIR programme co-financed by the Participating States and from the European Union?s Horizon 2020 research and innovation programme under Grant agreement No. 19NRM04. T2 - 2021 Fall Meeting of the European Materials Research Society (E-MRS) CY - Online meeting DA - 20.9.2021 KW - Graphene KW - XPS KW - EDS KW - Standardisation KW - Graphene functionalization PY - 2021 UR - https://www.european-mrs.com/meetings/2021-fall-meeting AN - OPUS4-53462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René T1 - Spectroscopic ellipsometry for the determination of thickness and porosity of mesoporous metal oxide films N2 - Thin mesoporous metal oxide films are versatile and attractive candidates for several energy applications like photovoltaics, electrolysis or batteries. Due to their high surface area and ordered pore structure, mesoporous metal oxides demonstrate higher activities. The performance of the porous films is affected by properties like size and shape of the mesopores as well as the crystallinity of the framework. The exact determination and metrological evaluation of the complex morphology of thin mesoporous films requires a new analytical approach employing to combined data of different analytical methods. In this contribution we present a novel evaluation procedure for spectroscopic ellipsometry (SE) to analyse thin mesoporous iridium oxide films. Mesoporous iridium oxide films were prepared via dip-coating of a solution containing a triblock-copolymer as structure directing agent and an iridium precursor in ethanol. Deposited films were calcined in air at temperatures between 300 and 600 °C. Their morphology was studied with SEM and an electron probe microanalysis (EPMA)and correlated via SE with a Bruggeman effective medium approximation (BEMA). The developed SE model described the film thickness as well as the porosity. Figure 1a shows a top-view SEM image of mesoporous IrO2 film calcined at 375 °C. The image reveals that the films exhibit a well-ordered mesopore structure with an average pore diameter of 16 nm and a periodic distance between pore centres of 24 nm (FFT inset). Figure 1b is a parity plot of film thicknesses determined by cross-section SEM versus SE of IrO2 film samples prepared at different calcination temperatures. The porosity from the SE model is in good agreement to the porosity values obtained by EPMA. The contribution will assess in detail the novel approach to analyse the morphology and porosity of thin metal oxide films with spectroscopic ellipsometry. Moreover, the advantages of the new developed approach will be discussed as well as combination of datasets from multiple measurements to development new methods for innovative energy technologies. T2 - 30. Deutsche Zeolith-Tagung und Jahrestreffen der ProcessNet-Fachgruppe Adsorption CY - Kiel, Germany DA - 28.02.2018 KW - Mesoporous materials KW - Iridium oxide films KW - Electro catalyst KW - Spectroscopic ellipsometry KW - Thin film metrology KW - Multi-sample analysis PY - 2018 AN - OPUS4-45101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - Influence of manufacturing parameters on microstructure and subsurface residual stress in SLM Ti-6Al-4V N2 - Residual stresses (RS) in SLM have a high impact on the chosen build strategy as well as on the mechanical performance of final product. RS are critical for the components since they can introduce distortion and cracking of the parts even during production. T2 - AAMS2018 CY - Sheffield, UK DA - 03.09.2018 KW - Residual stress KW - Selective laser melting KW - Synchrotron X-ray diffraction KW - Ti-6Al-4V PY - 2018 AN - OPUS4-45928 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Léonard, Fabien T1 - Metrology for additively manufactured medical implants N2 - Additive manufacturing (AM) offers an effective solution to the medical sector. It enables the production, on demand, of customised implants which match the patient’s anatomy, with grafts that promote bone growth, as well as surgical guides that help the surgeons. The objective of this project is to provide a comprehensive basis to enable the safe use of medical AM products with traceable and reliable dimensionalmeasurements. This will guarantee the reliability of medical AM products to notified bodies and facilitate acceptance of AM in the medical sector for a better quality of life. T2 - 8th iCT 2018 conference CY - Wels, Austria DA - 06.02.2018 KW - Implants KW - Metrology KW - Additive manufacturing PY - 2018 AN - OPUS4-44400 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chen, Cong T1 - Stability of the low thermal conductivity in Fe2TiO5 ceramics N2 - An increase in the thermal diffusivity of Fe2TiO5 is observed after only three cycles of measurement. X-ray refraction shows an increase in the mean specific surface. A segregation of Ca- and F-rich nanocrystals at grain boundaries is also observed by SEM and STEM-EDX. This emphasizes the importance of precursor purity and the influence of redistribution of impurities on thermoelectric properties. T2 - 10th Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 05.12.2018 KW - X-ray refraction KW - Fe2TiO5 KW - Thermoelectrics PY - 2018 AN - OPUS4-47267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stegemann, Robert T1 - Characterization of residual stress state by neutron diffraction and residual magnetic field mapping N2 - Based on the residual stress characterization of tungsten inert gas welded S235JRC+C plates by means of neutron diffraction, the evaluation of residual stress with high spatial resolution GMR (giant magneto resistance) sensors is discussed. The experiments performed indicate a correlation of residual stress changes and local residual magnetic stray fields. T2 - Eighth Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 07.12.2016 KW - Residual stress KW - Magnetic stray fields KW - GMR KW - Neutron diffraction PY - 2016 AN - OPUS4-38676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Bernd R. T1 - Evolution of porosity, crack density, and CMAS penetration in thermal barrier coatings subjected to burner rig testing N2 - Degradation of thermal barrier coatings (TBCs) in gas‐turbine engines due to calcium–magnesium–aluminosilicate (CMAS) glassy deposits from various sources has been a persistent issue since many years. In this study, state of the art electron microscopy was correlated with X‐ray refraction techniques to elucidate the intrusion of CMAS into the porous structure of atmospheric plasma sprayed (APS) TBCs and the formation and growth of cracks under thermal cycling in a burner rig. Results indicate that the sparse nature of the infiltration as well as kinetics in the burner rig are majorly influenced by the wetting behavior of the CMAS. Despite the obvious attack of CMAS on grain boundaries, the interaction of yttria‐stabilized zirconia (YSZ) with intruded CMAS has no immediate impact on structure and density of internal surfaces. At a later stage the formation of horizontal cracks is observed in a wider zone of the TBC layer. T2 - Eleventh Joint BER II and BESSY II User Meeting CY - Wilhelm-Conrad-Roentgen-Campus, Berlin-Adlershof, Germany DA - 04.12.2019 KW - Characterization KW - CMAS KW - Synchrotron X-ray refraction radiography KW - Thermal arrier coatings PY - 2019 AN - OPUS4-49857 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Campos de Oliveira, Paula T1 - Microstructural characterisation of aerospace ceramics via synchrotron X-ray computed tomography N2 - This study investigates the microstructural evolution of refractory ceramics applied in aerospace using Synchrotron X-ray Computed Tomography (SXCT). We analyse how processing and temperature affect factors such as agglomeration, microcracking, particle orientation, and pore interconnectivity. These findings offer insights for optimising the design of more sustainable aircraft engines. T2 - BESSY@HZB User Meeting 2024 CY - Berlin, Germany DA - 11.12.2024 KW - Refractories KW - Ceramics KW - Synchrotron X-ray Computed Tomography KW - Microstructural characterisation KW - Aerospace PY - 2024 AN - OPUS4-62390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander T1 - Influence of manufacturing parameters on microstructure and subsurface residual stress in SLM Ti-6Al-4V N2 - Using non-optimum combination of manufacturing parameters in selective laser melting (SLM) may lead to reduction of quality of component: defects generation, distortion of geometry and even cracking. Usually, the optimization of parameters is performed by changing volumetric energy density (Ev) and selecting parameters giving low porosity values. However, not only low porosity but also stable microstructure and low residual stresses will help to achieve advanced mechanical behavior of the component. In present work, we investigated cuboid-shaped Ti-6Al-4V samples produced with different manufacturing parameters. The parameters leading to the same Ev were considered as well as parameters which are not included in Ev. Residual stresses in subsurface region were investigated by synchrotron X-ray diffraction, which allows to penetrate around 100 µm from the surface therefore overcome the problem of high roughness of SLM components without additional sample preparation. Only tensile stresses were found along the building direction, that can play critical role especially during cyclic loading. In parallel, using X-ray computed tomography we also observe that porosity is mainly concentrated in the contour region, except in case where the laser speed is small. However, by using some process parameters it was possible to decrease residual stresses and obtain uniform α+β Ti microstructure and relatively low porosity. Additionally, it was found that not included in Ev (e.g., base plate position, focus distance) should be considered as additional manufacturing parameters during SLM process. T2 - ISAM Konferenz 2019 CY - Dresden, Germany DA - 29.01.2019 KW - Computed Tomography KW - Additive Manufacturing KW - Metals KW - Microstructure PY - 2019 AN - OPUS4-47328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - In-situ imaging of additively manufactured alloys at the BAMline N2 - In this work, we present the recent in-situ imaging developments at the BAMline (of synchrotron BESSY II, HZB), focused on the in-situ characterization and understanding of microstructural evolution of additively manufactured materials subjected to different environments. Two show cases are presented. In the first, X-ray refraction radiography (SXRR) was combined with in-situ heat treatment to monitor the microstructural evolution as a function of temperature in a laser powder bed fusion (LPBF) manufactured AlSi10Mg alloy. We show that SXRR allows detecting the changes in the Si-phase morphology upon heating using statistically relevant volumes. SXRR also allows observing the growth of pores (i.e., thermally induced porosity), usually studied via X-ray computed tomography (XCT), but using much smaller fields-of-view. In the second case study, XCT was combined with in-situ tensile test to investigate the damage mechanism in a LPBF Aluminum Metal Matrix Composite (MMC). In-situ SXCT test disclosed the critical role of the defects in the failure mechanism along with pre-cracks in the reinforcement phase of MMC. We found that cracks were initiated from lack-of-fusion defects and propagated through coalescence with other defects. T2 - New Frontiers in Materials Design for Laser Additive Manufacturing CY - Montabaur, Germany DA - 22.05.22 KW - Additive manufacturing KW - Laser powder bed fusion KW - Synchrotron X-ray computed tomography KW - Synchrotron X-ray Refraction PY - 2022 AN - OPUS4-54900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geyler, Paul T1 - Machine learning assisted evaluation of the shape of VIAs in a LTCC multilayer N2 - The introduction of the 5G technology and automotive radar applications moving into higher frequency ranges trigger further miniaturization of LTCC technology (low temperature co-fired ceramics). To assess dimensional tolerances of inner metal structures of an industrially produced LTCC multilayer, computer tomography (CT) scans were evaluated by machine learning segmentation. The tested multilayer consists of several layers of a glass ceramic substrate with low resistance silver-based vertical interconnect access (VIA). The VIAs are punched into the LTCC green tape and then filled with silver-based pastes before stacking and sintering. These geometries must abide by strict tolerance requirements to ensure the high frequency properties. This poster presents a method to extract shape and size specific data from these VIAs. For this purpose, 4 measurements, each containing 3 to 4 samples, were segmented using the trainable WEKA segmentation, a non-commercial machine learning tool. The dimensional stability of the VIA can be evaluated regarding the edge-displacement as well as the cross-sectional area. Deviation from the ideal tubular shape is best measured by aspect ratio of each individual layer. The herein described method allows for a fast and semi-automatic analysis of considerable amount of structural data. This data can then be quantified by shape descriptors to illustrate 3-dimensional information in a concise manner. Inter alia, a 45 % periodical change of cross-sectional area is demonstrated. T2 - DKG Jahrestagung 2019 CY - Leoben, Austria DA - 06.05.2019 KW - Machine Learning KW - LTCC multilayer KW - 5G PY - 2019 AN - OPUS4-48289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Mehta, B. A1 - Nyborg, L. A1 - Virtanen, E. A1 - Markötter, Henning A1 - Hryha, E. A1 - Bruno, Giovanni T1 - Failure Mechanisms Investigation by Means of in-situ Synchrotron Computed Tomography in Aluminum MMC-based Alloy Tailored for Additive Manufacturing (AM) N2 - The availability of high-performance Al alloys in AM is limited due to difficulties in printability, requiring both the development of synergetic material and AM process to mitigate problems such as solidification cracking during laser powder bed fusion (LPBF). The goal of this work was to investigate the failure mechanism in a LPBF 7017 Aluminium alloy + 3 wt% Zr + 0.5 wt% TiC. The processing leads to different categories of Zr-rich inclusions, precipitates and defects. T2 - Alloys for Additive Manufacturing Symposium 2022 (AAMS22) CY - Munich, Germany DA - 11.09.2022 KW - Additive manufacturing KW - Laser powder bed fusion KW - Synchrotron X-ray computed tomography KW - MMC PY - 2022 AN - OPUS4-56110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - Surface residual stresses analysis in SLM Ti–6Al–4V bridges N2 - Selective Laser Melting (SLM) technique allows to produce parts with complex geometry. Due to the rapid solidification and heat gradient during production, SLM results in presence of residual stress. The present study shows the influence of manufacturing parameters on surface residual stress of Ti-6Al-4V SLM parts. High tensile stresses in the front surface are found. Heat Treatment conditions relax residual stresses almost to zero. High scanning speed during manufacturing results in higher tensile stresses in the surface. T2 - HZB User Meeting CY - BESSY II, Berlin, Germany DA - 08.12.2016 KW - Additive manufacturing KW - Residual stress KW - Selective laser melting PY - 2016 AN - OPUS4-38657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - X-ray refraction 2D and 3D techniques N2 - X-ray refraction techniques represent a very promising, yet not so wide-spread, set of X-ray techniques based on refraction effects. They allow determining internal specific surface (surface per unit volume) in a non-destructive fashion, position and orientation sensitive, and with nanometric detectability. While they are limited by the X-ray absorption of the material under investigation, we demonstrate showcases of ceramics and composite materials, where understanding of microstructural features could be achieved in a way unrivalled even by high-resolution techniques such as electron microscopy or computed tomography. T2 - ICTMS 2017 CY - Lund, Sweden DA - 26.06.2017 KW - X-ray refraction KW - Composites KW - Damage KW - Cracks KW - Cearmics PY - 2017 AN - OPUS4-41042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evsevleev, Sergei T1 - Damage Analysis in Metal Matrix Composites by means of Synchrotron Radiation Computed Tomography N2 - The damage evolution after compression tests of two types of MMC, consisting of eutectic AlSi12CuMgNi alloy and reinforced with 15vol% of Al2O3 fibers and with 7vol% of Al2O3 fibers+15vol% of SiC particles was studied by synchrotron CT. Internal damage at different pre-strain conditions in eutectic Si, intermetallic phases and Al2O3 fibers was observed, as well as debonding of SiC particles. T2 - HZB User Meeting CY - BESSY II, Berlin, Germany DA - 14.12.2017 KW - Aluminum KW - Metal Matrix Composite KW - Damage Analysis KW - Computed tomography KW - Synchrotron Radiation PY - 2017 AN - OPUS4-43467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cabeza, Sandra T1 - Residual stress characterization of IN718 part obtained by selective laser melting N2 - Additive Manufacturing (AM) by Selective Laser Melting (SLM) offers ample scope for producing geometrically complex parts as compared to the traditional subtractive manufacturing strategies. However, the residual stresses developed during the processing can reduce the load bearing capacity as well as induce unwanted distortion, limiting the application of SLM parts. IN718 manufactured by SLM process can show high tensile residual stresses in the surface as high as the yield strength of the wrought alloy. On the other hand, residual stresses in the bulk Show considerably lower stress values, even in compression, indicating a stress re-distribution during deposition of the SLM layers. T2 - HZB User meeting CY - BESSY II, Berlin, Germany DA - 08.12.2016 KW - Additive manufacturing KW - Residual stress KW - Selective laser melting KW - Neintron diffraction PY - 2016 AN - OPUS4-38660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cabeza, Sandra T1 - Development of residual stresses in IN718 parts obtained by SLM N2 - Additive Manufacturing by Selective Laser Melting (SLM) offers ample scope for producing geometrically complex parts as compared to the traditional subtractive manufacturing strategies. However, the residual stresses (RS) developed during the processing can reduce the load bearing capacity as well as induce unwanted distortion, limiting the application of SLM parts. In the present work, residual stresses in additivly manufactured IN718 part were analised by means of neutron diffraction and synchrotron X-ray diffraction. T2 - ISAM 2017 CY - Dresden, Germany DA - 07.02.2017 KW - Additive manufacturing KW - Residual stress KW - Inconel 718 KW - Netron diffraction KW - Microstructure PY - 2017 AN - OPUS4-39139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - Effect of heat treatment on residual stress in additively manufactured AlSi10Mg N2 - Al-Si alloys produced by Laser Powder Bed Fusion (PBFLB) allow the fabrication of lightweight free-shape components. Due to the extremely heterogeneous cooling and heating, PBF-LB induces high magnitude residual stress (RS) and a fine Si microstructure. As the RS can be deleterious to the fatigue resistance of engineering components, great efforts are focused on understanding their evolution in as-built state (AB) and after post-process heat treatments (HT). RS in single edge notch bending (SENB) subjected to different HT are investigated (HT1: 1h at 265°C and HT2: 2h at 300°C). T2 - ESRF User Meeting 2023 CY - Grenoble, France DA - 07.02.2023 KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress PY - 2023 AN - OPUS4-56982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias T1 - µCT Surface Analysis of LBM Struts - Influence of the Build Angle N2 - In this work, the structural integrity of LBM fabricated IN625 small cylinders (d = 1 mm, h = 6 mm) was investigated regarding the porosity and the surface roughness by means of computed tomography. The measurements were carried out on a GE v|tome|x L 300/180 with a reconstructed voxel size of 2 µm. The pores were analyzed for size, shape and spatial distribution. The correlation between compactness C and spatial distribution showed that elongated pores (C < 0.2) appear exclusively within a distance of 80 µm to the sample surface. The reconstructed surface was digitally meshed and unwrapped to evaluate the mean roughness Ra. Since the gravity correlates linearly with the sine of the build angle, the influence of gravity on porosity and surface roughness was determined. T2 - iCT 2019 CY - Padua, Italien DA - 13.02.2019 KW - Additive Manufacturing KW - Laser Beam Melting KW - Selective Laser Melting KW - Computed Tomography KW - Roughness KW - Porosity KW - Build Angle PY - 2019 AN - OPUS4-47775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miliūtė, Aistė T1 - How experimental and computational methods allow us to design negative thermal expansion materials N2 - Combined experimental and computational methods allow comprehensive understanding, design, and tailoring of material properties. We focus on a wellknown negative thermal expansion (NTE) material, zirconium vanadate (ZrV2O7), and address synthesis, characterisation and validation of results with computational simulations. Experimental and computational X-ray diffraction and Raman spectroscopy data highlighted differences between phase-pure and multiphase ceramics. These techniques allowed us to distinguish subtle differences in the structure of the material. Based on ab initio simulated phonon data, unaffected by impurities or instrumental errors, we could interpret the Raman spectra and visualise Raman active atom vibrations. These computational models allowed better insight and further experimental improvement while high-quality experimental data granted the validation and improvement of computational simulation strategy. T2 - SALSA Make and Measure 2024 CY - Berlin, Germany DA - 11.09.2024 KW - NTE KW - Sol-gel KW - Ab initio KW - Raman KW - XRD PY - 2024 AN - OPUS4-61358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shashev, Yury T1 - Optimizing visibility of phase gratings for Talbot-Lau X-ray imaging N2 - We investigated the efficiency of phase gratings, i.e., the visibility upon variation of different parameters. Rotating around an axis parallel to the grid lines of the phase grating changes the grating’s shape and thereby the initial distribution of phase shifts. This yields high visibilities for shorter propagation distances than derived from box shapes. Tilting the grating in the scattering plane allows continuous tuning of the grating’s height that corresponds to an ideal phase shift for a particular photon energy. This opens the way for tuning the design energy suitable for the material under investigation. Our study included simulations for monochromatic sources with the sampling procedure for rectangular and triangular phase gratings. T2 - HZB - 8th joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 07.12.16 KW - Phase grating KW - X-ray interferometry KW - X-ray imaging PY - 2016 AN - OPUS4-38823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shashev, Yury T1 - Improving visibility of phase gratings for Talbot-Lau X-ray imaging N2 - We investigated the efficiency of phase gratings, i.e., the visibility upon variation of different parameters. Rotating around an axis parallel to the grid lines of the phase grating changes the grating’s shape and thereby the initial distribution of phase shifts. This yields high visibilities for shorter propagation distances than derived from box shapes. Tilting the grating in the scattering plane allows continuous tuning of the grating’s height that corresponds to an ideal phase shift for a particular photon energy. This opens the way for tuning the design energy suitable for the material under investigation T2 - PhD Day 2016 CY - Berlin, Germany DA - 2.09.2016 KW - Phase grating PY - 2016 AN - OPUS4-38323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - New aspects about the search for the most relevant parameters optimizing SLM materials N2 - Using non-optimum combination of manufacturing parameters in selective laser melting (SLM) may lead to reduction of quality of component: defects generation, distortion of geometry and even cracking. Usually, the optimization of parameters is performed by changing volumetric energy density (Ev) and selecting parameters giving low porosity values. However, not only low porosity but also stable microstructure and low residual stresses will help to achieve advanced mechanical behavior of the component. In present work, we investigated cuboid-shaped Ti-6Al-4V samples produced with different manufacturing parameters. The parameters leading to the same Ev were considered as well as parameters which are not included in Ev. Residual stresses in subsurface region were investigated by synchrotron X-ray diffraction, which allows to penetrate around 100 µm from the surface therefore overcome the problem of high roughness of SLM components without additional sample preparation. Only tensile stresses were found along the building direction, that can play critical role especially during cyclic loading. The pore shape and spatial distribution obtained by computed tomography varied for samples produced with the same Ev. However, by using some process parameters it was possible to decrease residual stresses and obtain uniform α+β Ti microstructure and relatively low porosity. Additionally, it was found that not included in Ev (e.g., base plate position, focus distance) should be considered as additional manufacturing parameters during SLM process. T2 - ESIAM 2019 CY - Trondheim, Norway DA - 09.09.2019 KW - Additive manufacturing KW - Computed tomography KW - Residual stress PY - 2019 AN - OPUS4-49216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - Failure Mechanisms Investigation by Means of in-situ Synchrotron Computed Tomography in Aluminum MMC-based Alloy Tailored for Additive Manufacturing (AM) N2 - Most of the Al alloys used in additive manufacturing (AM), in particular Laser Powder Bed Fusion (LPBF), do not exceed a strength of 200 MPa, whereas conventionally high-performance alloys exhibit strengths exceeding 400 MPa. The availability of such Al alloys in AM is limited due to difficulties in printability, requiring synergetic material and AM process development to satisfy harsh processing conditions during LPBF [1]. One approach is the addition of reinforcement to the based powder, allowing tailoring composition and properties of a Metal Matrix Composite (MMC) by AM. Still, the effect of the reinforcement on the resulting mechanical properties must be studied to understand the performance and limits of the newly developed material. The goal of this work was to investigate the failure mechanism of LPBF Al-based MMC material using in-situ Synchrotron X-ray Computed Tomography (SXCT) during mechanical testing. T2 - International conference on tomography of material and structures CY - Grenoble, France DA - 27.06.2022 KW - Additive manufacturing KW - Laser powder bed fusion KW - Al alloy KW - MMC PY - 2022 AN - OPUS4-55228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiede, Tobias T1 - In-situ compression CT on additively manufactured IN 625 lattice structures N2 - The layer-by-layer Additive Manufacturing (AM) by means of Selective Laser Melting (SLM) offers many prospects regarding the design of a part used in aeroplane components and gas turbines. However, structural deviations from the nominal morphology are unavoidable. The cooling of the finished part leads to shrinkage and a high surface roughness is induced by attached powder particles affecting the part volume too. The integrity and load-bearing capacity of a SLM produced lattice structure (see Fig.1) has been investigated by means of in-situ X-ray computed tomography during compression. The lattice structure was compressed by 10 % in height with an applied maximum force of 5 kN. Additionally, a single strut has been investigated ex-situ as a component of the lattice structure. With the higher resolution achieved on the single strut, the pore distribution (size and location) as well as the surface roughness were assessed. One of the main results coming from the in-situ analysis was that the nodes were identified as the weakest points in the lattice structure. T2 - iCT 2018 CY - Wels, Austria DA - 06.02.2018 KW - Additive manufacturing KW - Selective laser melting KW - Computed tomography KW - Lattice structure KW - In-situ compression CT KW - IN 625 PY - 2018 AN - OPUS4-44516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Organic Surface Modification and Analysis of Titania Nanoparticles for Self-Assembly in Multiple Layers N2 - The characteristics of TiO2 coatings can greatly influence their final performance in large-scale applications. In the present study self-assembly of TiO2 nanoparticles (NPs) in multiple layers was selected as a deposition procedure on various substrates. For this, the main prerequisite constitutes the surface modification of both NPs and substrate with e.g. silane coupling agents. A set of functionalized TiO2 NPs has been produced by reaction with either (3- aminopropyl)triethoxysilane (APTES) or (3-aminopropyl)phosphonic acid (APPA) to functionalize the NP surface with free amino-groups. Then, the complementary functionalized NP set can be obtained from an aliquot of the first one, through the conversion of free surface amino-groups to aldehydes by reaction with glutaraldehyde (GA). Several types of TiO2 NPs differing in size, shape and specific surface area have been functionalized. FTIR, TGA, SEM/EDS, XPS, Auger electron spectroscopy (AES) and ToF-SIMS analyses have been carried out to evaluate the degree of functionalization, all the analytical methods employed demonstrating successful functionalization of TiO2 NP surface with APTES or APPA and GA. T2 - European Conference on Applications of Surface and Interface Analysis ECASIA 2019 CY - Dresden, Germany DA - 15.09.2019 KW - TiO2 KW - Layer-by-layer deposition KW - Surface functionalization KW - P25 KW - Surface characterization PY - 2019 AN - OPUS4-49279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Matthews, Lauren T1 - Approaches to Surface Analysis of Modified Quartz Nanopipettes N2 - Nanopipettes are a type of solid-state nanopore with needle-like geometry. Their applications range from imaging, sensing, diagnostics, and use as injectors. The response of nanopipette sensors is highly dependent on the size, geometry and chemical properties of the sensing region. As they are increasingly tuned and modified for specific analytes, a better understanding of the surface chemistry and morphology of the inner channel is necessary. With the aim of developing a comprehensive approach for characterisation of such nanopipettes, this research focuses on combining surface-sensitive analysis methods with advanced sample preparation techniques. Quartz substrates were modified by gas phase silanization, a well-utilised technique in the field to enhance performance of nanopipettes, and further functionalised with a metal bis thiolate complex, to aid in chemical analysis. The sample characterisation involved scanning electron microscopy (SEM), low-energy dispersive x-ray spectroscopy (EDX), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and Auger electron spectroscopy (AES). Using focused ion beam (FIB) milling under gentle conditions, the inner surface of quartz nanopipettes was exposed whilst preserving the integrity of the overall structure (see figure). Owing to the challenging analysis conditions, modification and analysis of flat quartz substrates has been performed in parallel for optimisation purposes. The results demonstrate the first steps towards full characterisation of nanopipettes at the nanoscale, notably with access to the inner channel. The methods used here can be applied to gain further understanding of the response of these sensors to complex analytes and allow for the study of different surface functionalisations at the all-important sensing region. T2 - European Conference on Applications of Surface and Interface Analysis (ECASIA 2024) CY - Gothenburg, Sweden DA - 09.06.2024 KW - Quartz nanopipettes KW - Nanopipette modification KW - Silanization KW - Surface analysis KW - Focussed ion beam PY - 2024 AN - OPUS4-60447 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schusterbauer, Robert T1 - Correlative chemical imaging to reveal the nature of different commercial graphene materials N2 - Since the original report in 2004 by Novoselov and Geim, Graphene gained incredible attention due to its fascinating properties. In the past 20 years, the synthesis and functionalization of graphene has evolved significantly[3]. Different synthesis techniques were developed which led to other graphenerelated materials such as graphene oxide (GO) or elemental-doped graphene. Further chemical functionalization can enhance but also alter or reduce specific properties of the graphene. To reveal the nature of these materials a proper physico‑chemical characterization with different analytical techniques is crucial. Single-layer GO flakes kindly provided by Graphenea (Spain) were prepared for systematic image analysis. These flakes were disposed on an alignment-marked SiO2 substrate and correlatively imaged by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and Raman spectroscopy. The high lateral resolution and/ or extreme surface sensitivity of the mentioned techniques is necessary to explore monolayers. The ToF-SIMS images match well with the SEM and AFM images and provide information about the chemistry. With 2D Raman spectroscopy it is possible to differentiate between the number of stacked single-layer flakes. This is visualized in a 3D image (Figure b). Well-defined GO flakes could be used as a reference material for imaging of graphene-like structures but also of other types of 2D materials. In addition to these monolayer GO flakes, commercial graphene-containing inks (Haydale) with a more complex morphology were also correlatively imaged. ToF-SIMS and SEM images were merged to identify the origin of different chemical fragments. The findings correlate closely with the expectation that the specific functionalizations (with fluorine and nitrogen as marker elements) are present only on the graphene flakes as presumed from the SEM images. Energy-dispersive X-ray spectroscopy (EDX) supports these results, yet with a much lower sensitivity compared to ToF-SIMS. T2 - ECASIA 2024 CY - Gothenburg, Sweden DA - 09.06.2024 KW - Correlative imaging KW - ToF-SIMS KW - SEM KW - Graphene oxide flakes KW - Raman PY - 2024 AN - OPUS4-60680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - John, Elisabeth T1 - Exploring the SIMS Matrix Effect in High-Entropy Alloy Thin-Films N2 - Compared with traditional alloys, which typically consist of one or two main elements and small amounts of secondary elements, High Entropy Alloys (HEA) are characterized by the presence of multiple principal elements in almost equal proportions. This unique composition results in a high degree of disorder at the atomic level, leading to exceptional mechanical, physical, and often unexpected properties. HEAs have garnered significant attention in materials science and engineering due to their potential applications in a wide range of industries, from aerospace and automotive to electronics and renewable energy. Analyzing materials composed of multiple elements with spectroscopic techniques such as X-ray Photoelectron Spectroscopy (XPS), Auger-Electron Spectroscopy (AES) or Electron Probe Microanalysis (EPMA), can be challenging due to spectral overlap. This challenge reaches its peak if neighboring 3d elements are present, as it is the case for the famous Cantor alloy which is composed of Cr, Mn, Fe, Co and Ni. Moreover, each analytical method introduces its own set of challenges, e.g., the strong secondary fluorescence effect for neighbor elements in EPMA, thus, making the accurate elemental quantification in such materials difficult. If the material is available as thin film, additional constraints are inherently present. To provide a reference material for these analytical challenges HEAs are excellent candidates. Currently, there is no thin film reference available containing more than two elements. Our goal is to prepare thin films with a homogeneous thickness and defined, homogenous chemical composition to be analyzed by various methods dedicated to surface analysis. ToF-SIMS is an excellent method for the (3D) analysis of thin films, however due to the dependence of element ion yield on the surrounding chemical state i.e., the matrix effect, it is considered a non-quantitative method. In HEAs the elements are each present in a homogenous matrix which makes these materials interesting for investigation of the matrix effect. Moreover, we evaluate methods to minimize the disturbances of oxygen enhancement during the beginning of the sputter analysis and the effect of recoil mixing at the film/substrate interface with the aim to measure accurate depth profiles. T2 - SIMS 24 CY - La Rochelle, France DA - 09.09.2024 KW - High-entropy alloy KW - ToF-SIMS KW - Matrix Effect PY - 2024 AN - OPUS4-62511 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fernandez-Poulussen, D. A1 - Hodoroaba, Vasile-Dan T1 - Holistic, reliable and practical Characterization Framework for Graphene Family Materials, a correlated approach including Imaging based techniques N2 - ACCORDs is an Horizon Europe project working in the development of an imaging-based characterization framework (ACCORDs framework) for the holistic correlative assessment of Graphene Family Materials (GFMs) as a representative of 2D nanomaterials (NMs) to assess and predict 2D NMs health and environmental risks. The ACCORDs framework will operationalise safe and sustainable by design (SSbD) strategies proposed in past or ongoing H2020 projects or within OECD by correlating low-, medium-, and high-resolution physico-chemical-biological imaging-based methods with non-imaging methods in a tiered approach. ACCORDs will deliver the ACCORDs framework and user guidance, new imaging-based characterisation methods, reference in vitro tests, new reference 2D NMs for different matrices, a new minimum information reporting guideline for FAIR data sharing and reuse of images as well as an atlas with reference images for diagnostics of compromised safety of GFMs/GFM products. The new guidelines and standard proposals will be submitted to standardisation bodies to allow creation of regulatory ready products. The novelty of ACCORDs is in translating the principles of medical imaging-based diagnostics to 2D material hazard diagnostics. ACCORDs will accelerate industrial sectors in the area of aviation, marine construction, drone production, flexible electronics, photovoltaics, photocatalytics and print inks-based sensors. The value ACCORDs proposes to the graphene industry are practical, easy, imaging-based tools for GFM quality monitoring next to the production line with a possibility to be correlated with advanced highresolution imaging characterization methods in case hazard i.e. deviation from controls (benchmark values) are diagnosed. The ACCORDs framework and tools will contribute to the European Green Deal by addressing the topic: “Graphene: Europe in the lead” and to a new European strategy on standardization, released on 2nd February, 2022 T2 - Joint Regulatory Risk Assessors Summit – Advancing Safety & Sustainability Assessments of Advanced Materials CY - Paris, France DA - 19.06.2025 KW - Graphene-related 2D materials (GR2M) KW - Imaging KW - SSbD KW - ACCORDs PY - 2025 UR - https://macrame-project.eu/macrame-meetings-workshops/jointrras/#Agenda AN - OPUS4-63660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -