TY - CONF A1 - Hahn, Marc Benjamin T1 - Temperature in micromagnetism: Cell size and scaling effects of the stochastic Landau-Lifshitz equation N2 - The movement of the macroscopic magnetic moment in ferromagnetic systems can be described by the Landau-Lifshitz (LL) or Landau-Lifshitz-Gilbert (LLG) equation. These equations are strictly valid only at absolute zero temperature. To include temperature effects a stochastic version of the LL or LLG equation for a spin density of one per unit cell can be used instead. To apply the stochastic LL to micromagnetic simulations, where the spin density per unit cell is generally higher, a conversion regarding simulation cell size and temperature has to be established. Based on energetic considerations, a conversion for ferromagnetic bulk and thin film systems is proposed. The conversion is tested in micromagnetic simulations which are performed with the Object Oriented Micromagnetic Framework (OOMMF). The Curie temperatures of bulk Nickel, Cobalt and Iron systems as well as Nickel thin-film systems with thicknesses between 6.3 mono layer (ML) and 31ML are determined from micromagnetic simulations. The results show a good agreement with experimentally determined Curie temperatures of bulk and thin film systems when temperature scaling is performed according to the presented model. T2 - EUROMAT 2019 CY - Stockholm, Sweden DA - 01.09.2019 KW - Magnetic nanoparticles KW - Stochastic Landau Lifshitz Gilbert equation KW - Magnetic moment KW - Landau Lifshitz equation KW - Exchange interaction KW - OOMMF KW - Object oriented micromagnetic framework KW - Temeprature scaling KW - LLG KW - Ferromagnetism KW - Micromagnetism PY - 2019 AN - OPUS4-48762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Bernd R. A1 - Cabeza, Sandra A1 - Pereyra, R. A1 - Fernández, R. A1 - González-Doncel, G. A1 - Kupsch, Andreas A1 - Bruno, Giovanni T1 - Evidence of damage evolution during creep of Al–Mg alloy using synchrotron X-ray refraction N2 - In order to provide further evidence of damage mechanisms predicted by the solid-state transformation creep (SSTC) model, direct observation of damage accumulation during creep of Al–3.85Mg was made using synchrotron X-ray refraction (SXRR). X-ray refraction techniques capture the specific surface (i.e. surface per unit volume) with a field of view comparable to the specimen size but with microscopic sensitivity. A significant rise of the internal specific surface with increasing creep time was observed, providing evidence for the creation of a fine grain substructure, as predicted by the SSTC model. T2 - Tenth Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 05.12.2018 KW - Aluminium alloys KW - Creep KW - Damage KW - Synchrotron X-ray refraction KW - Electron microscopy KW - Subgrain structure PY - 2018 AN - OPUS4-46861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ehlers, Henrik A1 - Pelkner, Matthias T1 - Eddy Current Testing for Laser Beam Melting N2 - This poster presents a new application for high-spatial resolution eddy current testing (ET) with magnetoresistive (MR) sensor arrays for additive manufacturing (AM) T2 - Workshop on Additive Manufacturing CY - Berlin, Germany DA - 13.05.2019 KW - GMR KW - Additive Manufacturing KW - 316L KW - LBM KW - SLM KW - Eddy Current PY - 2019 AN - OPUS4-47992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Häusler, Ines A1 - Darvishi Kamachali, Reza A1 - Heidl, Daniel A1 - Skrotzki, Birgit T1 - Influence of heat treatment and creep loading on an Al-Cu-Li alloy N2 - The influence of heat treatment and creep loading on the microstructure of an Al-Cu-Li alloy was investigated. Especially the formation of different precipitates (T1 and Theta') were characterized and the microstructural changes under different ageing conditions (with and without external strain) were investigated to determine the effect od stress on the ageing process. T2 - 19th International Microscopy Congress (IMC19) CY - Sydney, Australia DA - 09.09.2018 KW - Aluminium KW - Degradation KW - Coarsening KW - Dark-field transmission electron microscopy PY - 2018 AN - OPUS4-46131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piedade, M. F. M. A1 - Joseph, A. A1 - Alves, J. R. A1 - Bernardes, C. E. S. A1 - Emmerling, Franziska A1 - Minas da Piedade, M. E. T1 - Crystal Engineering through Solvent Mediated Control of Molecular Conformation: The Case of 5-Hydroxynicotinic Acid N2 - The importance of molecular conformation for polymorphism and its repercussions in terms of tight control over the industrial production of crystalline organic materials with highly reproducible physicochemical properties has long been recognized. Efforts to understand how a crystallization solvent can direct the formation of a polymorph containing a specific molecular conformation are, however, relatively scarce. Nicotinic acid (NA) and its hydroxyl derivatives (2-, 4-, 5-, and 6-hydroxynicotinic acids) are very good models for such studies. Indeed, regardless of the solvent, NA always crystallizes as a single polymorph with the molecule in the same neutral conformation. In contrast, the hydroxyl derivatives are prone to polymorphism and solvate formation and, depending on the crystallization conditions, the molecules in the crystal lattice can exhibit hydroxyl, oxo, or zwitterionic conformations. The present study focused on 5-hydroxynicotinicacid (5HNA) shows that by judicious selection of the solvent it is possible to obtain 1:1 solvates, where solvation memory is not completely lost and the tautomer preferred in solution persists in the crystalline state: zwitterionic in 5HNA·H2O and neutral in 5HNA·DMSO. Nevertheless, upon thermal desolvation the obtained materials evolve to the same unsolvated form where the molecule is in a zwitterionic conformation. The structures of 5HNA·H2O and 5HNA·DMSO obtained from single crystal-ray diffraction are discussed and compared with that of 5HNA solved from powder data. The energetics of the dehydration/desolvation process was also fully characterized by thermogravimetry (TG), differential scanning calorimetry (DSC) and Calvet microcalorimetry. T2 - BACG 2018 CY - Limerick, Ireland DA - 20.06.2018 KW - Crystal Engineering KW - 5-hydroxynicotinic acid KW - Molecular Conformation PY - 2018 AN - OPUS4-45519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kabelitz, Anke A1 - Dinh, H. A. A1 - Emmerling, Franziska T1 - A02: In situ WAXS studies on the crystallization of Al 13 keggin clusters in water N2 - Polynuclear aluminium species (Al13 keggin cluster) find application in different areas like water purification [1], contaminant transport [2], and as pilling clays with high specific surface areas[3], due to their strong binding ability to aggregates and high positive charge. In the present contribution, we report on the in situ investigation of the Al13 sulfate synthesis by synchrotron wide-angle X-ray scattering (WAXS). Al13 cluster were crystallized by precipitating hydrolyzed aluminum solutions by the addition of sodium sulfate. The measurements were performed using a custom-made acoustic levitator as sample holder. The study provides information about the intermediates during the crystallization process. From the data, a mechanism was derived indicating the influence of the crystallization process. T2 - Final Meeting of the CRC 1109 & Edith Flanigen Award Ceremony 2018 CY - Berlin, Germany DA - 10.10.2018 KW - Crystallization KW - WAXS KW - Keggin Cluster PY - 2018 AN - OPUS4-47005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kabelitz, Anke A1 - Emmerling, Franziska A1 - de Oliveira Guilherme Buzanich, Ana A1 - Kraehnert, R. A1 - Kraffert, K. A1 - Schmack, R. T1 - In-situ characterisation of nucleation, growth, crystallisation and dissolution of nanoscaled iron oxides N2 - We present the synthesis of four mesoporous templated iron oxides: Ferrihydrite, Hematite, Maghemite, Magnetite/Maghemite and the influence of water on the crystallization mechanism and the kinetics. The absence of water stabilize the ferrihydrite structure. By monitoring the dissolution in situ by using a QCMB and ex situ microscopy we got details in the dissolution mechanism of ferrihydrite. T2 - Final Meeting of the CRC 1109 & Edith Flanigen Award Ceremony 2018 CY - Berlin, Germany DA - 10.10.2018 KW - Mesoporous KW - Iron oxide KW - Mechanism PY - 2018 AN - OPUS4-47010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Peetz, Andreas A1 - Kranzmann, Axel T1 - Interaction of Reactive Components in CO2 Streams with Transport Pipeline Steel X70 N2 - In context of CLUSTER project, impacts of impurities (SO2, NO2, O2, CO, H2S, H2, N2, Ar and H2O) in CO2 streams captured from different sources in a regional cluster on transport, injection and storage were investigated. Corrosion studies of oxidizing, reductive or mixed atmospheres towards transport pipeline steel X70 were carried out applying high pressure (10 MPa) at low temperatures (278 K or 313 K). T2 - GHGT-14 Conference CY - Melbourne, Australia DA - 22.10.2018 KW - Carbon capture KW - CCS KW - Carbon dioxide KW - Corrosion PY - 2018 AN - OPUS4-47017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schenderlein, Matthias A1 - Dimper, Matthias A1 - Nicolai, K. A1 - Noack, R. A1 - Özcan Sandikcioglu, Özlem T1 - Monitoring early stage corrosion processes during biofilm formation N2 - To investigate early stage corrosion processes of stainless steel 1.4301 taking place during the biofilm formation of the organism Shewanella putrefaciens electrochemical impedance spectroscopy (EIS) in a multielectrode approach has been used. The multielectrode array consisted of up to 25 electrically isolated electrodes made of stainless steel wires of diameters ranging from 100 µm to 500 µm. They were connected to a multichannel microelectrode analyzer (MMA) electrically coupled through zero resistance ammeters. Current flow between electrodes in the array as well as changes in impedance of individual electrodes over time were recorded and analyzed with respect to the onset of localized corrosion and biofilm formation. The results were complemented by optical microscopy, SEM and AFM images which were taken immediately after the respective experiment. To verify that the multielectrode arrays correctly indicated the initial stages of the corrosion process and of biofilm formation they were introduced in a flow cell reaction vessel containing test specimens made from stainless steel 1.4301, which were checked regularly for signs of localized corrosion and biofilms. Preceding results with the multielectrode array in solutions containing high amounts of chloride ions and hydrogen peroxide at low pH also showed that it is possible with the MMA to monitor individual electrodes becoming local anodes as local corrosion set in, while the remaining electrodes predominantly acted as cathodes. T2 - 69th Annual Meeting of the International Society of Electrochemistry CY - Bologna, Italy DA - 02.09.2018 KW - Corrosion KW - Multielectrode KW - Biofilm KW - Monitoring KW - Stainless steel PY - 2018 AN - OPUS4-47095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rütters, H. A1 - May, Franz A1 - Bettge, Dirk A1 - Fischer, S. A1 - Ganzer, L. A1 - Jäger, P. A1 - Kather, A. A1 - Lempp, C. A1 - Lubenau, U. T1 - Combining CO2 Streams from Different Emitters – A Challenge For Transport And Storage Infrastructure N2 - The European Directive 2009/31/EC on the geological storage of CO2 envisages an open access of CO2 streams from different emitters to a nation- or even EUwide CO2 pipeline network if CO2 stream compositions meet “reasonable minimum composition thresholds”. As of today it is not known how such “composition thresholds” may be defined and which impurity levels may be viable in practical application. To set up recommendations for criteria and respective threshold values for CO2 stream compositions, the project “CLUSTER” will investigate how a dynamic interplay – both in terms of mass fluxes and compositions – of CO2 streams from regionally clustered CO2 sources sharing a transport and storage infrastructure will impact corrosion, e.g., of pipelines and plant components, and geochemical alteration of cap rocks and reservoir rocks. In addition, the behaviour of such a highly dynamic CCS system will be considered for an overall optimization of system design including CO2 stream mixing schemes and facilities or interim CO2 storage. T2 - TCCS-8 – The 8th Trondheim Conference on CO2 Capture, Transport and Storage CY - Trondheim, Norway DA - 16.06.2015 KW - Carbon capture KW - Carbon dioxide KW - Corrosion KW - CCS PY - 2015 AN - OPUS4-47018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kullolli, Borana A1 - Cuéllar, Pablo A1 - Baeßler, Matthias T1 - Numerical modelling of soil-structure interfaces N2 - The governing load bearing mechanism of multi-pile foundations is often the shaft friction. Under cyclic loading the soil particles next to the foundation rearrange and tend to compact leading to a decrease of the surrounding normal stress. The reduction of the normal stress leads to a lower threshold for shear stress (friction fatigue), which results in a degraded shaft bearing capacity. The common interface models used for numerical simulations (e.g. Mohr-Coulomb) are not able to capture such behavior. This work aims to develop an interface material model that incorporates such features of the contact behavior at the soil-structure interface. T2 - Alert Geomaterial Workshop CY - Aussois, France DA - 01/10/2018 KW - Soil-structure interaction KW - Interface KW - Material model KW - Numerical modelling PY - 2018 AN - OPUS4-47066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akhmetova, Irina A1 - Schutjajew, Konstantin A1 - Roth, Christina A1 - Emmerling, Franziska T1 - Mechanochemical synthesis of metal phosphonates N2 - The exploration of metal phosphonates chemistry has gained great interest during the last decades, because of their structural diversity. Transition metal phosphonates are promising candidates for an application as electrocatalysts in oxygen evolution reactions (OER). Here, we present the in situ investigation of mechanochemical syntheses of different manganese phosphonates by synchrotron X-ray diffraction. Nitrilotri(methylenephosphonic acid) and N,N-Bis(phosphonomethyl)glycine were chosen as ligands. The liquid-assisted milling process can be divided into three steps, including an amorphous stage. One of the products has not been obtained by classical solution chemistry before. These metal phosphonates and/or their derivatives are considered to be active in electrochemical energy conversion. The verification of their applicability is one of the topics of our resent research. T2 - Fundamental Bases of Mechanochemical Technologies CY - Novosibirsk, Russia DA - 25.06.2018 KW - Metal phosphonates KW - Mechanochemistry KW - PXRD KW - Thermography PY - 2018 AN - OPUS4-46996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haferkamp, Sebastian A1 - Emmerling, Franziska A1 - Akhmetova, Irina A1 - Kulla, Hannes A1 - Rademann, Klaus T1 - In situ investigation of mechanochemical Knoevenagel condensations of benzaldehyde derivates N2 - Mechanochemistry is known for short reaction times, nearly quantitative conversions, and decreasing amount of solvents. Among organic syntheses, the Knoevenagel condensation is an important C-C bond forming reaction. We investigated the reaction of benzaldehyde derivates (nitro- and fluoro-derivates) with malononitrile syntheses by a combination of different in situ investigation techniques. T2 - BESSY II User Meeting CY - Berlin, Germany DA - 05.12.2018 KW - Mechanochemistry KW - In situ PY - 2018 AN - OPUS4-46997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akhmetova, Irina A1 - Emmerling, Franziska A1 - Schutjajew, Konstantin A1 - Roth, Christina T1 - In situ investigation of milling reactions and structure determination of the products using X-ray diffraction N2 - Mechanochemistry is a versatile approach for green and fast synthesis of pure substances. By milling the reactants, various organic, inorganic, and metal-organic compounds can be obtained in high yields. Although mechanochemistry is widely used, the underlying mechanisms are not fully understood making mechanochemical reactions difficult to predict. Metal phosphonates are metal-organic compounds accessible by grinding. Because of their structural diversity, the exploration of the chemistry of metal phosphonates has gained considerable interest during the last decades. Transition metal phosphonates are promising candidates for an application as electrocatalysts in oxygen evolution reaction (OER). Here, we present the in situ investigation of the mechanochemical synthesis of a manganese(II)-phosphonate by synchrotron X-ray diffraction and thermography. The product has not been obtained by classical solution chemistry before and its crystal structure was determined from PXRD data. The milling process can be divided into different steps, with the product crystallization corresponding with the highest temperature rise. The activity of this metal phosphonate towards OER was measured and is presented here. T2 - International School of Crystallography - 52nd Course: Quantum Crystallography CY - Erice, Italy DA - 1.06.2018 KW - Metal phosphonates KW - Mechanochemistry KW - PXRD KW - OER KW - Thermography PY - 2018 AN - OPUS4-46998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akhmetova, Irina A1 - Haferkamp, Sebastian A1 - Schutjajew, Konstantin A1 - Roth, Christina A1 - Emmerling, Franziska T1 - In situ investigation of mechanochemical syntheses of manganese phosphonates with N-containing ligands N2 - Mechanochemistry is a versatile approach for green and fast synthesis of pure substances. The exploration of the chemistry of metal phosphonates has gained considerable interest during the last decades due to their structural diversity. We synthesized manganese phosphonates in milling reactions. The mechanochemical reactions were investigated in situ to reveal the underlying mechanisms. T2 - Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 05.12.2018 KW - Metal phosphonates KW - Mechanochemistry KW - PXRD KW - In situ KW - Thermography PY - 2018 AN - OPUS4-46999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weise, Matthias A1 - Hertwig, Andreas A1 - Beck, Uwe T1 - Scanning White Light Interference Microscopy - Measurement of Topometry and Layer Thickness N2 - 3D coherence scanning interferometry (CSI) is anoptical, non-contact and rapide measurement technique using a defined bandwidth of white light at normal incidence. White light interference microscopy (WLIM) providest here-dimensional surface topometry data up to a resolution of 0.4 µm lateral and 0.1 nm vertical. Three operating modi, surface, films and advanced films, enable measurements of step heights, roughness, wear volume, cone angle, surface pattern and layer thickness. Traceability to SI system is ensured by certified standards (PTB/NIST) within a DAkkS DIN EN ISO/IEC 17025:2018 accredited lab. T2 - EFDS, V2019, Vakuum und Plasma, WS 4, Beschichtungen für Werkzeuge & Bauteile CY - Dresden, Germany DA - 08.10.2019 KW - DIN EN ISO/IEC 17025:2018 KW - Certified standards KW - White light interference microscopy(WLIM) KW - 3D coherence scanning interferometry (CSI) KW - Topometry PY - 2019 AN - OPUS4-49323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fleck, M. A1 - Tielemann, Christopher A1 - Scheffler, F. A1 - Brauer, D. S. A1 - Müller, Ralf T1 - Surface crystallization of BT0.75S (fresnoite) glass in different atmosphere N2 - Fresnoite glass with excess SiO2 exhibits oriented surface crystallization, in contrast to the stoichiometric glass composition. Recent EBSD studies documented that the crystals in BTS (2BaO-TiO2-xSiO2, x=0-3) can occur in a distinct [101]-orientation perpendicular to the surface and claimed that this orientation is not a result of growth selection. During these previous studies, however, the effect of surface preparation and surrounding atmosphere during the crystallization experiments were not considered. As these parameters may influence crystal orientation, we studied the surface crystallization of a BTS glass (2BaO-TiO2–2.75SiO2) under controlled conditions with the help of light, electron and polarisation microscopy as well as EBSD. Heat treatments for one hour at 840°C of fractured BTS glass surfaces in air resulted in a large number of not-separable surface crystals. This large number of crystals can be caused by dust particles, which act as nucleation agents. As crystal growth velocity could further be influenced by humidity, our experiments are performed in a filtered and dried air atmosphere. The crystal morphology and orientation will be analysed in dependence of the sample preparation and a differing surrounding atmosphere. T2 - 93rd Annual Meeting of the German Society of Glass Technology in Conjunction with the Annual Meeting of French Union for Science and Glass Technology (USTV) CY - Nuremberg, Germany DA - 13.05.2019 KW - BTS KW - Fresnoit KW - Glass ceramic KW - Glass-ceramic KW - Glass PY - 2019 AN - OPUS4-49294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Busch, R. A1 - Tielemann, Christopher A1 - Reinsch, Stefan A1 - Patzig, C. A1 - Höche, T. A1 - Müller, Ralf T1 - Characterization of early crystallization stages in surface-crystallized diopside glass-ceramics N2 - Structure formation in glass-ceramics by means of surface crystallization is a challenging open question and remains elusive to definite answers. In several glass-ceramic systems, oriented crystal layers have been observed at the immediate surface, including diopside and some fresnoite systems. However, it is still open to debate, whether oriented surface crystallization is the result of oriented nucleation or growth selection effects. In the same vein, there is still discussion whether surface nucleation is governed by surface chemistry effects or by defects serving as active nucleation sites. In order to help answer these questions, annealing experiments at 850°C have been performed on a MgO·CaO·2SiO2 glass, leading to the crystallization of diopside at the surface. Different annealing durations and surface treatment protocols (i.a. lapping with diamond slurries between 16 µm and 1 µm grain size) have been applied. Particular focus has been put on earliest crystallization stages, with crystal sizes down to about 200 nm. The resultant microstructure has been analyzed by electron backscatter diffraction (EBSD) and two different kinds of textures have been observed, with the a- or b-axis being perpendicular to the sample surface and the c-axis lying in the sample plane. Even at shortest annealing durations, a clear texture was present in the samples. Additionally, selected samples have been investigated with energy-dispersive x-ray spectroscopy in the scanning transmission electron microscope (STEM-EDX). The diopside crystals have been found to exhibit distinguished submicron structure variations and the glass around the crystals was shown to be depleted of Mg. T2 - 93rd Annual Meeting of the German Society of Glass Technology in Conjunction with the Annual Meeting of French Union for Science and Glass Technology (USTV) CY - Nuremberg, Germany DA - 13.05.2019 KW - Glass KW - Crystallization KW - Diopside KW - EBSD KW - Orientation PY - 2019 AN - OPUS4-49296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Borghetti, P. A1 - Ortel, Erik A1 - Wirth, Thomas A1 - Garcia, S. A1 - Gómez, E. A1 - Blanco, M. A1 - Alberto, G. A1 - Martra, G. T1 - Organic Surface Modification and Analysis of Titania Nanoparticles for Self-Assembly in Multiple Layers N2 - The characteristics of TiO2 coatings can greatly influence their final performance in large-scale applications. In the present study self-assembly of TiO2 nanoparticles (NPs) in multiple layers was selected as a deposition procedure on various substrates. For this, the main prerequisite constitutes the surface modification of both NPs and substrate with e.g. silane coupling agents. A set of functionalized TiO2 NPs has been produced by reaction with either (3- aminopropyl)triethoxysilane (APTES) or (3-aminopropyl)phosphonic acid (APPA) to functionalize the NP surface with free amino-groups. Then, the complementary functionalized NP set can be obtained from an aliquot of the first one, through the conversion of free surface amino-groups to aldehydes by reaction with glutaraldehyde (GA). Several types of TiO2 NPs differing in size, shape and specific surface area have been functionalized. FTIR, TGA, SEM/EDS, XPS, Auger electron spectroscopy (AES) and ToF-SIMS analyses have been carried out to evaluate the degree of functionalization, all the analytical methods employed demonstrating successful functionalization of TiO2 NP surface with APTES or APPA and GA. T2 - European Conference on Applications of Surface and Interface Analysis ECASIA 2019 CY - Dresden, Germany DA - 15.09.2019 KW - TiO2 KW - Layer-by-layer deposition KW - Surface functionalization KW - P25 KW - Surface characterization PY - 2019 AN - OPUS4-49279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Fries, S. A1 - Agudo Jácome, Leonardo T1 - Thermodynamic study of a refractory complex concentrated alloy using the CALPHAD method N2 - Introduction/purpose: Multi-principal-element alloys (MPEAs), also known as complex concentrated alloys (CCAs), have recently come to the attention of the scientific community due to some interesting and unexpected microstructures, and their potential for improving properties such as, e.g. mechanical strength and oxidation resistance in high temperature structural applications. The AlMo0.5NbTa0.5TiZr refractory (r)CCA is one such candidate, showing a two-phase microstructure after a two-stage heat treatment under argon atmosphere at a controlled cooling rate. Since the application conditions intended for this alloy require a long-term high temperature (> 700 °C) mechanical and oxidation resistance, it becomes necessary to assess the possible phase development in this regime. Methods: In this contribution, the CALPHAD method is used to calculate phase equilibria for the AlMo0.5NbTa0.5TiZr CCA in the presence and absence of oxygen. Equilibrium phase amount evolution with temperature and Scheil Model for solidification (e.g. Fig.1a and Fig.1b, respectively) are analyzed, which are obtained using the databases TCNI9 and TTNI7 and the Gibbs energy minimizer in the Thermo-Calc software. Results: The diagrams reveal that two BCC-based phases could form during alloy solidification, where one phase would be enriched with Mo, Nb and Ta while the other phase, with Al, Ti and Zr. Activity oxides diagrams show that a stable form of aluminum oxide (α-Al2O3, Pearson symbol: hR10, corundum) can be formed. Results obtained by both databases, as well as discrepancies between property phase and Scheil approaches are discussed on the base of experimental results. Conclusions: A modeling tool is used to support alloy characterization and development, providing also the possibility to feedback information to improve existing thermodynamic databases. T2 - EUROMAT 2019 CY - Stockholm, Sweden DA - 01.09.2019 KW - CALPHAD databases analysis KW - Thermodynamic analysis KW - Complex concentrated alloy (CCA) PY - 2019 AN - OPUS4-49345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Torge, Manfred A1 - Seneschal-Merz, Karine A1 - Günther, Tobias A1 - Wilsch, Gerd T1 - Determination of boron in 19th and 20th century paint layers using LIBS N2 - 19th and 20th centuries glass paint layers consist of a colour body and a colourless lead silicate flux, in which borax or boric acid was added as further component to improve the paint ability and to reduce the firing temperature for multiple layers of paint. Model glasses were used in laboratory tests to investigate the stability of glass paints with additions of boron oxide. To determine boron in paint layers, a LIBS-system with pulsed NdYAG-laser was used. T2 - Technart 2019 CY - Brugge, Belgien DA - 07.05.2019 KW - Stained glass windows KW - Glass paints KW - LIBS PY - 2019 AN - OPUS4-48229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waniek, Tassilo A1 - Ghasem Zadeh Khorasani, Media A1 - Braun, Ulrike A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Water as side effect of reinforcing boehmite filler Local changes in anhydride cured epoxy resin N2 - Nanocomposites offer wide opportunities for lightweight constructions and enable reduction of weight and volume. Beside macroscopic toughening nanoparticle reinforced polymers show a soft interface around boehmite (AlOOH) filler nanoparticles. A related strong interaction between boehmite and the anhydride cured resin system is widely suspected in literature but not determined by structural Analysis. Determination of the molecular structure is important to allow simulations approaching the real system and predict future reinforcing effects. DRIFT (diffuse refletance infrared fourier transformed) spectra of the boehmite reinforced anhydride cured epoxy show significant changes in the molecular structure compared to the neat polymer. Further investigations of the interactions between the single components of the resin system and the boehmite filler pointed out reactions between released water released from the boehmite filler and the anhydride hardener or amine accelerator. This leads to the discussion of competing polymerisation mechanisms that highly influence the polymer properties. Ongoing experiments and literature research approve that this impact of water is able to locally change the stoichiometrie, alter the curing mechanism or support an inhomogeneous crosslink density. T2 - Polydays 2019 CY - Erwin-Schrödinger-Zentrum, Berlin Adlershof, Germany DA - 11.09.2019 KW - Nanocomposites KW - Epoxy KW - FTIR spectroscopy KW - Boehmite alumina PY - 2019 AN - OPUS4-49010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zakel, S. A1 - Schröder, Volkmar A1 - Gabel, D. A1 - Hirsch, W. A1 - Kleinert, J. A1 - Krause, U. A1 - Krietsch, Arne A1 - Meistes, J. A1 - Sachtleben, A. A1 - Schmidt, Martin A1 - Askar, Enis T1 - Safety characteristics of hybrid mixtures for explosion protection N2 - In this joint project, standardized measurement methods for hybrid mixtures are developed, which serve to determine safety characteristics for explosion protection. A hybrid mixture is a multi-phase System consisting of fuel gas or vapor, as well as air and flammable dust. This combination can occur for instance in drying processes or during heterogenous reaction processes. T2 - 27th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS) CY - Beijing, VR China DA - 28.07.2019 KW - Explosionsschutz KW - Gas-Staub-Gemische KW - Hybride Gemische KW - Sicherheitstechnische Kenngrößen PY - 2019 AN - OPUS4-48992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Taparli, Ugur Alp A1 - Griesche, Axel A1 - Michalik, K. A1 - Mory, D. A1 - Kannengießer, Thomas T1 - In situ Tungsten inert gas welding monitoring by LIBS N2 - TIG welding process was monitored using LIBS for the in situ measurement of chemical compositions in austenitic stainless steels. This research aims to prototype a real-time chemical composition analysis system for welding applications and prove the feasibility of such a quality control loop. The chemical compositions of the weld pool, considering the welding metallurgy, is the most critical parameter for any occurring weld defects, e.g. hot cracking. Hence, controlling the weld pool chemical composition allows governing of the weld pool solidification behavior by monitoring and adjusting the respective welding parameters, e.g. welding current. LIBS measurements were conducted during a TIG-welding process. The effect of the welding plasma on the LIBS signal was thoroughly investigated by varying various LIBS settings, e.g. delay and exposure time. Quantification of the main alloying elements Cr and Ni in the weld pool during welding was achieved by univariate calibration procedure. T2 - 10th Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy CY - Brünn, Czech Republic DA - 08.09.2019 KW - LIBS TIG welding KW - Austenitic stainless steels KW - Chemical composition KW - In situ measurement, PY - 2019 AN - OPUS4-48996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hennersdorf, Felix A1 - Weltschev, Margit A1 - Hertwig, Andreas T1 - ATR Investigations into the effect of ageing on HD-PE heating oil storage tanks after a service life of more than 30 years N2 - Heating oil storage tanks made of polyethylene grades have been on the market in Germany since the early 1970s. To ensure safety, their replacement is recommended by tank manufacturers after a period of 30 years. Polyethylene is subject to ageing by alteration of the properties during its life cycle. The degree of degradation and the nature of the process mainly depend on the chemical alteration of the polyethylene, the wall thickness of the tank and the environmental conditions. There are no data available on the long-term behaviour of the polyethylene grades, especially after a service life of more than 30 years. The aim of this investigation was to find a suitable test method to determine the factual degree of damage in comparison to the uncontaminated polyethylene grades. Material data of the used polyethylene grades are available because the BAM was the competent authority for the tests and expert reports for the approval of these tanks until the middle of the 1990s. Therefore, tank sections from the bottom, the shell and the roof of 22 individual storage tanks produced of polyethylene grades A and B have been examined by Melt Flow Rate (MFR) and Attenuated Total Reflectance (ATR). Their service life was in the range between 20 and 41 years. The MFR measurements of the tank sections showed differences in the values depending on the weight which was used (5 kg or 21.6 kg). An increase of the MFR was determined for the samples of polyethylene grade A, whereas a reduction of the MFR values was measured for most samples of polyethylene grade B. This grade is mainly subject to the internal ageing by cross-linkages, increased degree of branched molecules and loss of the plasticizer. ATR analysis exhibits an absorption band at 909 cm‒1 predominantly in samples of polyethylene grade A indicating chain scission and concomitantly formed terminal vinyl groups. This absorption band can be used for the characterization of the ageing of the polyethylene grades. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Heating oil tanks KW - Polyethylene KW - Ageing KW - Service life PY - 2019 AN - OPUS4-49000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shapovalov, Oleg A1 - Gaal, Mate A1 - Hönig, Gerald A1 - Gradt, Thomas A1 - Weiss, S. T1 - Temperature dependence of the propagation speed of a longitudinal wave in different solids for use as a wedge material in an extreme temperature resistant ultrasonic transducer N2 - In special cases of angle beam ultrasonic measurement the applied transducer has to withstand extreme temperatures. Since the irradiation angle depends on the speed of sound in both the wedge material and the tested object, the developer must take into account the speed of Sound in a wedge material over the whole temperature range of transducers application. T2 - 23rd International Congress on Acoustics CY - Aachen, Germany DA - 09.09.2019 KW - Ultrasonic Transducer KW - Speed of sound KW - Longitudinal Wave KW - Temperature PY - 2019 AN - OPUS4-48982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Häusler, I. A1 - Piesker, B. A1 - Skrotzki, Birgit T1 - Influence of prestraining on the aging response of an Al-Cu-Li alloy N2 - The influence of prestraining on the aging response of an Al-Cu-Li alloy is investigated by preparation of different strain states (3 %, 4 %, 6 %) of the initial aging state. The Brinell hardness of the subsequently aged samples (up to 60 h aging time) was measured and it was found that the increasing dislocation concentration in the 3 different initial states leads to faster hardness increases and slightly higher maximum hardness. T2 - Microscopy Conference 2019 (MC2019) CY - Berlin, Germany DA - 01.09.2019 KW - Al-Cu-Li alloys KW - Degradation KW - Hardness PY - 2019 AN - OPUS4-48953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - von Hartrott, P. A1 - Metzger, M. A1 - Skrotzki, Birgit T1 - Digital material representation of alloy 2618A for the lifetime assessment of radial compressor wheels N2 - The concept of digital material representation is introduced and the aluminium alloy 2618A is discussed as an example of this concept regarding the simulation of material ageing based on nanoscaled precipitates. T2 - Microscopy Conference 2019 (MC2019) CY - Berlin, Germany DA - 01.09.2019 KW - Alloy 2618A KW - Degradation KW - Coarsening KW - Transmission electron microscopy KW - Digital material representation PY - 2019 AN - OPUS4-48954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breßler, Ingo T1 - SASfit and McSAS - Analyzing Small-Angle Scattering of Polymers N2 - Small-angle scattering (SAS) offers a reliable route to characterize the nanostructure of large amounts of material with a minimum of tedium, for example, easily extracting size distributions and volume fractions. There are a variety of analysis programs available while the evaluation of SAS measurements has been dominated by the classical curve fitting approach. SASfit represents such a classical curve fitting toolbox: it is one of the mature programs for SAS data analysis and has been available and used for many years. The latest developments will be presented and a scattering function of a mass fractal model of branched polymers in solution is provided as an example for implementing a plug-in. Alternatively to classical curve fitting, part two presents the latest developments of the user-friendly open-source Monte Carlo regression package McSAS. The form-free Monte Carlo nature of McSAS means, it is not necessary to provide further restrictions on the mathematical form of the parameter distribution: without prior knowledge, McSAS is able to extract complex multimodal or odd- shaped parameter distributions from SAS data. The headless mode is presented by an example of operation within interactive programming environments such as a Jupyter notebook. T2 - PolyDays 2019 CY - Berlin, Germany DA - 11.09.2019 KW - Small-angle scattering KW - SAXS KW - Software PY - 2019 AN - OPUS4-48958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Kraus, David A1 - Kübler, Stefan A1 - Eisermann, René T1 - Multiaxial fatigue damage of glass fiber reinforced polymers N2 - Fiber reinforced polymers (FRPs) are a well established material in lightweight applications, e.g. in automotive, aerospace or wind energy. The FRP components are subjected to multiaxial mechanical as well as hygrothermal loads. Common operation temperatures are in the range of 213 K and 373 K (-60 °C and 100 °C) at a relative humidity of 10% to 90%. In spacecraft applications, the environmental conditions are even more extreme. However, the correlation between multiaxial mechanical loading and harsh environment conditions have to-date not been investigated in detail. The project aims to investigate the fatigue behavior of FRPs dependent on multiaxial mechanical loading, temperature, and humidity. Extensive experimental testing is performed on flat plate and cylindrical tube specimens, accompanied by numerical and analytical calculations. T2 - 24. Nationales SAMPE Symposium CY - Dresden, Germany DA - 06.02.2019 KW - Composite KW - Fatigue KW - Thermomechanics KW - Distributed fiber optic sensors PY - 2019 AN - OPUS4-47335 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chapartegui, Ander A1 - Emmerling, Franziska A1 - Schneider, Rudolf T1 - MOFs as optical sensor elements against endocrine disrupting phthalates N2 - The development of optical sensing technologies for Endocrine Disrupting Chemicals (EDCs) was urgently needed to facilitate currently unmet demands on comprehensive monitoring of These substances, thus ensuring consumer safety. T2 - SALSA CY - Berlin, Germany DA - 01.05.2018 KW - MOF KW - Short chained phthalates PY - 2018 AN - OPUS4-46889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breitfeld, Steffen A1 - Scholz, Gudrun A1 - Emmerling, Franziska A1 - Kemnitz, Erhard T1 - High energy ball milling of a new representative of coordination polymers without organofluorine linkers N2 - Metal organic frameworks and coordination polymers play an important role in different fields of applications. Moreover, particularly fluorinated metal-organic frameworks (FMOFs) are in the focus of interest during the last years. In most cases, fluorine is implemented using perfluorinated organic linkers at the synthesis, usually performed by solvothermal synthesis. However, only few examples are known so far where fluorine is coordinated directly to the metal cation. Recently, we reported about mechanochemical syntheses and characterization of fluorine-containing coordination polymers of alkaline earth metals by milling M(OH) (M: Ca, Sr, Ba) with fluorinated benzene dicarboxylic acids 2 and we reported about mechanochemical syntheses of alkaline earth metal fluorides with ammonium fluoride. Now we are reporting about a combination of both synthesis routes. That is the first mechanochemical synthesis of coordination polymers where fluorine is coordinated directly to the metal cation. T2 - Konferenz CY - Berlin, Germany DA - 30.11.2017 KW - Metal organic frameworks KW - Coordination polymer KW - Mechanochemical syntheses KW - Direct fluorine-metal bond KW - Alkaline earth metal PY - 2017 AN - OPUS4-46898 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Bernardes, C. A1 - Minas da Piedade, M. A1 - Emmerling, Franziska T1 - Real Time In Situ Study of Simvastatin Crystallization on Levitated Droplets N2 - In this contribution we describe an in-situ study of the crystallization of simvastatin in three solvents. The studies were carried out by solvent evaporation at the µSpot beamline using acoustically levitated solution droplets in combination with simultaneous X-ray diffraction, Raman spectroscopy, and imaging analysis. T2 - 10th Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 05.12.2018 KW - Crystallization KW - Simvastatin KW - In-Situ Characterization PY - 2018 AN - OPUS4-46965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Process monitoring in LBM using thermography and optical tomography N2 - Additive manufacturing (AM) opens the route to a range of novel applications. However, the complexity of the manufacturing process poses a challenge to produce defect-free parts with a high reliability. Since process dynamics and resulting microstructures of AM parts are strongly influenced by the involved temperature fields and cooling rates, thermography is a valuable tool for process monitoring. Another approach to monitor the energy input into the part during process is the use of optical tomography. Common visual camera systems reach much higher spatial resolution than infrared thermography cameras, whereas infrared thermography provides a much higher temperature dynamic. Therefore, the combined application increases the depth of information. Here, we present first measurement results using a laser beam melting setup that allows simultaneous acquisition of thermography and optical tomography from the same point of view using a beam splitter. A high-resolution CMOS camera operating in the visible spectral range is equipped with a near infrared bandpass filter and images of the build plate are recorded with long-term exposure during the whole layer exposing time. Thus, areas that reach higher maximum temperature or are at elevated temperature for an extended period of time appear brighter in the images. The used thermography camera is sensitive to the mid wavelength infrared range and records thermal videos of each layer exposure at an acquisition rate close to 1 kHz. As a next step, we will use computer tomographic data of the built part as a reference for defect detection. This research was funded by BAM within the focus area Materials. T2 - 3rd International Symposium Additive Manufacturing (ISAM 2019) CY - Dresden, Germany DA - 30.01.2019 KW - Additive manufacturing KW - Laser beam melting KW - Thermography KW - Optical Tomography PY - 2019 AN - OPUS4-47299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brandl, F. A1 - Lederle, F. A1 - Härter, C. A1 - Thünemann, Andreas A1 - Beuermann, S. T1 - From gaseous vinylidene fluoride to electroactive poly(vinylidene fluoride) – Inducing β-phase by formation of block copolymers and composite materials N2 - Polymeric core-shell particles were synthesized in a semi-batch emulsion polymerization process. The shell of the particles consist of PVDF with a high amount of beta-phase. Small-angle X-ray scattering (SAXS) was used to quantify the size of the cores of the particles and the thickness of the shell. T2 - Macromolecular Colloquium Freiburg CY - Freiburg, Germany DA - 20.02.2019 KW - Small-angle x-ray scattering KW - SAXS KW - Nanoparticle KW - Polymer PY - 2019 AN - OPUS4-47467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haferkamp, Sebastian A1 - Akhmetova, Irina A1 - Kulla, Hannes A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Mechanochemical Knoevenagel condensations of benzaldehyde derivates investigated in situ N2 - Mechanochemistry is widely applicable for the synthesis of inorganic, metal-organic, and organic compounds. It is known for short reaction times, nearly quantitative conversions, and decreasing amount of solvents, which opens the field to more environmentally friendly syntheses routes. Among organic syntheses, the Knoevenagel condensation is an important C-C bond forming reaction leading to α,β-unsaturated compounds. To gain more information on the underlying processes, we investigated the syntheses by a combination of different in situ investigation techniques, including synchrotron X-ray diffraction, Raman spectroscopy and thermography. This combination provides information on the structural changes and temperature influences during milling. Benzaldehyde derivates (nitro- and fluoro-derivates) reacted with malononitrile to the respective benzylidenemalononitriles. The in situ investigations show direct and quantitative conversions. In the case of the fluorinated benzaldehyde derivates we showed the possibility of using liquid substrates in mechanochemical organic synthesis. Surprisingly, after crystallization from a viscous state, the material was suitable for single-crystal X-ray analysis. T2 - Powder Diffraction School 2018 CY - Villigen, Switzerland DA - 24.09.2018 KW - C-C coupling KW - Mechanochemistry KW - In situ KW - Knoevenagel PY - 2018 AN - OPUS4-46320 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded A1 - Röhsler, Andreas A1 - Nolze, Gert A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - Sputtering derived artefacts in austenitic steel during Time-of-Flight Secondary Ion Mass Spectrometry analyses N2 - Among the very few techniques to localize hydrogen (H) at the microscale in steels, Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was proven to be a reliable tool. The necessity to detect hydrogen stems from its deleterious effects in metals, that are often used as structural components and to obtain better understanding of the underlying metallurgical mechanisms of hydrogen embrittlement (HE) which are still unclear. Austenitic stainless steels are nowadays commonly used in a wide variety of application, from hydrogen transport and storage facilities to petrochemical and offshore applications where they are exposed to aggressive environments and therefore prone to HE. One of the greater risks in the austenitic class is the embrittlement of the material due to the instability of the γ austenite and its transformation into a brittle α martensitic phase. This transformation takes place due to the local stresses that are induced by the uptake of hydrogen during service. Nonetheless, it was shown that this transformation can occur as an artefact during SIMS analysis itself where Cs-sputtering is necessary not only to remove surface contaminations but mainly to enhance H/D secondary ion yield. In the following contribution we show the influence of different sputtering conditions on AISI 304L austenitic stainless steel in order to distinguish the artefact from the hydrogen induced transformation. The material was charged electrochemically in a deuterium based electrolyte. Deuterium (D) must be in these experiments as a replacement for hydrogen which cannot be used because adsorbed hydrogen superimposes hydrogen originating from charging the sample in the SIMS images. ToF-SIMS analyses were conducted by ToF SIMS IV (IONTOF GmbH, Münster, Germany). The experiments were carried out on deuterium charged and non-charged samples. The structural characterization was carried out by SEM and EBSD examinations before and after charging, both with a Leo Gemeni 1530VP field-emission scanning electron microscope and a Zeiss Supra 40 instrument (Carl Zeiss Microscopy GmbH, Oberkochen, Germany). The results showed that the use of 1keV Cs+ beam induces stacking faults while higher sputter beam energies results in γ→α transformation. T2 - SIMS Europe 2018 CY - Münster, Germany DA - 16.09.2018 KW - Austenitic steel KW - Hydrogen KW - ToF-SIMS KW - Artefact PY - 2018 AN - OPUS4-46701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gollwitzer, Christian A1 - Scholz, Philipp A1 - Ulbricht, Alexander A1 - Joshi, Yogita A1 - Weidner, Steffen T1 - Synchrotron based absorption edge tomography for the analysis of 3D printed polymer MOF N2 - Absorption edge tomography is a method which exploits the sudden change of the attenuation coefficient, when the photon energy crosses the absorption edge of an element. The beamline BAM line at BESSY II, which is operated by the Federal Institute for Materials Research and Testing, can provide a monochromatized beam in a photon energy range from 5 keV up to 80 keV with a bandwidth of 2%. Together with the microtomography setup, this enables differential tomography sensitive to any element with N >= 24 (Cr) by using an appropriate K- or L-edge in this range. Here, a polymer filament embedding metal organic framework (MOF) was prepared and used for 3D printing. Absorption edge tomography at the copper K edge was employed to perform a non-destructive 3D characterization of the microstructure of the embedded MOF. Data fusion was then used to determine the size distribution of the embedded MOF. T2 - iCT 2019 CY - Padua, Italy DA - 12.02.2019 KW - Synchrotron tomography KW - BAMline KW - MOF KW - Absorption edge tomography PY - 2019 AN - OPUS4-47391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfretzschner, Beate T1 - Characterization of texture in SLM IN 718 samples using monochromatic neutron radiography N2 - Additive Manufacturing (AM) offers the opportunity to produce easier geometrically complex parts compared to traditional production technologies. An important AM technology for metals is selective laser melting (SLM) where a part is produced by melting and solidifying powder in layers. This technique is known to cause a pronounced texture in the produced AM products due to the specific heat flow and the associated solidification of the material during SLM deposition. In order to evaluate the influence of the deposition hatch length during SLM of nickel based superalloy Inconel 718 samples on the texture and in order to identify any preferred crystallographic direction, we performed monochromatic neutron radiography scans (using wavelength from 1.6 Å to 4.4 Å, step size 0.05 Å) to image the samples while rotating it through 90°. Samples produced with short hatch length showed fine textured columnar grains oriented along the sample building direction in high-resolution radiographs. Whereas processing the sample using a ten-fold longer hatch length reduced the texture. The neutron radiographic experiments were accompanied by scanning electron microscopy including electron back-scattered diffraction to visualize and verify the microstructure and texture. T2 - German Conference for Research with Synchrotron Radiation, Neutrons and Ion Beams at Large Facilities CY - Garching, Germany DA - 17.09.2018 KW - Bragg-edge KW - Neutron KW - Texture KW - Additive manufacturing PY - 2018 AN - OPUS4-47260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chen, Cong A1 - Müller, Bernd R. A1 - Lebedev, O.I. A1 - Giovannelli, F. A1 - Bruno, Giovanni A1 - Delorme, F. T1 - Stability of the low thermal conductivity in Fe2TiO5 ceramics N2 - An increase in the thermal diffusivity of Fe2TiO5 is observed after only three cycles of measurement. X-ray refraction shows an increase in the mean specific surface. A segregation of Ca- and F-rich nanocrystals at grain boundaries is also observed by SEM and STEM-EDX. This emphasizes the importance of precursor purity and the influence of redistribution of impurities on thermoelectric properties. T2 - 10th Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 05.12.2018 KW - X-ray refraction KW - Fe2TiO5 KW - Thermoelectrics PY - 2018 AN - OPUS4-47267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Thiede, Tobias A1 - Léonard, Fabien A1 - Farahbod, L. T1 - In-Situ Compression CT on Additively Manufactured in 625 Lattice Structures N2 - The porosity and the surface roughness are recently discussed problems for SLM parts. The influence of SLM process parameters on porosity is well studied for different materials. Nevertheless, the build angle (i.e. the angle between part orientation and build plate) needs to be understood as an additional SLM process parameter, as it has been shown, that the microstructure and hence the mechanical performance of various materials depend on the build angle. The inherent build angle of each strut as a part of a lattice structure is the motivation to investigate the influence of the build angle on the porosity and roughness on round-shaped (1 mm diameter) struts by means of CT. Conventional Coordinate Measuring Machine (CMM) has the limitation towards small and round shaped samples. The need for Computed Tomography (CT) regarding investigations of SLM parts will increase because no other non-destructive technique allows the assessment of complex geometries with inner laying surfaces. We used CT to assess the pores and the strut surface. Seven struts out of the nickel alloy Inconel 625 with build angles from 30° to 90° were studied. It was found that the number of pores is smaller, and the size of pores is larger for the 90° strut. In case of 30° strut, the number of pores is increased towards down-skin side, additionally, this strut orientation showed to have the largest number of attached powder particles. The elongated pores exist exclusively near the strut surface. While the roughness at the down-skin surface is highly depending of the biud angle, the roughness at the up-skin surface is the same for all struts. The mechanisms of pore and surface roughness formation is not mainly driven by gravity. T2 - ISAM Konferenz 2019 CY - Dresden, Germany DA - 29.01.2019 KW - Computed Tomography KW - Additive Manufacturing KW - Metals KW - Microstructure PY - 2019 AN - OPUS4-47327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Mishurova, Tatiana A1 - Bruno, Giovanni A1 - Artzt, K. A1 - Haubrich, J. A1 - Requena, G. T1 - Influence of manufacturing parameters on microstructure and subsurface residual stress in SLM Ti-6Al-4V N2 - Using non-optimum combination of manufacturing parameters in selective laser melting (SLM) may lead to reduction of quality of component: defects generation, distortion of geometry and even cracking. Usually, the optimization of parameters is performed by changing volumetric energy density (Ev) and selecting parameters giving low porosity values. However, not only low porosity but also stable microstructure and low residual stresses will help to achieve advanced mechanical behavior of the component. In present work, we investigated cuboid-shaped Ti-6Al-4V samples produced with different manufacturing parameters. The parameters leading to the same Ev were considered as well as parameters which are not included in Ev. Residual stresses in subsurface region were investigated by synchrotron X-ray diffraction, which allows to penetrate around 100 µm from the surface therefore overcome the problem of high roughness of SLM components without additional sample preparation. Only tensile stresses were found along the building direction, that can play critical role especially during cyclic loading. In parallel, using X-ray computed tomography we also observe that porosity is mainly concentrated in the contour region, except in case where the laser speed is small. However, by using some process parameters it was possible to decrease residual stresses and obtain uniform α+β Ti microstructure and relatively low porosity. Additionally, it was found that not included in Ev (e.g., base plate position, focus distance) should be considered as additional manufacturing parameters during SLM process. T2 - ISAM Konferenz 2019 CY - Dresden, Germany DA - 29.01.2019 KW - Computed Tomography KW - Additive Manufacturing KW - Metals KW - Microstructure PY - 2019 AN - OPUS4-47328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Li, Wei T1 - Crack propagation in filled and unfilled polymers: Separation of surface energy and irreversible deformation energy N2 - Fiber-reinforced-polymers (FRPs) are in current research focus in the lightweight construction industry, because of their extraordinary characteristics (stiffness and strength-to-density relation). The structure of polymer matrix and the interaction with reinforcement are crucial for optimization of the mechanical and thermal properties of FRPs. Due to the macromolecular chain structure, the mechanical properties of a polymer strongly vary with temperature: Below the glass transition, the chain segments of a polymer are “frozen”. Regarding fracture, the total changed energy during fracture if only dissipates for the generation of the new surfaces. However, in the region of the glass transition, the polymer chain segments start to get “unfrozen”, and the energy is not only required for generating new surfaces, but also for irreversibly deformation. This irreversible deformation is affected by the global temperature and the local temperature near the crack tip, which is affected by the local strain rate and crack propagation velocity. Hence, in this research project, the irreversible deformation of neat and reinforced polymers will be controlled by changing the global temperature as well as the local temperature. With using different fracture experiments, the amount of energy required for creating new surfaces and for the irreversible deformation will be separated. The fracture tests include the conventional tensile test, the macroscopic peel test and the single fiber peel – off test. T2 - PhD Day 2018 of BAM CY - Berlin, Germany DA - 31.05.2018 KW - Crack Propagation KW - Polymer PY - 2018 AN - OPUS4-48471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Li, Wei T1 - Crack propagation in polymers: Separation of surface energy and irreversible deformation energy N2 - Fiber-reinforced-polymers (FRPs) are in current research focus in the lightweight construction industry, because of their extraordinary characteristics (stiffness and strength-to-density relation). The structure of polymer matrix and the interaction with reinforcement are crucial for optimization of the mechanical and thermal properties of FRPs. Due to the macromolecular chain structure, the mechanical properties of a polymer strongly vary with temperature: Below the glass transition, the chain segments of a polymer are “frozen”. Regarding fracture, the total changed energy during fracture if only dissipates for the generation of the new surfaces. However, in the region of the glass transition, the polymer chain segments start to get “unfrozen”, and the energy is not only required for generating new surfaces, but also for irreversibly deformation. This irreversible deformation is affected by the global temperature and the local temperature near the crack tip, which is affected by the local strain rate and crack propagation velocity. Hence, in this research project, the irreversible deformation of neat and reinforced polymers will be controlled by changing the global temperature as well as the local temperature. With using different fracture experiments, the amount of energy required for creating new surfaces and for the irreversible deformation will be separated. This poster is the summary of the first part of the whole project. In the first part, the basic crack propagation theory for neat polymers is established and the special fracture experiment sample is prepared and tested at room temperature. In addition, the fracture experiment at room temperature is validated numerically. T2 - PhD Day 2019 of BAM CY - Berlin, Germany DA - 22.05.2019 KW - Crack Propagation KW - Polymer PY - 2019 AN - OPUS4-48472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geyler, Paul A1 - Rabe, Torsten A1 - Mieller, Björn A1 - Léonard, Fabien T1 - Machine learning assisted evaluation of the shape of VIAs in a LTCC multilayer N2 - The introduction of the 5G technology and automotive radar applications moving into higher frequency ranges trigger further miniaturization of LTCC technology (low temperature co-fired ceramics). To assess dimensional tolerances of inner metal structures of an industrially produced LTCC multilayer, computer tomography (CT) scans were evaluated by machine learning segmentation. The tested multilayer consists of several layers of a glass ceramic substrate with low resistance silver-based vertical interconnect access (VIA). The VIAs are punched into the LTCC green tape and then filled with silver-based pastes before stacking and sintering. These geometries must abide by strict tolerance requirements to ensure the high frequency properties. This poster presents a method to extract shape and size specific data from these VIAs. For this purpose, 4 measurements, each containing 3 to 4 samples, were segmented using the trainable WEKA segmentation, a non-commercial machine learning tool. The dimensional stability of the VIA can be evaluated regarding the edge-displacement as well as the cross-sectional area. Deviation from the ideal tubular shape is best measured by aspect ratio of each individual layer. The herein described method allows for a fast and semi-automatic analysis of considerable amount of structural data. This data can then be quantified by shape descriptors to illustrate 3-dimensional information in a concise manner. Inter alia, a 45 % periodical change of cross-sectional area is demonstrated. T2 - DKG Jahrestagung 2019 CY - Leoben, Austria DA - 06.05.2019 KW - Machine Learning KW - LTCC multilayer KW - 5G PY - 2019 AN - OPUS4-48289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Höhne, Patrick A1 - Kuchenbecker, Petra A1 - Rabe, Torsten T1 - Superior granule properties by spray drying controlled destabilized slurries with ultrasound N2 - Homogeneous introduction of organic additives is a key of ceramic powder processing. Addition of organics to ceramic slurries holds advantages compared to dry processing like organic content reduction and a more homogeneous additive distribution on the particle surface. Investigations of the alumina slurries were primarily based on zeta potential measurements and sedimentation analysis by optical centrifugation. Both methods were combined to determine a suitable additive type, amount and composition, whereas the spray drying suitability has been ensured by viscosity measurements. Granules, yielded by spray drying of such ideally dispersed alumina slurries, are mostly hollow and possess a hard shell. Those granules cannot easily be processed and can only hardly be destroyed in the following shaping step, leading to sinter bodies with many defects and poor strength and density. The precise slurry destabilization, carried out after ideally dispersing the ceramic powder, shows a strong influence on the drying behavior of the granules and hence on the granule properties. A promising degree of destabilization and partial flocculation was quantified by optical centrifugation and resulted in improved granule properties. Spray drying the destabilized alumina slurries yielded homogeneous “non-hollow” granules without the above mentioned hard shell. Sample bodies produced of these granules exhibited a reduction of defect size and number, leading to better results for sinter body density and strength. The positive effect of the slurry destabilization has been further improved, by exchanging the atomizing unit from a two-fluid one to an ultrasound atomizer with only minor slurry adjustments necessary. The controlled destabilization and ultrasound atomization of the ceramic slurry show excellent transferability for zirconia and even ZTA (zirconia toughened alumina) composite materials. T2 - Partec 2019 CY - Nuremberg, Germany DA - 09.04.2019 KW - Destabilization KW - Slurry KW - Ultrasound KW - Atomization PY - 2019 AN - OPUS4-48291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kiefer, P. A1 - Deubener, J. A1 - Waurischk, Tina A1 - Balzer, R. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. T1 - Subcritical crack growth in water bearing soda-aluminosilicate glasses N2 - The subcritical crack growth in water bearing soda-aluminosilicate glasses is compared to the crack growth in a commercial soda-lime silicate glass. The water speciation is shown for comparison of water species in the material. Differences will be discussed in the poster session. T2 - Glastechnische Tagung 2019 CY - Nürnberg, Germany DA - 13.05.2019 KW - Glass KW - Crack growth KW - Vickers KW - Water speciation PY - 2019 AN - OPUS4-48343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stock, V. A1 - Fahrenson, C. A1 - Voss, L. A1 - Thünemann, Andreas A1 - Boehmert, L. A1 - Sieg, S. A1 - Lampen, A. T1 - Impact of artificial digestion on the sizes and shapes of microplastic particles N2 - The environmental pollution with plastic debris is one of the great challenges scientists are facing in recent times Due to degradation by UV radiation and other environmental factors, larger pieces of plastic can decompose into microscale fragments which can enter human foodstuff through the food chain or by environmental entry Recent publications show a contamination of various food products with microplastic particles suggesting a widespread exposure Thus, orally ingested plastic particles pose a potential health risk to humans In this study, we investigated the impact of artificial digestive juices on the size and shape of the three environmentally relevant microplastic particles polystyrene (PS), polypropylene (PP) and polyvinyl chloride (PVC). T2 - 12th International Particle Toxicology CY - Salzburg , Austria DA - 11.09.2019 KW - Microplastic KW - Particle PY - 2019 AN - OPUS4-48847 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Persson, K. A1 - Johansson Salazar-Sandoval, E. A1 - Ernstsson, M. A1 - Sundin, M. A1 - Wachtendorf, Volker A1 - Kunz, Valentin A1 - Unger, Wolfgang T1 - The EC4SafeNano Project - and the case study of Surface Chemical Transformations of Nano-TiO2 Samples upon Weathering N2 - A central challenge to ensure the sustainable production and use of nanotechnologies is to understand and effectively control the risks along the industrial innovation value chain. Knowledge about nanotechnology processes and nanosafety issues (hazards, fate, risk...) is growing rapidly but the effective use of this knowledge for risk management by market actors is lagging behind. EC4SafeNano (European Centre for Risk Management and Safe Innovation in Nanomaterials and Nanotechnologies) promotes a harmonized vision of expertise in risk assessment and management for the public and private sectors to enable the safe development and commercialization of nanotechnology. EC4SafeNano is operated together by major European risk institutes with the support of numerous associated partners, gathering all stakeholders involved in Nanomaterials and Nanotechnologies (regulators, industry, society, research, service providers...). In a case study the surface chemical transformations upon 2 different ageing procedures (long-term UV irradiation or swimming pool water) of a representative set of titanium dioxide nanoparticles has been investigated. The materials have been analyzed by various analytical techniques. Each method addresses different aspects of the complex endpoint surface chemistry. The multi technique approach allows evaluation of the capabilities and limitations of the applied methods regarding their suitability to address the endpoint surface chemistry and their sensitivity to identify even small surface chemical transformations. Results: - To obtain a comprehensive picture, it is insufficient to concentrate on a single analysis technique. - By using time-of-flight secondary ion mass spectrometry (ToF-SIMS) in combination with principal component analysis (PCA) it was possible to identify even subtle changes in the surface chemistry of the investigated materials. - A general trend that was observed for the UV-aged samples is the decrease of organic material on the nanomaterial surface. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 723623. T2 - FormulaX/NanoFormulation 2019 CY - Manchester, England, United Kingdom DA - 24.06.2019 KW - TiO2 nanoparticle KW - Surface Chemical Transformation KW - UV Weathering KW - SIMS KW - XPS KW - IR spectroscopy KW - EC4SafeNano PY - 2019 UR - https://www.formulation.org.uk/images/stories/FormulaX/Posters/P-14.pdf AN - OPUS4-48912 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Zutta Villate, J. M. T1 - Radioactive gold nanoparticles for cancer treatment: Size and cluster dependent damage studied by Geant4 Monte-Carlo simulations N2 - Dose enhancement by gold nanoparticles (AuNP) was shown to increase the biological effectiveness of radiation damage in biomolecules and tissue. Most of the current studies focus on external beam therapy on combination with AuNP. Here we present a Monte-Carlo study (Geant4) to characterise radioactive AuNP. Radioactive ¹⁹⁸Au emits beta and gamma rays and is considered for applications with solid tumours. To effectively apply ¹⁹⁸AuNP their energy deposit characteristics have to be determined in terms of intrinsic and extrinsic properties e.g. AuNP diameter, AuNP density, and their clustering behaviour. After each decay process, the energy deposit, inelastic scattering events, kinetic energy spectrum of secondary particles within the AuNP themselves and in a spherical target volume of water up to 1 μm radius were determined. Simulations were performed for AuNP radii ranging from 2.5 nm to 20 nm radius, different cluster sizes and densities. The results show an increase of the energy deposit in the vicinity of the AuNP up to 150 nm. This effect nearly vanishes for distances up to one micron. For the case of AuNP clusters and the same activity, the enhancement of the energy deposit increases with the relative gold mass percentage and therefore can be adjusted by changing AuNP radius or clustering behaviour. T2 - EUROMAT 2019 CY - Stockholm, Sweden DA - 01.09.2019 KW - DNA KW - Dosimetry KW - Microdosimetry KW - Geant4 KW - MCS KW - Nanoparticle KW - AuNP KW - Gold Nanoparticle KW - low energy electrons KW - LEE KW - OH radicals KW - particle scattering KW - Radiationtherapy KW - Radioactive decay KW - Monte-Carlo simulation KW - Energy deposit KW - DNA damage PY - 2019 AN - OPUS4-48763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Hertwig, Andreas A1 - Kraehnert, R. A1 - Hodoroaba, Vasile-Dan T1 - Analysis of elemental composition and porosity of mesoporous IrOx-TiOx thin films by SEM/EDS N2 - Porous materials play an important role in several fields of technology, especially for energy applications like photovoltaics, electrolysis or batteries. The activity of porous films is affected by properties like porosity, film thickness, chemical composition of the material as well as the crystallinity of the framework. The complex morphology of such porous films constitutes a challenge even for modern analytical techniques and requires new approaches employing the combination/complementation of data of different analytical methods. In this contribution we characterize thin mesoporous iridium-titanium mixed oxide film properties by Electron Probe Microanalysis (EPMA) with energy dispersive X-ray spectroscopy (EDS) at an SEM. T2 - EMAS 2019 - 16th European Workshop on MODERN DEVELOPMENTS AND APPLICATIONS IN MICROBEAM ANALYSIS CY - Trondheim, Norway DA - 19.05.2019 KW - Electron probe microanalysis (EPMA) KW - Iridium-titanium mixed oxides KW - Spectroscopic ellipsometry KW - Mesoporous thin films PY - 2019 AN - OPUS4-48769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano Munoz, Itziar A1 - Shiozawa, D. A1 - Dancette, S. A1 - Lachambre, J. A1 - Verdu, C. A1 - Buffiere, J.-Y. T1 - Torsional crack propagation mechanisms of an A357-T6 cast aluminium alloy N2 - This poster is an example of what it can be achieved when performing in-situ fatigue testing synchrotron tomography T2 - Euromat 2019 CY - Stockholm, Sweden DA - 02.09.2019 KW - In situ testing KW - Synchrotron tomography KW - Torsional fatigue KW - Propagation modes PY - 2019 AN - OPUS4-48893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falk, Florian A1 - Stephan-Scherb, Christiane T1 - Microstructural impact on high temperature oxidation behavior of Fe-Cr-C model alloys N2 - Chromia forming high alloyed ferritic-austenitic steels are being used as boiler tube materials in biomass and coal-biomass co-fired power plants. Despite thermodynamic and kinetic boundary conditions, microstructural features such as grain orientation, grain sizes or surface deformation contribute to the oxidation resistance and formation of protective chromium-rich oxide layers. This study elucidates the impact of microstructure such as the grain size and number of carbide precipitates on high temperature oxidation at 650°C in 0.5% SO2 atmosphere. Cold-rolled Fe-16Cr-0.2C material was heat-treated to obtain two additional microstructures. After exposure to hot and reactive gases for 10 h < t < 1000 h layer thicknesses and microstructure of oxide scales are observed by scanning electron microscopy and Energy-dispersive X-ray spectroscopy. The two heat treated alloys showed reasonable oxidation resistance after 1000 h of exposure. The oxidation rate was substantially higher for the alloy with a duplex matrix after heat treatment compared to the fine-grained material. T2 - Gordon Research Conference CY - New London, New Hampshire, USA DA - 21.07.2019 KW - Corrosion KW - Microstructure KW - Oxidation KW - Sulfidation PY - 2019 AN - OPUS4-49212 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Artzt, K. A1 - Haubrich, J. A1 - Requena, G. A1 - Bruno, Giovanni T1 - New aspects about the search for the most relevant parameters optimizing SLM materials N2 - Using non-optimum combination of manufacturing parameters in selective laser melting (SLM) may lead to reduction of quality of component: defects generation, distortion of geometry and even cracking. Usually, the optimization of parameters is performed by changing volumetric energy density (Ev) and selecting parameters giving low porosity values. However, not only low porosity but also stable microstructure and low residual stresses will help to achieve advanced mechanical behavior of the component. In present work, we investigated cuboid-shaped Ti-6Al-4V samples produced with different manufacturing parameters. The parameters leading to the same Ev were considered as well as parameters which are not included in Ev. Residual stresses in subsurface region were investigated by synchrotron X-ray diffraction, which allows to penetrate around 100 µm from the surface therefore overcome the problem of high roughness of SLM components without additional sample preparation. Only tensile stresses were found along the building direction, that can play critical role especially during cyclic loading. The pore shape and spatial distribution obtained by computed tomography varied for samples produced with the same Ev. However, by using some process parameters it was possible to decrease residual stresses and obtain uniform α+β Ti microstructure and relatively low porosity. Additionally, it was found that not included in Ev (e.g., base plate position, focus distance) should be considered as additional manufacturing parameters during SLM process. T2 - ESIAM 2019 CY - Trondheim, Norway DA - 09.09.2019 KW - Additive manufacturing KW - Computed tomography KW - Residual stress PY - 2019 AN - OPUS4-49216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilbig, Janka A1 - Borges de Oliveira, F. A1 - Schwentenwein, M. A1 - Günster, Jens T1 - Quality Aspects of Additively Manufactured Medical Implants - Defect Detection in Lattice Parts N2 - Additive Manufacturing technologies are developing fast to enable a rapid and flexible production of parts. Tailoring products to individual needs is a big advantage of this technology, which makes it of special interest for the medical device industry and the direct manufacturing of final products. Due to the fast development, standards to assure reliability of the AM process and quality of the printed products are often lacking. The EU project Metrology for Additively Manufactured Medical Implants (MetAMMI) is aiming to fill this gap by investigating alternative and cost efficient non-destructive measurement methods. T2 - yCAM Forum CY - Mons, Belgium DA - 03.03.2019 KW - Additive Manufacturing KW - Metrology PY - 2019 AN - OPUS4-49141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fortini, Renata A1 - Sturm, Heinz A1 - Meyer-Plath, Asmus A1 - Kehren, Dominic T1 - Development of a method for measuring the flexural rigidity of nanofibers N2 - Toxicological studies have shown that some types of carbon nanotubes may provoke asbestos-like effects including chronic inflammation and lung cancer. Inhaled carbon nanotubes may reach the deep lung tissue. Alveolar macrophages are responsible to remove such foreign objects from the alveoli in a process called phagocytosis. If a macrophage fails to uptake a nanotube completely, cell lesions give rise to inflammation. It is currently assumed that short, long and flexible, and granularly agglomerated (tangled) nanofibres are clearable by macrophages, whereas biodurable long and rigid nanotubes persist in the lung tissue. The flexural rigidity of nanofibres is therefore believed to an important material property that governs fibre toxicity and needs to be investigated. The present work aims at determining the rigidity of nanofibres by detecting their resonance frequencies using a Dynamic Scanning Electron Microscope (DySEM) setup. By depositing and fixing a nanofibre to an oscillating support, it can be excited to vibrations and treated as a cantilevered beam. This way, its elastic modulus can be determined via Euler-Bernoulli’s beam theory. Multi-walled carbon nanotubes (MWCNTs) were deposited on high frequency piezoelectric quartz crystals mounted on a scanning electron microscope (SEM) holder. When introduced into the SEM chamber and connected to a frequency-sweeping waveform generator, the quartz crystal actuates the deposited fibre. A lock-in amplified processes the secondary electron detector signal resulting from the electron beam modulated by the vibrating nanofibre. Whenever a fibre resonance is detected, the SEM image of the fibre is stored to identify the fibre oscillation mode. The found resonance frequencies and modes allow determining the elastic modulus according. Since the frequency spacing of resonances is predicted by Euler-Bernoulli, the mode number can be checked and elastic modulus values be averaged. A significant number of MWCNTs have been classified according to their level of rigidity. The applicability and reliability of the method will be discussed. T2 - International Conference on Multifunctional, Hybrid and Nanomaterials CY - Sitges, Spain DA - 11.03.2019 KW - Carbon nanotubes KW - Rigidity KW - Resonance KW - Nanofibers KW - Bending modulus PY - 2019 AN - OPUS4-49196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fortini, Renata A1 - Sturm, Heinz A1 - Meyer-Plath, Asmus A1 - Kehren, Dominic T1 - Development of a method for measuring the flexural rigidity of nanofibres N2 - Toxicological studies have shown that some types of carbon nanotubes may provoke asbestos-like effects including chronic inflammation and lung cancer. Inhaled carbon nanotubes may reach the deep lung tissue. Alveolar macrophages are responsible to remove such foreign objects from the alveoli in a process called phagocytosis. If a macrophage fails to uptake a nanotube completely, cell lesions may give rise to inflammation. It is currently assumed that short, flexible and long as well as granularly agglomerated (tangled) nanofibres are clearable by macrophages, whereas biodurable long and rigid nanotubes may persist in lung tissue. The flexural rigidity of nanofibres is therefore believed to be an important material property that governs fibre toxicity and needs to be investigated. The present work aims at determining the rigidity of nanofibres by detecting their resonance frequencies using a Dynamic Scanning Electron Microscope (DySEM) setup. By depositing and fixing a nanofibre to an oscillating support, it can be excited to vibrations and treated as a cantilevered beam. This way, its elastic modulus can be determined via Euler-Bernoulli’s beam theory. Multi-walled carbon nanotubes (MWCNTs) were deposited on high frequency piezoelectric quartz crystals mounted on a scanning electron microscope (SEM) holder. When introduced into the SEM chamber and connected to a frequency-sweeping waveform generator, the quartz crystal actuates the deposited fibre. A lock-in amplified processes the secondary electron detector signal resulting from the electron beam modulated by the vibrating nanofibre. Whenever a fibre resonance is detected, the SEM image of the fibre is stored to identify the fibre oscillation mode. The found resonance frequencies and modes allow determining the elastic modulus accordingly. Since the frequency spacing of resonances is predicted by Euler-Bernoulli, the mode number can be identified and elastic modulus values be averaged. A significant number of individual MWCNTs were classified according to their level of rigidity. The applicability and reliability of the method will be discussed. T2 - EUROMAT CY - Stockholm, Sweden DA - 01.09.2019 KW - Carbon nanotubes KW - Rigidity KW - Resonance frequency KW - Nanofibers KW - Bending modulus PY - 2019 AN - OPUS4-49197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fortini, Renata A1 - Sturm, Heinz A1 - Meyer-Plath, A. A1 - Kehren, D. T1 - Development of a method for measuring the flexural rigidity of nanofibres N2 - Toxicological studies have shown that some types of carbon nanotubes may provoke asbestos-like effects including chronic inflammation and lung cancer. Inhaled carbon nanotubes may reach the deep lung tissue. Alveolar macrophages are responsible to remove such foreign objects from the alveoli in a process called phagocytosis. If a macrophage fails to uptake a nanotube completely, cell lesions may give rise to inflammation. It is currently assumed that short, flexible and long as well as granularly agglomerated (tangled) nanofibres are clearable by macrophages, whereas biodurable long and rigid nanotubes may persist in lung tissue. The flexural rigidity of nanofibres is therefore believed to be an important material property that governs fibre toxicity and needs to be investigated. The present work aims at determining the rigidity of nanofibres by detecting their resonance frequencies using a Dynamic Scanning Electron Microscope (DySEM) setup. By depositing and fixing a nanofibre to an oscillating support, it can be excited to vibrations and treated as a cantilevered beam. This way, its elastic modulus can be determined via Euler-Bernoulli’s beam theory. Multi-walled carbon nanotubes (MWCNTs) were deposited on high frequency piezoelectric quartz crystals mounted on a scanning electron microscope (SEM) holder. When introduced into the SEM chamber and connected to a frequency-sweeping waveform generator, the quartz crystal actuates the deposited fibre. A lock-in amplified processes the secondary electron detector signal resulting from the electron beam modulated by the vibrating nanofibre. Whenever a fibre resonance is detected, the SEM image of the fibre is stored to identify the fibre oscillation mode. The found resonance frequencies and modes allow determining the elastic modulus accordingly. Since the frequency spacing of resonances is predicted by Euler-Bernoulli, the mode number can be identified and elastic modulus values be averaged. A significant number of individual MWCNTs were classified according to their level of rigidity. The applicability and reliability of the method will be discussed. T2 - Microscopy Conference CY - Berlin, Germany DA - 01.09.2019 KW - Carbon nanotubes KW - Rigidity KW - Resonance frequency KW - Nanofibers KW - Bending modulus PY - 2019 AN - OPUS4-49198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koclega, Damian A1 - Radziszewska, A. A1 - Dymek, S. A1 - Kranzmann, Axel T1 - Corrosion behaviour of Ni-Cr-Mo-W coatings in environments containing sulfur N2 - The ferritic steel 13CrMo4-5 due to good properties with relation to attractive price is frequently use in power plants industry. According EN10028-2 this steel can be used up to 570 °C because of its creep behavior but its corrosion resistance limits the use frequently to lower temperatures, depending on gas temperature and slag formation. The corrosion test were performed in environment containing mixture of gases like: O2, COx, SOx and ashes, with elements e.g. Na, Cl, Ca, Si, C, Fe, Al. Exposure time was respectively 240 h, 1000 h and 4500 h in temperature 600 °C. The oxide scale on the 13CrMo4-5 steel was significant thicker than for In686 coating and the difference increase according for longer exposure time. The microstructure, chemical and phase composition of the oxide scales were investigated by means of a light microscope, the electron scanning and transmission microscopes (SEM,TEM) equipped with the EDS detectors. T2 - Gordon Research Conference CY - New London, New Hampshire, USA DA - 21.07.2019 KW - High temperature KW - Corrosion resistance KW - Laser cladding KW - Inconel 686 KW - Aggressive environment PY - 2019 AN - OPUS4-49358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fabry, Çağtay A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - WelDX – data and quality standards for welding research N2 - The WelDX research project aims to foster the exchange of scientific data inside the welding community by developing and establishing a new open source file format suitable for documentation of experimental welding data and upholding associated quality standards. In addition to fostering scientific collaboration inside the national and international welding community an associated advisory committee will be established to oversee the future development of the file format. The proposed file format will be developed with regards to current needs of the community regarding interoperability, data quality and performance and will be published under an appropriate open source license. By using the file format objectivity, comparability and reproducibility across different institutes and experimental setups can be improved. T2 - Open Research Data - Open your data for research CY - Berlin, Germany DA - 21.10.2019 KW - Welding KW - Research data management KW - Open science KW - Open data KW - Digitalization PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-493842 DO - https://doi.org/10.5281/zenodo.3514199 AN - OPUS4-49384 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bärmann, F A1 - Dittmann, Daniel A1 - Braun, Ulrike A1 - Jonas, U. A1 - Fuchs, S. T1 - Degradation analysis of polypropylene in the presence of phosphorus and sulfur containing additives - TGA-FTIR N2 - Polyolefins as polypropylene are widely used in packaging, automotive, consumer goods, construction, infrastructure, agricultural film and other film and sheet applications. Due to their molecular structure, polyolefins inherently burn well. The wide and growing usage implements that fire retardancy of polyolefin products is necessary and gains more attention. Sulfurous additives with synergistic flame retarding effects were shown in polymers like polystyrene and polyolefins by Bellin et al. and Fuchs et al. earlier. For polystyrene compounds, Braun et al. revealed that thermal degradation in the presence of phosphorus and sulfurous additives changes massively. The total release, the composition, and the onset temperature of evolved decomposition products changes. For polypropylene, mixtures containing triphenyl phosphate (TPP), sulfur (S8) and poly(tertbutylphenol) disulphide (PBDS) (Table 1) were prepared and investigated via thermogravimetric analysis coupled to Fourier transformed infrared spectroscopy (TGA-FTIR). T2 - FRPM 2019 CY - Turku, Finland DA - 26.06.2019 KW - TGA-FTIR KW - Polypropylene KW - Phosphorus KW - Sulfur PY - 2019 AN - OPUS4-49391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simkin, Roman A1 - Kranzmann, Axel A1 - Pfennig, Anja A1 - Heide, G. T1 - Oxidation behavior of FeCr model alloys in synthetic air at temperatures above 600 °C N2 - The life time of mechanical components in high temperature applications is basically determined by their workings. Corrosion determines the loss of material corresponding to the loss of the effective load-bearing section and consequently increasing stress levels. To improve the material selection for such applications a numerical life prediction corrosion model for different alloys and environments is needed. Based on the ferritic alloys FeCr and FeCrCo a first quantitative model is to be developed. For this purpose, the alloys are aged at 600°C, 650°C and 700°C in synthetic air under normal pressure for between 10 and 240 hours. The first objective is to establish a quantitative relationship between the oxidation rate as a function of composition and microstructure of the alloys. The influence of the inner interface as an essential parameter for transport by diffusion on the oxidation kinetics is discussed in this presentation. T2 - Gordon Research Conference CY - New London, New Hempshire, USA DA - 21.07.2019 KW - High temperature corrosion KW - Oxidation KW - Synthetic air KW - Modeling KW - FeCr- alloys PY - 2019 AN - OPUS4-49464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Werder, Julia A1 - Simon, Sebastian A1 - Meng, Birgit T1 - Hydrothermal Treatment of Ultra-High-Performance Concrete: Mechanical Propertoes and Phase Composition N2 - The advantages of treating prefabricated components made of Ultra-High-Performance Concrete (UCPC) at 90 °C are largely recognized, while hydrothermal treatment at 185 °C and the corresponding saturation pressure of 1.1 MPa, in contrast, is not applied in building practice so far and was studied only by a few researchers. In the research presented, the parameters pre-storage-time before treatment and dwell time in the autoclave were systematically varied. The results illustrate in which way compressive strength increases with the duration of treatment. Already samples which were only heated up and immediately cooled down show an increase in strength compared to the 28-day reference of about 10 %. After 20 h the maximum increase of about 25 % is reached. Interestingly the compressive strength of samples treated very long hardly decreases. It can be therefore concluded that for the composition investigated the achievable mechanical strength is not severely sensitive regarding the duration of the treatment. Also, pre-storage times before autoclaving longer than 0.5 days showed no significant impact on strength development. The phase composition measured by XRD exhibits significant changes compared to the reference. The amount of ettringite and portlandite have vanished, the cement clinker phases are substantially decreased and hydroxylellestadite and hydrogarnet are formed as new phases. The increase in strength can be assigned to an improved pozzolanic and hydraulic reaction. Contradictory to literature, there was found no obermorite, a mineral which is known to be susceptible for disintegration at Long autoclaving duration. This explains why no significant strength loss appeared. T2 - 15th International Congress on the Chemistry of Cement CY - Prague, Czech Republik DA - 16.09.2019 KW - Hydrothermal treatment KW - UHPC KW - Phase composition KW - Mechanical strength PY - 2019 AN - OPUS4-49469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ziemann, M. A. A1 - Sigmund, Sandra A1 - Simon, Sebastian A1 - Meng, Birgit T1 - Insight into Concrete Deterioration with Raman Spectroscopy N2 - Alkali-silica reaction (ASR) is a serious Problem concerning the deterioration of concrete. This leads to significant maintenance and reconstruction costs for concrete infrastructures all over the world. The geographical regions, which play a major role in concrete deterioration, are for example coastal Areas or in general, areas with a high air humidity/salinity due to closeness of rivers or lakes. These exemplary results show, the application of Raman spectroscopy establishes a valuable approach for characterizing the chemical and structural composition of ASR-products. The results prove the potential to trace the kind of reaction products, developing in dependence on the aggregate and to follow up its local alteration from origin of the gel. T2 - 10th International Congress on the Application of Raman Spectroscopy in Art and Archaeology (RAA2019) CY - Potsdam, Germany DA - 03.09.2019 KW - Building Materials KW - Alkali-silica-reaction KW - ASR KW - Raman Spectroscopy PY - 2019 AN - OPUS4-49471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe T1 - Investigation on short crack propagation in additive manufactured steel N2 - The assessment of high cycle fatigue in additive manufactured (AM) components is a challenge due to complex microstructure, anisotropic material behavior, residual stresses and porosity / lack-of-fusion defects. Due to the statistical distribution of defects, a high scatter band of S-N-curves is expected. The fracture mechanics-based fatigue assessment of additive manufactured components must consider the propagation of short cracks emanating from defects. In this work, the fatigue crack propagation resistance in the short and large crack regimes of additive and conventionally manufactured AISI 316L stainless steel is examined experimentally based on the cyclic R-curve. However, remaining residual stresses in the AM specimen lead to unexpected and dramatic crack-growth during the pre-cracking procedure. T2 - Workshop on Additive Manufacturing CY - BAM Berlin, Germany DA - 13.05.2019 KW - Fatigue crack growth KW - Additive Manufacturing KW - 316L KW - Cyclic R-curve KW - Laser Powder Bed Fusion KW - AM KW - L-PBF PY - 2019 AN - OPUS4-49419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - An, Biwen Annie A1 - Koerdt, Andrea A1 - Kleinbub, Sherin T1 - Microbial modelling of sulfate-reducing bacteria (SRB) and methanogenic archaea (ME) using iron N2 - Sulfate reducing bacteria (SRB) and methanogenic archaea (MA) are commonly found in the oil and gas environments. The formation of hydrogen sulfide (HS-) is particularly concerning for the petroleum industry due to its corrosiveness. However, the activities of SRB are limited to the concentration of sulfate present in the environment, whereas methanogens can utilize substrates such as H¬2 for methanogenesis. MA is commonly found in sulfate-free environments, such as deep sediments, and are known to form interspecies electron transfer relationships with SRB. Recently, SRB and MA capable of microbiologically influenced corrosion (MIC) by using elemental iron as a direct electron source (EMIC) have gained increased attention. On the iron surface, EMIC-SRB can outcompete EMIC-MA in the presence of sulfate, but this changes as sulfate depletes. The formation of FeS on the metal surface can be further utilized by MA for methanogenesis as it provides a conductive path. However, the possible kinetics involved of the overall process are currently unknown. We obtained a co-culture of EMIC-SRB and EMIC-MA to investigate the growth rates and electrical potential changes under different environmental conditions, including changes in pH, temperature and salinity. Results indicate that under neutral conditions and using iron as the sole substrate, methane production (up to 5 mM) starts after sulfate was depleted. Electrochemical measurements will be conducted on the co-culture under different conditions to determine the changes in the electrical potential in correlation with the sulfate and methane concentration. Fluorescence and electron microscope images of the biofilm structure will be used to visualize cell distribution and morphology. This study embarks the first step of understanding the relationship between EMIC-SRB and EMIC-MA. Such knowledge is important for the field of microbial electrophysiology and can be further explored for industrial applications. T2 - 7th International Symposium on Applied Microbiology and Molecular Biology in Oil Systems (ISMOS-7) CY - Halifax, Canada DA - 18.06.2019 KW - MIC KW - Corrosion KW - FIB/SEM KW - Corrosion products KW - Bacteria KW - Archaea KW - Iron PY - 2019 AN - OPUS4-49420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kämpf, K. A1 - Schmidt, Alexandra A1 - Bresch, Harald A1 - Bachmann, V. A1 - Kuhlbusch, T. A1 - Schwirn, K. A1 - Völker, D. T1 - Test Guideline on Particle Size and Size Distribution of Manufactured Nanomaterials N2 - The particle size distribution is considered the most relevant information for nanoscale property identification and material characterization. The current OECD test guideline on particle size and size distribution (TG 110) is not applicable to ‘nano-sized’ objects. In this project we thus develop a new OECD test guideline for the measurement of the size and size distribution of particles and fibers with at least one dimension in the nanoscale. A fiber is defined as an object having an aspect ratio of length/diameter l/d >3. The width and length of each fiber should be measured concurrently. In order to measure the particle size distributions, many techniques are available. 9 methods for particles and 2 methods for fibres have been tested in a prevalidation study and appropriate methods will be compared in an interlaboratory round robin test starting in February 2019. T2 - Workshop zur gemeinsamen Forschungsstrategie der Bundesoberbehörden „Nanomaterialien und andere innovative Werkstoffe: anwendungssicher und umweltverträglich“ CY - Berlin, Germany DA - 02.09.2019 KW - OECD KW - Nano KW - Guideline KW - Particle size distributuion KW - Prüfrichtlinie PY - 2019 AN - OPUS4-49507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baesso, Ilaria A1 - Altenburg, Simon A1 - Günster, Jens T1 - Co-axial online monitoring of Laser Beam Melting (LBM) N2 - Within the perspective of increasing reliability of AM processes, real-time monitoring allows part inspection while it is built and simultaneous defect detection. Further developments of real-time monitoring can also bring to self-regulating process controls. Key points to reach such a goal are the extensive research and knowledge of correlations between sensor signals and their causes in the process. T2 - BAM workshop on Additive Manufacturing CY - BAM, Berlin, Germany DA - 13.05.2019 KW - Laser Beam Melting KW - Process Monitoring KW - Co-axial monitoring KW - 3D imaging PY - 2019 AN - OPUS4-48517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Müller, Ralf A1 - Balzer, R. A1 - Kiefer, P. A1 - Reinsch, Stefan A1 - Behrens, H. A1 - Deubener, J. T1 - Subcritical crack growth in hydrous soda-lime silicate glass N2 - Glass strength and fatigue is limited by surface cracks. As subcritical crack growth (SCCG) is governed by ambient humidity, stress corrosion at the crack tip is widely accepted to be the underlying mechanism. However, as water is known to have decisive effect on glass properties and can rapidly enter the crack tip near glass region, SCCG could be affected by such water related phenomena. We tried to mimic these effects studying water dissolution and speciation, mechanical properties, and SCCG in water-bearing glasses. For this purpose, glasses up to 8 wt% water have been prepared by means of high-pressure melting of glass powder - water mixtures. As part of this effort, SCCG in dry and hydrous commercial micros¬cope slide glass (CW = 6 wt%) was studied in double cantilever beam (DCB) geometry and sub-Tg relaxation was measured by Dynamic Mechanical Analysis (DMA). For SCCG in ambient air (24% r.h.), SCCG was promoted by the presence of 6wt% bulk water with respect to the dry glass. On the other hand, stress intensity values, KI, required to cause slow crack growth (v < 10-6 ms-1) resemble literature findings for float glass of similar composition in liquid water, which might represent the maximum possible promoting effect of ambient water on SCCG. For SCCG in vacuum (10-3 mbar), dissolved bulk water causes even more pronounced effects. Most strikingly, it strongly decreases the slope of the log v(KI)-curve, which is a measure of dissipated energy during fracture. A strong increase of sub-Tg relaxation with increasing water content was confirmed by DMA. As a consequence, slow crack growth occurs at KI values as measured in the dry glass whereas fast crack growth occurs at much larger KI than that of the dry glass. Kinks and shoulders shown by the inert log v(KI)-curve indicate that bulk water does not simply affect bulk mechanical properties. T2 - 9th Otto Schott Colloquium CY - Jena, Germany DA - 09.09.2019 KW - Internal friction KW - Soda-lime silicate glass KW - Crack growth KW - Water content KW - DCB PY - 2019 AN - OPUS4-49534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -