TY - CONF A1 - Karafiludis, Stephanos A1 - Kochovski, Z. A1 - Retzmann, Anika A1 - Scoppola, E. A1 - Emmerling, Franziska A1 - Stawski, Tomasz T1 - How do transition metal phosphates crystallise? N2 - Industrial and agricultural waste streams (waste waters, sludges, tailings etc.), which contain high concentrations of NH4+, PO43- and transition metals, are environmentally harmful due to their toxic pollutants. At the same time, phosphorus and selective transition metals such as Cobalt could be potentially depleted as a critical raw material due to the high demand and rapidly declining natural ore deposits. Therefore, due to simultaneous scarcity and abundance, the phosphorus and 3d metal recovery from agricultural, industrial, mining, or urban wastewaters have been an important factor in sustaining our global consumption and preservation of the natural environment. Typically, separate pathways have been considered to extract hazardous substances such as transition metals or phosphate, independently from each other. Here, we investigate the crystallization of transition metal phosphate (TMP) compounds (NH4MPO4∙6H2O, M3(PO4)2∙8H2O with M = Ni2+, Co2+, NixCo1-x2+ M-struvite and M-phosphate octahydrate) out of aqueous solutions, which allow for P, ammonia and metal co-precipitation. The precipitation of these compounds from industrial and agricultural waste waters has high potential as a P- and 3d metal recovery route. For this purpose, a detailed understanding of the crystallization process beginning from combination of solved ions and ending in a final crystalline product is required. Through adjusting the reaction conditions, the stability, crystallite size and morphology of the as-obtained TMPs could be controlled. Detailed investigations of the precipitation process in time using ex- and in-situ techniques provided new insights into their non-classical crystallization mechanism/crystal engineering of these materials. These TMPs involve transitional colloidal nanophases during the crystallization process. Over time, their complex amorphous framework changes significantly resulting simultaneously in an agglomeration and densification of the compound. After extended reaction times these colloidal nanophases condensed to a final crystal. However, the reaction kinetics of the formation of a final crystalline product and the lifetime of these intermediate phases vary significantly depending on the metal cation involved in the precipitation process. Ni-struvite is stable in a wide reactant concentration range and at different metal/phosphorus (M/P)-ratios, whereas Co tends to form Co-struvite and/or Co-phosphate octahydrate depending on the (M/P)-ratio. The mixed NixCo1-x system shows a significantly different crystallization behavior and reaction kinetics of the precipitation compared to the pure endmembers. The observed various degree of stability could be linked to the octahedral metal coordination environment in these compounds. The achieved level of control over the precipitates, is highly desirable for 3d- and P-recovery methods. Under this paradigm, the crystals can be potentially upcycled as precursor materials for (electro)catalytical applications. T2 - Granada Münster Discussion Meeting (GMDM) CY - Granada, Spain DA - 30.11.2022 KW - Struvite KW - Transition metal KW - Phosphates KW - Amorphous phases KW - Non-classical crystallization PY - 2022 AN - OPUS4-56478 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Karafiludis, Stephanos A1 - Kochovski, Z. A1 - Scoppola, E. A1 - Emmerling, Franziska A1 - Stawski, Tomasz T1 - Crystallization study of transition metal phosphates: a new example for non-classical crystallization theory N2 - Industrial and agricultural waste streams (waste waters, sludges, tailings etc.), which contain high concentrations of NH4+, PO43- and transition metals, are environmentally harmful due to their toxic pollutants. At the same time, phosphorus and selective transition metals such as Cobalt could be potentially depleted as a critical raw material due to the high demand and rapidly declining natural ore deposits. Therefore, due to simultaneous scarcity and abundance, the phosphorus and 3d metal recovery from agricultural, industrial, mining, or urban wastewaters have been an important factor in sustaining our global consumption and preservation of the natural environment. Typically, separate pathways have been considered to extract hazardous substances such as transition metals or phosphate, independently from each other. Here, we report the synthesis routes for transition metal phosphate (TMP) compounds (M3(PO4)2∙8H2O, NH4MPO4∙6H2O, M = Ni2+, Co2+, NixCo1-x2+ M-struvite and M-phosphate octahydrate), which allow for P, ammonia and metal co-precipitation. The precipitation of these compounds from industrial and agricultural waste waters could be a promising P-recovery route. Through adjusting the reaction conditions, the stability, crystallite size and morphology of the as-obtained TMP could be controlled. Detailed investigations of the precipitation process using ex- and in-situ techniques provided new insights into their non-classical crystallization mechanism/crystal engineering of these materials. These TMPs involve transitional colloidal nanophases which subsequently aggregate and condense to final crystals after extended reaction times. However, the reaction kinetics of the formation of a final crystalline product vary significantly depending on the metal cation involved in the precipitation process. Ni-struvite is stable in a wide reactant concentration range and at different metal/phosphorus (M/P)-ratios, whereas Co tends to form Co-struvite and/or Co-phosphate octahydrate depending on the (M/P)-ratio. The mixed NixCo1-x system shows a significantly different crystallization behavior and reaction kinetics of the precipitation compared to the pure endmembers. The observed various degree of stability could be linked to the octahedral metal coordination environment in these compounds. The achieved level of control over the precipitates, is highly desirable for 3d- and P-recovery methods. Under this paradigm, the crystals can be potentially upcycled as precursor materials for (electro)catalytical applications. T2 - Adlershofer Forschungsforum 2022 CY - Berlin, Gemany DA - 11.11.2022 KW - Transition metal KW - Phosphates KW - Non-classical crystallization KW - In-situ SAXS/WAXS KW - Cryo-TEM PY - 2022 AN - OPUS4-56479 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Meyer, Christian A1 - Diegeler, A. A1 - Sorg, J. A1 - Schottner, G. A1 - Wondraczek, L. A1 - Sierka, M. A1 - Deubener, J. T1 - Data-driven Workflow for Accelerated Glass Development (GlasDigital) N2 - As part of a joint project involving the Fraunhofer Institute for Silicate Research (ISC), the Friedrich Schiller University of Jena, the Clausthal University of Technology and the Federal Institute for Materials Research and Testing (BAM), digital tools are to be created for the development of new types of glass materials. Current processes for the production of glasses with improved properties are usually very cost- and energy-intensive due to the low degree of automation and are subject to long development cycles. The use of robotic synthesis processes in combination with self-learning machines is intended to overcome these problems in the long term. The development of new types of glass can then not only be accelerated considerably, but also be achieved with much less effort. In this talk, data generation via a robotic high-throughput glass melting system is presented, which should be the experimental basis for the ontology developed within the project GlasDigital. T2 - Materials Science and Engineering Congress (MSE 2022) CY - Darmstadt, Germany DA - 27.09.2022 KW - Oxidglas KW - Robotische Glasschmelzanlage PY - 2022 AN - OPUS4-56489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bellon, Carsten T1 - Radiographic Simulator aRTist - Computer simulation for industrial Tomography N2 - aRTist is an easy-to-use and practical simulation tool to generate realistic radiographic images from CAD objects. A dedicated add-on module makes CT simulation easy (virtual computer tomography). Just choose the number of projections. Unlike in the practice, simulation can separately image the primary and scatter radiation. This allows studying the scattering artefacts in CT (gray-level variations in regions of homogeneous material). T2 - 5. Jenaer μCT-Workshop CY - Jena, Germany DA - 20.11.2019 KW - Vitual computer tomography simulation PY - 2019 AN - OPUS4-49826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lüth, Peter A1 - Frost, K. A1 - Kurth, Lutz A1 - Malow, Marcus A1 - Michael-Schulz, Heike A1 - Schmidt, Martin A1 - Uhlig, S. A1 - Zakel, S. T1 - CEQAT-DGHS Interlaboratory tests for method validation and measurement uncertainty determination N2 - An explosion in a chemical plant or a fire on a dangerous goods vessel - the reason for such accidents can be numerous. Prevention starts in the laboratory where chemicals are tested for their hazardous properties in order to be able to assess the risks involved in their handling. For this purpose, test methods have been developed and published. They are applied globally nowadays. Safety experts, manufacturers, suppliers, importers, employers or consumers must be able to rely on the validity of safety-related test methods and on correct test results and assessments in the laboratory. Interlaboratory tests play a decisive role in assessing the reliability of test results. Participation in interlaboratory tests is not only a crucial element of the quality assurance of laboratories; as such it is explicitly recommended in DIN EN ISO/IEC 17025. In addition, interlaboratory tests are also used to develop and validate test methods and can be used for the determination of the measurement uncertainty. Interlaboratory tests on different test methods have been performed by Bundesanstalt für Materialforschung und –prüfung (BAM) and Physikalisch-Technische Bundesanstalt (PTB) in collaboration with the QuoData GmbH during the last 10 years. Significant differences between the results of the participating laboratories were observed in all interlaboratory tests. The deviations of the test results were not caused only by laboratory faults but also by deficiencies of the test method (see interlaboratory test reports of the CEQAT-DGHS Centre for quality assurance for testing of dangerous goods and hazardous substances: www.ceqat-dghs.bam.de). In view of the interlaboratory test results the following conclusions can be drawn: • To avoid any discrepancy on classification and labelling of chemicals it should become state of the art to use validated test methods and the results accompanied by the measurement uncertainty. • A need for improvement is demonstrated for all examined test methods. Thus, interlaboratory tests shall initially aim at the development, improvement and validation of the test methods (including the determination of the measurement uncertainty) and not on proficiency tests. • The laboratory management and the practical execution of the tests need to be improved in many laboratories. • The term "experience of the examiner" must be seen critically: A "long experience with many tests" is not necessarily a guarantee for correct results. T2 - Eurachem International Workshop Uncertainty from sampling and analysis for accredited laboratories CY - Berlin, Germany DA - 19.11.2019 KW - Gefahrgut KW - Gefahrstoff KW - Ringversuch KW - Prüfmethode KW - Validierung KW - Qualitätssicherung KW - Messunsicherheit KW - Dangerous goods KW - Hazardous substances KW - Interlaboratory comparison KW - Quality assurance KW - Round robin test KW - Test method KW - Validation KW - Measurement uncertainty PY - 2019 UR - https://www.eurachem.org/index.php/events/completed/277-wks-mu2019#posters AN - OPUS4-49832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd T1 - Focused ion beam techniques beyond the ordinary - Methodological developments within ADVENT N2 - This poster presents the focused ion beam preparation methodologies developed within the framework of the EU funded EURAMET project ADVENT (Advanced Energy-Saving Technology). It summarises the key breakthroughs achieved for various in situ investigation techniques, e.g. in situ experiments at the Synchrotron facility BESSY II (IR-SNOM and XRS), TEM and SMM instrumentation. The created experimental devices from diverse thin-film semiconductor materials paved the way to dynamic structural studies bearing the potential to determine nanoscale correlations between strain and electric fields and, moreover, for the fundamental development of new in situ capabilities. N2 - Dieses Poster zeigt die FIB Präparationstechniquen, die im Rahmen des EU-finanzierten EURAMET-Projekts ADVENT (Advanced Energy Saving Technology) entwickelt wurden. Es fasst die wichtigsten Errungenschaften zusammen, die für verschiedene in situ Untersuchungstechniken erzielt wurden, z.B. situ-Experimente in dem Synchrotronring BESSY II (IR-SNOM und XRS), in situ TEM Experimente und für die SMM Technik. Die experimentellen Probenstrukturen, die aus verschiedenen Dünnschicht-Halbleitermaterialien erzeugt wurden, ebneten den Weg für dynamische Strukturstudien, die das Potenzial haben, nanoskalige Korrelationen zwischen Dehnung und elektrischen Feldern zu bestimmen und darüber hinaus neue in situ Messmethoden zu entwickeln. T2 - Final Meeting CY - Online Meeting DA - 30.06.2020 KW - FIB KW - Sample preparation KW - In situ KW - TEM KW - AFM PY - 2020 AN - OPUS4-51606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Hartrott, P. A1 - Rockenhäuser, Christian A1 - Metzger, M. A1 - Skrotzki, Birgit T1 - Assessment of EN AW-2618A for high temperature applications considering aging effects N2 - The alloy EN AW-2618A was assessed regarding its properties for high temperature applications considering aging effects. T2 - BAM TMF-Workshop 2019 CY - Berlin, Germany DA - 13.11.2019 KW - Alloy 2618A KW - Degradation KW - Coarsening KW - Transmission electron microscopy KW - Dark-field transmission electron microscopy (DFTEM) PY - 2019 AN - OPUS4-49808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Colini, Claudia A1 - Hahn, Oliver A1 - Rabin, Ira T1 - A black ink by any other name...: Typologies of Arabic inks and their detection limits N2 - In this poster we will present some results of a research projects dealing with Arabic recipes of black inks. To improve conservation practices of Arabic manuscripts we have assessed the feasibility of the recipes collected from many Arabic sources on bookmaking and reproduced the most common inks. Ink samples were then artificially aged and analysed using an array of analytical techniques, mostly non-invasive, in order to build a database of Arabic inks and their ingredients and also to verify the detection limits of the portable equipment employed. First, we will provide an overview of the sources [1-2] employed in the study – dating from 9th to 14th century, although the manuscripts in which they can be found dates up to the 20th century – with an eye on the ink typologies (real and perceived by the compilers). Then we will show how, by reproducing the recipes, it was possible to shed light on some oddities in the procedures and the choice of ingredients. In the end we will discuss problems concerning the identification of ink types and ingredients using reflectography (in Vis, IR and UV), X-Ray Fluorescence, Infrared and Raman spectroscopy. The focus will be in particular on mixed inks – both in the form of carbon inks with the addition of tannins and of a mixture of carbon and iron gall inks – which are particularly difficult to detect [3]. We will also examine the results of iron gall inks made with iron filings or nails instead of vitriol and the various precursor used to extract gallic acid that are mentioned in the sources as surrogates of gall nuts. [1] A. Schopen, Tinten und Tuschen des arabisch-islamischen Mittelalters, Göttingen: Vandenhoeck & Ruprecht, 2004 [2] S. Fani, Le arti del libro secondo le fonti arabe originali. I ricettari arabi per la fabbricazione degli inchiostri (sec. IX-XIII): loro importanza per una corretta valutazione e conservazione del patrimonio manoscritto, PhD thesis, Napoli: Università L’Orientale, 2013 [3] C. Colini et. al, Manuscript cultures, 11 (2018) 43-50 T2 - Technart 2019 CY - Bruges, Belgium DA - 07.05.2019 KW - Inks KW - Reflectography KW - XRF KW - Raman Spectroscopy KW - ATR PY - 2019 AN - OPUS4-50112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haferkamp, Sebastian A1 - Emmerling, Franziska A1 - Akhmetova, Irina A1 - Kulla, Hannes A1 - Rademann, K. T1 - Insights into the mechanochemical Knoevenagel condensation N2 - Mechanochemistry paves the way to simple, fast, and green syntheses, but there is a lack in understanding of the underlying mechanisms. Here, we present a universal strategy for simultaneous real-time in situ analysis, combining X-ray diffraction, Raman spectroscopy, and thermography. T2 - Bessy User Meeting 2019 CY - Berlin, Germany DA - 05.12.2019 KW - Mechanochemistry PY - 2019 AN - OPUS4-50122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Colini, Claudia A1 - Hahn, Oliver A1 - Rabin, Ira T1 - A black ink by any other name...: Typologies of arabic inks and their detection limits N2 - In this poster we will present some results of a research projects dealing with Arabic recipes of black inks [1-2]. To improve conservation practices of Arabic manuscripts we have assessed the feasibility of the recipes collected from many Arabic sources on bookmaking and reproduced the most common inks. Ink samples were then artificially aged and analysed using an array of analytical techniques, mostly non-invasive, in order to build a database of Arabic inks and their ingredients and also to verify the detection limits of the portable equipment employed. We will show procedures and problems concerning the identification of ink types and ingredients using reflectography (in Vis, IR and UV), X-Ray Fluorescence, Infrared and Raman spectroscopy. The focus will be in particular on squid ink [3] and mixed inks – both in the form of carbon inks with the addition of tannins and of a mixture of carbon and iron gall inks – which are particularly difficult to detect [4]. We will also examine the results of iron gall inks made with iron filings or nails instead of vitriol, the various precursor used to extract gallic acid that are mentioned in the sources as surrogates of gall nuts. [1] A. Schopen, Tinten und Tuschen des arabisch-islamischen Mittelalters, Göttingen: Vandenhoeck & Ruprecht, 2004 [2] S. Fani, Le arti del libro secondo le fonti arabe originali. I ricettari arabi per la fabbricazione degli inchiostri (sec. IX-XIII): loro importanza per una corretta valutazione e conservazione del patrimonio manoscritto, PhD thesis, Napoli: Università L’Orientale, 2013 [3] S. Centeno, J. Shamir Journal of Molecular Structure, 873 (2008), 149-159 [4] C. Colini et. al, Manuscript cultures, 11 (2018) 43-50 T2 - Jahrestagung „Archäometrie und Denkmalpflege 2019“ CY - Vienna, Austria DA - 11.09.2019 KW - Inks KW - Reflectography KW - XRF KW - Raman Spectroscopy KW - ATR PY - 2019 AN - OPUS4-50162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Failure of PE-HD induced by liquid media (ESC) N2 - As the well-known damage mechanisms slow crack growth (SCG) and environmental stress cracking (ESC) are the major causes for possible failure of polyolefin-based materials, especially for PE-HD, they are highly relevant and need to be considered thoroughly. Furthermore, due to slight but perceptible differences in damaging effect, a differentiation between SCG and ESC is expedient. SCG appears in “inert” or “neutral” media without a decisive influence of the surrounding medium whereas ESC occurs in “active” media, which influence the failure behavior and time to failure crucially. To characterize the inherent resistance of the material against those damage mechanisms, the well-established Full-Notch Creep Test (FNCT) is used. In this study, the FNCT – usually applied according to ISO 16770 [3] using a few universal model liquid media and mainly for pipe materials – is extended by investigations with appropriate parameters of selected relevant PE-HD container materials also in real media, such as the topical fuels diesel and biodiesel. The investigations were performed using a novel FNCT-device with 12 individual sub-stations, each equipped with individual electronic stress and temperature control and continuous online monitoring of the specimen elongation. Especially, mechanical stress and temperature were varied systematically during FNCT and time to failure values, time-dependent elongation data as well as detailed fracture surface analysis by laser scanning microscopy (LSM) were combined for the first time (Fig. 1). Particularly, the fracture surface analysis provides a sound basis to characterize failure behavior, mainly regarding the balance between brittle crack propagation and ductile deformation. Therefore, fracture surface analysis is an essential tool for a decent assessment of SCG and ESC by FNCT measurements. T2 - 17th International Conference on Deformation, Yield and Fracture of Polymers (DYFP) CY - Kerkrade, The Netherlands DA - 25.03.2018 KW - Environmental stress cracking (ESC) KW - PE-HD KW - Full Notch Creep Test (FNCT) KW - Imaging techniques KW - Brittle / ductile fracture behavior KW - Crack propagation analysis PY - 2018 AN - OPUS4-44617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linberg, Kevin A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - Taking Fluorine Interaction to the Extremes using XRD and DFT Simulations N2 - This work aims to investigate the role of F-F and F-π interactions in dictating structural and mechanical properties, through a combination of X-ray powder diffraction and dispersion-corrected density functional. As no benchmarking data exist for F-dominating organic system, we first assess how different functionals affect the mechanical properties of the material. T2 - CRC 1349 Fluorine-Specific Interactions Symposium CY - Online meeting DA - 27.09.2021 KW - High Pressure KW - Fluorine Interaction KW - Hexafluorobenzen KW - Density Functional Theory PY - 2021 AN - OPUS4-53654 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rautenberg, Max A1 - Gernhard, Marius A1 - Roth, Christina A1 - Emmerling, Franziska T1 - Fluorination and co-doping of ZIF-8 by ball mill grinding for efficient oxygen reduction electrocatalysis N2 - The oxygen reduction reaction (ORR) is a common process in a variety of electrochemical devices, like fuel cells and metal air batteries. The sluggish kinetics of the ORR require an electrocatalyst to pass this bottleneck.[1] Currently, the most used catalytical systems are platinum-based, with several drawbacks, such as the high cost, low availability, and deactivation by CO poisoning.[2] Efforts are made to develop efficient, durable and low cost catalysts to promote the commercialization of fuel cells. Non-precious metal catalysts are promising candidates for efficient ORR catalysis. It has been shown that pyrolyzing metal organic frameworks (MOFs) under inert conditions yields carbon-rich materials, with evenly distributed metal sites, which possess promising electrocatalytic activity.[3] One widely used type of MOF as ORR catalyst precursors is the zeolitic imidazole framework (ZIF) where metal cations are linked through imidazole-based ligands. Their porous nature is partially retained after carbonization, making MOFs very suitable precursor materials. Herein we report the mechanochemical synthesis and structural analysis of Co-doped ZIF-8 (Zn), as well as two polymorphs (dense and prorous) of fluorinated Co-doped CF3-ZIF-8 (Zn). The samples showed electrochemical performance comparable to platinum after carbonization for 1 h at temperatures ranging between 850 – 1000°C. T2 - XXV General Assembly and Congress of the International Union of Crystallography - IUCr 2021 CY - Prague, Czech Republic DA - 14.08.2021 KW - PGM-free catalyst KW - Oxygen Reduction Reaction KW - Mechanochemistry KW - MOFs PY - 2021 AN - OPUS4-53535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rautenberg, Max A1 - Gernhard, Marius A1 - Roth, Christina A1 - Emmerling, Franziska T1 - Synthesis and characterization of fluorinated Co-Zn-Zeolitic imidazole frameworks for catalysis of the oxygen reduction reaction N2 - The oxygen reduction reaction (ORR) is a common process in a variety of electrochemical devices, like fuel cells and metal air batteries. The sluggish kinetics of the ORR require an electrocatalyst to pass this bottleneck.[1] Currently, the most used catalytical systems are platinum-based, with several drawbacks, such as the high cost, low availability, and deactivation by CO poisoning.[2] Efforts are made to develop efficient, durable and low cost catalysts to promote the commercialization of fuel cells. Non-precious metal catalysts are promising candidates for efficient ORR catalysis. It has been shown that pyrolyzing metal organic frameworks (MOFs) under inert conditions yields carbon-rich materials, with evenly distributed metal sites, which possess promising electrocatalytic activity.[3] One widely used type of MOF as ORR catalyst precursors is the zeolitic imidazole framework (ZIF) where metal cations are linked through imidazolebased ligands. Herein we report the mechanochemical synthesis, structural analysis and of Co-doped ZIF-8 (Zn), as well as its fluorinated counterpart Co-doped CF3 -ZIF-8 (Zn). The samples showed electrochemical performance comparable to platinum after carbonization for 1h at temperatures ranging between 850 – 1000°C. T2 - 15th International conference on materials chemistry (MC15) CY - Online meeting DA - 12.07.2021 KW - PGM-free catalyst KW - Oxygen Reduction Reaction KW - Mechanochemistry KW - MOFs PY - 2021 AN - OPUS4-53539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Carstensen, Niels A1 - Schirdewahn, S. A1 - Merklein, M. A1 - Hilgenberg, Kai T1 - Generation of Tribosystems by Additive Surface Treatment on Tool Steel Substrate N2 - Laser implantation aims at reducing friction and wear on highly stressed surfaces in forming processes. Especially the hot stamping process that is used as a resource efficient process for manufacturing geometrical complex and high-strength structures, exhibits severe wear and high friction during the forming operation. The laser implantation process addresses this problem by combining two different approaches (surface modification and surface structuring) in surface technology by creating elevated, highly wear-resistant micro-features to influence the tribological performance. Pure TiB2 implants have shown to reduce tool-sided wear significally and improve the part formability by reducing local necking in deep drawing tests. Within the scope of this work, TiB2-TiC and TiB2-TaC hard material mixtures are implanted on X38CrMoV5-3 hot work tool steel. The aim is to investigate how the implant material properties can be influenced by the application of different mixing ratios of hard material mixtures under the specific variation of the process parameters. Distinct implant formations are tested on a novel test apparatus to examine the influence on the tribological properties. From the analyses of the implant properties by hardness measurements, light microscopic images, EDX and XRD analyses process parameter ranges are identified to produce defect-free dome- and ring-shaped implants. The specific process parameters (pulse power, pulse duration, mixing ratio and coating thickness) can be used for the determination of the implant geometry (height, width and depth). The tribological tests exhibit improved friction and wear properties. Based on these results, a tribosystem manufactured by this additive surface treatment technology shows great potential to enhance the effectiveness of the hot stamping process. T2 - Friction 2021 CY - Sankt Augustin, Germany DA - 18.11.2021 KW - Laser implantation KW - Surface modification KW - Additive surface treatment KW - Hot stamping KW - Tool steel PY - 2021 AN - OPUS4-53809 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hildebrandt, Jana A1 - Thünemann, Andreas T1 - Preparation of polypropylene and polyethylene nanoplastics in water N2 - Considering the huge amount of plastics, that is produced and thrown away all over the world every day, an increasing part of the society became aware of microplastic and its possible impact on the environment. Polymer particles smaller than 1 µm are called nanoplastic. Due to their small size they form a special group within particulate waste. Their high specific surface makes it easier for them to penetrate tissue and pose potential harm. On the other hand, the size and the chemical structure make it difficult to detect and analyze nanoplastics in nature. Furthermore, the concentrations in environmental samples are very low. Therefore, there is a need for a well-characterized nanoplastic material, that serves as a reference for nanoplastic found in nature. T2 - 101 years of Macromolecular Chemistry CY - Online meeting DA - 13.09.2021 KW - Nanoplastic PY - 2021 AN - OPUS4-53773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feiler, Torvid A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A1 - Rhim, S.-Y. A1 - Schröder, V. A1 - List-Kratochvil, E. A1 - Emmerling, Franziska T1 - Tuning the mechanical flexibility of organic molecular crystal by polymorphism for flexible optical waveguide N2 - Crystalline molecular materials are usually brittle and are prone to break into pieces upon external mechanical force. This fragility poses challenges for their application in next-generation technologies, including sensors, synthetic tissues, and advanced opto-electronics. The recent discovery of mechanical flexibility in single crystals of molecular materials has solved this issue and enable the design of smart flexible device technologies. Plastic crystals can be deformed permanently. This behavior is based on anisotropic molecular arrangements and the existence of facile slip planes which allow a permanent motion within the lattice. In contrast, elastic crystals can be deformed, but regain the original structure when the force is removed. This phenomenon is related to energetically isotropic molecular packing. Here we report 4-bromo-6-[(6-chlorolpyridin-2-ylimino)methyl]phenol (BCMPMP) as a promising candidate for future waveguide technologies. It turns out that BCMPMP has two different polymorphs with distinct optical and mechanical properties. Form I crystallizes in the orthorhombic space group Pca21 and shows brittle behavior. This structure exhibit very weak emission at 605 nm (λex = 425 nm) together with a low fluorescence quantum yield (Φ = 0.4 %). On the other hand, form II (monoclinic space group P21/c) has a large plastic regime and a bright emission at 585 nm (λex = 425 nm; Φ = 8.7 %). Based on its improved mechanical and optical properties, form II was explored as a bendable optical waveguide. Light was successfully propagated through a straight-shaped and mechanically deformed BCMPMP crystal. Depending on the light source, active or passive waveguiding could be achieved. So BCMPMP can also be used as a flexible wavelength filter. T2 - International School of Crystallography in Erice CY - Online meeting DA - 30.05.2021 KW - Flexible crystals KW - Polymorphism KW - Waveguide PY - 2021 AN - OPUS4-53905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feiler, Torvid A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A1 - Rhim, S.-Y. A1 - Schröder, V. A1 - List-Kratochvil, E. A1 - Emmerling, Franziska T1 - Polymorphic tuning of a flexible organic crystal optical waveguide N2 - Crystalline molecular materials are usually brittle and are prone to break upon external mechanical force. This fragility poses challenges for their application in next-generation technologies, including sensors, synthetic tissues, and advanced opto-electronics. The recent discovery of mechanical flexibility in single crystals of molecular materials has solved this problem and enable the design of smart flexible device technologies. Mechanical flexibility of organic crystals can be tuned by altering the weak interactions in the crystal structure, for examples through polymorphism. Here we report 4-bromo-6-[(6-chlorolpyridin-2-ylimino)methyl]phenol (BCMPMP) as a promising candidate for future waveguide technologies. It turns out that BCMPMP has two different polymorphs with distinct optical and mechanical properties. Form I shows brittle behavior under mechanical stress and exhibits very weak emission at 605 nm (λex = 425 nm) together with a low fluorescence quantum yield (Φ = 0.4 %).In contrast, Form II has a large plastic (irreversible bending) regime and a bright emission at 585 nm (λex = 425 nm; Φ = 8.7 %). Making use of favorable mechanical fexiblity and optical properties, form II was explored as a bendable optical waveguide. Light was successfully propagated through a straight-shaped and mechanically deformed BCMPMP crystal. Depending on the light source, active or passive waveguiding could be achieved. So BCMPMP can also be used as a flexible wavelength filter. T2 - Congress of the International Union of Crystallography - IUCr 2021 CY - Online meeting DA - 14.08.2021 KW - Flexible crystals KW - Polymorphism KW - Waveguide PY - 2021 AN - OPUS4-53906 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feiler, Torvid A1 - Bhattacharya, Biswajit A1 - Michalchuk, Adam A1 - Rhim, S.-Y. A1 - Schröder, V. A1 - List-Kratochvil, E. A1 - Emmerling, Franziska T1 - Mechanically flexible crystals: materials for new generation of responsive materials N2 - Based on the nature of the deformation, molecular crystals can be defined as being plastically (irreversible) or elastically (reversible)bendable. The mechanical response of crystals is thereby directly related to they structure.The structural elements required for a specific mechanical behavior are known, so that compounds with these properties can be synthesized by applying the rules of crystal engineering. T2 - Berlin Science Week CY - Berlin, Germany DA - 01.11.2021 KW - Flexible crystals PY - 2021 AN - OPUS4-53907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano Munoz, Itziar A1 - Roveda, Ilaria A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Synchrotron X-Ray Refraction during in-situ heat treatments N2 - For the first time, synchrotron X-ray refraction radiography (SXRR) has been paired with in-situ heat treatment to monitor microstructure and porosity evolution as a function of temperature. T2 - HZB User Meeting 2021 CY - Online meeting DA - 09.12.2021 KW - Synchrotron refraction radiography KW - Laser powder bed fusion KW - AlSi10Mg alloy KW - In-situ heat treatment KW - Porosity growth PY - 2021 AN - OPUS4-53973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Madia, Mauro T1 - Investigation of residual stresses and microstructure effects on the fatigue behaviour of a L-PBF AlSi10Mg alloy N2 - Al-Si alloys produced by Laser Powder Bed Fusion (L-PBF) techniques allow the fabrication of lightweight free-shape components. Due to the high cooling rates occurring during the building process, L-PBF AlSi10Mg alloys exhibit an ultra-fine microstructure that leads to superior mechanical properties in the as-built condition compared to conventional cast Al-Si materials. Nevertheless, L-PBF processing induces high thermal gradients, leading to deleterious residual stress. In order to relax detrimental residual stress and to increase the ductility, post-processing stress relief treatments are performed. The objective of the contribution is to investigate, under different heat treatment condition, the evolution of microstructure and residual stresses in view of optimizing the fatigue performance of the alloy. To this purpose various heat treatments in a range of temperatures between 265°C and 300°C for a duration between 15 minutes and 2 hours are performed. T2 - Fatigue Design 2021 CY - Senlis, France DA - 17.11.2021 KW - AlSi10Mg KW - Additive manufacturing KW - L-PBF KW - Residual stress KW - Heat treatment PY - 2021 AN - OPUS4-53794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hildebrandt, Jana A1 - Thünemann, Andreas T1 - Polypropylene and polyethylene nanoplastics in water N2 - Considering the huge amount of plastics, that is produced and thrown away all over the world every day, an increasing part of the society became aware of microplastic and its possible impact on the environment. Polymer particles smaller than 1 µm are called nanoplastic. Due to their small size they form a special group within particulate waste. Their high specific surface makes it easier for them to penetrate tissue and pose potential harm. On the other hand, the size and the chemical structure make it difficult to detect and analyze nanoplastics in nature. Furthermore, the concentrations in environmental samples are very low. Therefore, there is a need for a well-characterized nanoplastic material, that serves as a reference for nanoplastic found in nature. T2 - Tag der Chemie 2021 Uni Potsdam CY - Online meeting DA - 06.07.2021 KW - Nanoplastic PY - 2021 AN - OPUS4-53775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Sonnenburg, Elke T1 - Comparison of the fatigue behavior of wrought and additively manufactured AISI 316L N2 - Additively Manufactured (AM) parts are still far from being used in safety-relevant applications, mainly due to a lack of understanding of the feedstock-process-propertiesperformance relationship. This work aims at providing a characterization of the fatigue behavior of the additively manufactured AISI 316L austenitic stainless steel and a direct comparison with the fatigue performance of the wrought steel. A set of specimens has been produced by laser powder bed fusion (L-PBF) and a second set of specimens has been machined out of hot-rolled plates. The L-PBF material shows a higher fatigue limit and better finite life performance compared to the wrought material, accompanied by an extensive amount of cyclic softening. T2 - Fatigue Design 2021 CY - Online meeting DA - 17.11.2021 KW - Additive Manufacturing KW - AM KW - 316L KW - Fatigue KW - High Cycle Fatigue KW - Low Cycle Fatigue PY - 2021 AN - OPUS4-53780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Oster, Simon A1 - Altenburg, Simon T1 - Multispectral in-situ monitoring of a L-PBF manufacturing process using three thermographic camera systems N2 - The manufacturing of metal parts for the use in safety-relevant applications by Laser Powder Bed Fusion (L-PBF) demands a quality assurance of both part and process. Thermography is a nondestructive testing method that allows the in-situ determination of the thermal history of the produced part which is connected to the mechanical properties and the formation of defects [1]. A wide range of commercial thermographic camera systems working in different spectral ranges is available on the market. The understanding of the applicability of these cameras for qualitative and quantitative in-situ measurements in L-PBF is of vital importance [2]. In this study, the building process of a cylindrical specimen (Inconel 718) is monitored by three camera systems simultaniously. These camera systems are sensitive in various spectral bandwidths providing information in different temperature ranges. The performance of each camera system is explored in the context of the extraction of image features for the detection of defects. It is shown that the high temporal and thermal process dynamics are limiting factors on this matter. The combination of different spectral camera systems promises the potential of an improved defect detection by data fusion. T2 - LASER SYMPOSIUM & ISAM 2021 CY - Online meeting DA - 07.12.2021 KW - Laser Powder Bed Fusion KW - Thermography KW - In-situ Monitoring KW - Defect detection PY - 2021 AN - OPUS4-54141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bauer, L. J. A1 - Wieder, Frank A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Kanngießer, B. A1 - Zaslansky, P. A1 - Mantouvalou, I. T1 - Integrated X-ray techniques for durable dental interzones N2 - Nowadays, teeth are not directly extracted when tooth decay occurs. Whenever treatment of the affected tooth is possible, the carious region is replaced with a suitable filling. The filling material differs according to the position and size of the cavity. Since the restoration will remain in the tooth for many years, a well adhering and sealing interface between filling and healthy tooth tissue is needed. There is continuous development of new materials, but intensive studies of this complex interface between filling and healthy tooth are still lacking. Little is known about possible diffusion of elements from dental materials into healthy tooth tissue forming a socalled interzone with specific chemical and structural properties. The combination of different analytical X-ray methods at synchrotron radiation facilities and in the laboratory enables an extensive structural and elemental investigation of such interzones. While X-ray fluorescence techniques and X-ray absorption spectroscopy yield elemental distributions and localized chemical speciation, X-ray diffraction, refraction and computed tomography add structural information to the full 3D analysis of model and real life tooth samples. Within two DFG funded projects, we develop adapted methodologies and investigate micro-chemical changes in interzones which we hypothesize may lead to sclerotic dentine. T2 - Workshop of the Helmholtz association: MML - "From Matter to Materials and Life" CY - Berlin, Germany DA - 22.11.2021 KW - Dental materials KW - X-ray refraction KW - Computed tomography KW - X-ray fluorescence PY - 2021 AN - OPUS4-54097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evsevleev, Sergei A1 - Mishurova, Tatiana A1 - Garces, G. A1 - Sevostianov, I. A1 - Hofmann, M. A1 - Bruno, Giovanni T1 - Micromechanical response of multi-phase Al-alloy matrix composites under uniaxial compression N2 - Aluminum alloys are extensively used in the automotive industry. Particularly, squeeze casting production of Al-Si alloys is employed in the conception of metal matrix composites (MMC) for combustion engines. Such materials are of a high interest since they allow combining improved mechanical properties and reduced weight and hence improve efficiency. Being a multiphase material, most MMCs show complex micromechanical behavior under different load conditions. In this work we investigated the micromechanical behavior of two MMCs, both consisting of a near-eutectic cast AlSi12CuMgNi alloy, one reinforced with 15%vol. Al2O3 short fibers and the other with 7%vol. Al2O3 short fibers + 15%vol. SiC particles. Both MMCs have complex 3D microstructure consisting of four and five phases: Al-alloy matrix, eutectic Si, intermetallics, Al2O3 fibers and SiC particles. The in-situ neutron diffraction compression experiments were carried out on the Stress-Spec beamline and disclosed the evolution of internal phase-specific stresses in both composites. In combination with the damage mechanism revealed by synchrotron X-ray computed tomography (SXCT) on plastically pre-strained samples, this allowed understanding the role of every composite’s phase in the stress partitioning mechanism. Finally, based on the Maxwell scheme, a micromechanical model was utilized. The model perfectly rationalizes the experimental data and predicts the evolution of principal stresses in each phase. T2 - MLZ User Meeting 2020 CY - Online meeting DA - 09.12.2020 KW - Metal matrix composite KW - Neutron diffraction KW - Damage mechanism KW - Load transfer KW - Computed tomography PY - 2020 AN - OPUS4-52032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yu, C.-H. A1 - Sprengel, Maximilian A1 - Schröder, Jakob A1 - Serrano Munoz, Itziar A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Kromm, Arne A1 - Peng, R. L. A1 - Kannengießer, Thomas A1 - Bruno, Giovanni A1 - Moverare, J. T1 - Distribution of subsurface residual stress as a function of wall thickness in stainless steel 316L LPBF structures N2 - The subsurface residual stress in laser powder bed fused 316L structures was analyzed using X-ray diffraction (XRD) and layer removal. The influence of varying structure thicknesses was investigated. In this study the importance of combining surface roughness measurements with XRD was shown. Moreover, a clear relation between the structure thickness and the subsurface residual stress profiles was observed. T2 - The 11th International Conference on Residual Stress CY - Nancy, Frankreich DA - 28.03.2022 KW - AGIL KW - Residual Stress KW - X-ray Diffraction KW - Additive Manufacturing PY - 2022 AN - OPUS4-54581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Skrotzki, Birgit T1 - The long-term ageing process of alloy 2618A N2 - The long-term ageing process of alloy 2618A was introduced and discussed The dark-field transmission electronmicroscopical resilts werde shown and evaluated regarding the precipitate radii. The influence of the precipitate radii regarding ageing was used for a preliminary ageing assessment. T2 - 19th International Microscopy Congress (IMC19) CY - Sydney, Australia DA - 09.09.2018 KW - Alloy 2618A KW - Degradation KW - Coarsening KW - S-phase KW - Dark-field transmission electron microscopy (DFTEM) PY - 2018 AN - OPUS4-46123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiel, Erik A1 - Altenburg, Simon A1 - Myrach, P. A1 - Mohr, Gunther A1 - Gumenyuk, Andrey T1 - Crack detection in metal additive manufacturing with laser thermography N2 - BAM ensures and represents high standards for safety in technology and chemistry. Additive manufacturing (AM) changes the requirements for conventional non-destructive testing (NDT) as new processes of defect creation occur. Especially in safety critical areas, such as aerospace and automotive, new manufacturing processes and materials always require reliability tests and new standards which is a big challenge for NDT. T2 - Internationales Laser- und Fügesymposium CY - Dresden, Germany DA - 27.02.2018 KW - Laser Beam Melting KW - Laser Metal Deposition KW - Thermography KW - In-situ monitoring PY - 2018 AN - OPUS4-45619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Charmi, Amir A1 - Falkenberg, Rainer A1 - Skrotzki, Birgit T1 - Virtual-lab-based determination of a macroscopic yield function for additively manufactured parts N2 - This work aims for a yield function description of additively manufactured parts of S316L steel at the continuum-mechanical macro-scale by means of so-called virtual experiments using a crystal plasticity (CP) model at meso-scale. Additively manufactured parts require the consideration of the specific process-related microstructure, which prevents this material to be macroscopically treated as isotropic, because of crystallographic as well as topological textures. From virtual experiments, yield loci under various loading conditions are simulated. The scale bridging from meso- to macro-scale is realised by the identification of the simulated yield loci as a modified anisotropic Barlat-type yield model representation. T2 - Workshop on Additive Manufacturing, BAM CY - Berlin, Germany DA - 13.05.2019 KW - Virtual experiments KW - Additive manufacturing KW - Anisotropy KW - Crystal plasticity KW - Scale-bridging PY - 2019 AN - OPUS4-48064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Torge, Manfred A1 - Seneschal-Merz, Karine A1 - Feldmann, Ines A1 - Bücker, Michael A1 - Oleszczuk, S. T1 - EDX-Analysis on medieval glasses and innovative protection of stained glass panels N2 - The church of Koszewko (Poland) is a brick building edified in the 15th century built on cobblestone foundations. There are five windows in the sanctuary. Three of them enclose heraldic panels from the Küssow’s family from the 15th century which are surrounded with Goethe glass from the 18th century to complete the windows. The colored heraldic panels are strongly damaged and corroded with massive paint layer losses, glass- and leadbreakages. Those medieval glass fragments have been shortly discovered and are of particular interest for Poland since only few medieval glazing have been conserved. The damages as well as the glass compositions have been investigated with ESEM/EDX. Two categories of medieval glass compositions have been identified. The blue glass is particularly sensible to corrosion because of his high content in K2O. The colorless and the red glass samples belong to a stable glass type. Due to the thickness of the gel layer, it is easy to see that the degradation is strongly proceeded. The protection of those medieval stained-glass panels is absolute necessary. The medieval panels have been restored and surrounded from a copper frame. Then they have been fixed on the wood frame in the church. The exterior glazing has been closed with a panel of Goethe glass. The gap between the Goethe- and the medieval glass is about 3 cm. The Goethe glass panel has been stabilized with a film based on polyester to protect the medieval glasses against any damages. In this way, a low cost protective glazing has been installed for a long-term conservation of each medieval stained-glass panels. The climate measurements over the period of one year on the restored windows are in process. The temperature and the relative humidity are recorded in the church interior, in the gap between the original and the Goethe glass and outdoors. T2 - 93rd Annual Meeting of DGG and Annual Meeting of USTV CY - Nuremberg, Germany DA - 13.05.2019 KW - Medieval glasses KW - Stained glasses KW - EDX Analysis KW - Corrosion PY - 2019 AN - OPUS4-48025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avila, Luis A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Graf, B. A1 - Rethmeier, Michael A1 - Ulbricht, Alexander T1 - Low cycle fatigue behavior, tensile properties and microstructural features of additively manufactured Ti-6Al-4V N2 - Despite of the significant advances in additive manufacturing (AM) process optimization there is still a lack of experimental results and understanding regarding the mechanical behavior and its relationship with the microstructural features of AM-parts, especially in loading conditions typical for safety-relevant applications. Within the scope of the presented ongoing investigations, a basic microstructural characterization, tensile tests at room and elevated temperature (400°C) as well as a characterization of the fatigue behavior of additively manufactured Ti-6Al-4V in the low cycle fatigue regime are carried out in the as-built state. After failure, different techniques are used to describe the failure mechanisms of the specimens. The AM-Specimens are provided by the Fraunhofer institute for production systems and design technology and investigated at the BAM following the philosophy of the TF-Project AGIL. T2 - Workshop on Additive Manufacturing: Process, materials, testing, simulation & implants CY - BAM, Berlin, Germany DA - 13.05.2019 KW - High Temperature Testing KW - Titanium KW - Ti-6Al-4V KW - Additive Manufacturing KW - DED-L KW - LMD KW - Computed Tomography KW - Microstructure KW - Tensile Properties KW - Low Cycle Fatigue PY - 2019 AN - OPUS4-48067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Altenburg, Simon A1 - Mohr, Gunther T1 - µCT as Benchmark for Online Process Monitoring N2 - µCT is used to validate the capability of online monitoring for in-situ detection of defects during the L-PBF build process, which is a focus of the TF project ProMoAM. Our first experiments show that online monitoring using thermography and optical tomography cameras are able to detect defects in the built part. But further research is needed to understand root cause of the correlation. T2 - Workshop on Additive Manufacturing: Process, materials, simulation & implants CY - BAM, Berlin, Germany DA - 13.05.2019 KW - Computed tomography KW - Online Process Monitoring KW - Additive Manufacturing KW - Powder Bed Fusion KW - Selected Laser Melting PY - 2019 AN - OPUS4-48073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Altenburg, Simon A1 - Mohr, Gunther T1 - The Influence of the Temperature Gradient on the Distribution of Residual Stresses in AM AISI 316L N2 - Steep temperature gradients and solidification shrinkage are the main contributors to the formation of residual stresses in additively manufactured metallic parts produced by laser beam melting. The aim of this work was to determine the influence of the temperature gradient. Diffraction results show a similar pattern for both specimens, indicating the shrinkage to be more dominant for the distribution of residual stresses than the temperature gradient. Thermography results imply that a higher energy input result in higher compressive residual stresses in the bulk. T2 - Workshop on Additive Manufacturing: Process, materials, simulation & implants CY - BAM, Berlin, Germany DA - 13.05.2019 KW - Computed tomography KW - Online Process Monitoring KW - Additive Manufacturing KW - Powder Bed Fusion KW - Selected Laser Melting KW - Neutron Diffraction PY - 2019 AN - OPUS4-48075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ermilova, Elena A1 - Hertwig, Andreas A1 - Beck, Uwe A1 - Schneider, S. A1 - Peters, S. T1 - Standardization of spectroscopic ellipsometry as GUM-compliant accredited measurement method N2 - Ellipsometry has become a powerful measurement tool in semiconductor industry since the sixties of the last century. Early standardization activities focused exclusively on SiO2/Si (ASTM F 576-01, SEMI 3624). The first generic standard dealing with ellipsometry is DIN 50989-1:2018 Ellipsometry – Part 1: Principles. Standardization is a prerequisite for accreditation according to DIN EN ISO/IEC 17025 and the evaluation of uncertainty budgets. T2 - 8th International conference on spectroscopic CY - Barcelona, Spain DA - 26.05.2019 KW - Standardization of Ellipsometry KW - GUM-compliance KW - Uncertainty budgets KW - Bulk material PY - 2019 AN - OPUS4-48348 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schirdewahn, S. A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Merklein, M. T1 - Tribological performance of localized dispersed X38CrMoV5-3 surfaces for hot stamping of Al-Si coated 22MnB5 sheets N2 - Over the last years, the weight of modern car bodies has risen significantly due to the increasing customers’ demand for comfort and safety equipment. However, this ongoing trend leads to an increasing fuel consumption and thus to higher carbon dioxide emissions. In order to counteract these problems, hot stamping has been established in the automotive industry as a key technology for lightweight construction, regarding the manufacturing of safety-relevant car body components. Hot stamped parts are commonly made out of boron-manganese steel 22MnB5, which is initially austenized and subsequently formed and quenched in one process step. As a result, geometrical complex structures with an ultimate tensile strength of 1500 MPa are generated. The surfaces of the workpieces are coated with an Al-Si layer to avoid oxide scale formation and to ensure corro-sion protection. However, the coating system leads to an increased adhesive wear on the tool sur-face due to the high thermo-mechanical tool stresses. Therefore, a time and cost consuming rework of the hot stamping tools is required. The aim of this study is to increase the tribological perfor-mance of hot stamping tools by using a laser implantation process. This technique allows the ma-nufacturing of separated, elevated and dome-shaped microstructures on the tool surface in conse-quence of a localized dispersing of hard ceramic particles by pulsed laser radiation. The generated surface features offer great potential for reducing the tribological load, due to their high hardness and wear resistance. For this purpose, the friction coefficient of unmodified and laser implanted tool surfaces were examined and compared by using a modified pin-on-disk test. In addition, the surfaces were analyzed by optical measurements in order to quantify the amount of wear. T2 - 7th International Conference on Hot Sheet Metal Forming of High-Performance Steel CHS2-2019 CY - Lulea, Sweden DA - 02.06.2019 KW - Laser implantation KW - Surface texturing KW - Hot stamping PY - 2019 AN - OPUS4-48323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Özcan Sandikcioglu, Özlem A1 - Hermann, Annett A1 - Kunte, Hans-Jörg T1 - Investigation of methanogen-induced microbiologically influenced corrosion under dynamic environments N2 - Microbially influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) which act upon the metal by the reactiveness of hydrogen sulfide, and by withdrawal of the available electrons in electrical contact with the metal. Methanogenic archaea can also cause MIC by directly withdrawing electrons from the iron surface for methanogenesis. However, the mechanistic details and kinetics of the overall process are poorly understood. Precipitation of siderite, a by-product of methanogenesis, (4Fe + 5HCO3 + 5H+  4FeCO3 + CH4 + 3H2O) can lead to an insulating layer on the metal surface and lower the corrosion rate. Still, the extent of FeCO3 precipitation may be significantly influenced by environmental conditions such as pH and advective processes. T2 - IGD-TP Exchange Forum 8 CY - Berlin, Germany DA - 04.12.2048 KW - Archaea KW - Biocorrosion KW - MIC KW - Environmental Simulation PY - 2018 AN - OPUS4-47136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sommer, Konstantin A1 - Kranzmann, Axel A1 - Reimers, W. T1 - Microstructure characterization of additive produced parts N2 - Due to the advantages of additive manufacturing (AM), it has been increasingly integrated into many industrial sectors. The application of AM materials for safety-critical parts requires the detailed knowledge about their microstructure stability under thermo-mechanical or mechanical load and knowledge on ageing process mechanisms. Ageing processes are characterized by change of the material microstructure that is to be initially investigated. This work deals with the Investigation of 316L stainless steel manufactured by selective laser melting (SLM). Describing Parameters must be defined and applied on the microstructure of these materials in their initial state and after loads were applied. The findings of this work form the basis for the investigation of AM material ageing. T2 - FEMS Junior EUROMAT 2018 CY - Budapest, Hungary DA - 08.07.2018 KW - Additive manufacturing KW - Selective laser melting KW - 316L KW - Material characterization KW - Microstructure PY - 2018 AN - OPUS4-47176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano Munoz, Itziar A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Ulbricht, Alexander A1 - Bruno, Giovanni T1 - Residual stress analysis in selective laser melted parts of superalloy IN718 N2 - Additive Manufacturing by Selective Laser Melting (SLM) offers an ample scope for producing geometrically complex parts as compared to the traditional subtractive manufacturing strategies. However, the residual stresses (RS) developed during the processing can reduce the load bearing capacity as well as induce unwanted distortion, limiting the life time and the application of SLM parts. T2 - BESSY II User meeting CY - BESSY II Photon Source, Adlershof Berlin, Germany DA - 06.12.2018 KW - Laser Beam Melting KW - AM IN718 KW - Residual stress measurements PY - 2018 AN - OPUS4-47179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nazarzadehmoafi, Maryam A1 - Zscherpel, Uwe A1 - Altenburg, Simon A1 - Mohr, Gunther A1 - Maierhofer, Christiane A1 - Waske, Anja T1 - Detection of imprinted artificial defects in additively-manufactured samples by means of radiological inspections N2 - As a part of ProMoAM project, we are optimizing a prototype X-ray backscatter to reach NDT requirements, and thereafter to apply it for process monitoring. Moreover, we studied the capability of a radiography approach to detect artificial defects in AM components made by laser powder bed fusion (L-PBF). T2 - Workshop on Additive Manufacturing: Process, materials, simulation & implants CY - Berlin, Germany DA - 13.05.2019 KW - Additive manufacturing KW - NDT KW - Radiological inspections PY - 2019 AN - OPUS4-48515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Terborg, R. A1 - Boehm, S. A1 - Kim, K. J. T1 - Analysis of elemental composition of Fe1-xNix and Si1-xGex alloy thin films by EPMA and µ-XRF N2 - The present study reports on measurements on thin Fe-Ni films on silicon and first-time results of analysis on Si-Ge thin films deposited on a non-conductive aluminium oxide Substrate by electron probe microanalysis (EPMA). Standard-based and standardless EPMA (with EDS) results were used in combination with the thin film analysis software Stratagem for the quantification. Further, X-ray fluorescence analysis (XRF) can be used for the determination of elemental composition and thickness of such films as well. In this case, XRF with a μ-focus X-ray source (μ-XRF) attached to a SEM was applied. For quantification, a fundamental parameter (FP) approach has been used to calculate standard-based and standardless results. Both thin film systems have been chosen as samples of an international round robin test (RRT) organised in the frame of standardisation technical committee ISO/TC 201 ‘Surface chemical analysis’, under the lead of KRISS. The main objective of the RRT is to compare the results of atomic fractions of Fe1-xNix and Si1-xGex alloy films obtained by different surface Analysis techniques, such as X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and secondary ion mass spectrometry (SIMS) applied in the depth-profiling operation mode. Five samples of different atomic fractions of each thin film system, i.e., Fe1-xNix and Si1-xGex, have been grown by ion beam sputter deposition on silicon and Al2O3 wafers, respectively. Reference FeNi and SiGe films with well-known elemental composition and thickness have been also supplied for standard-based analysis. An excellent agreement has been obtained between the atomic fractions determined by EPMA and µ-XRF with the KRISS certified values. T2 - Microscopy & Microanalysis 2019 CY - Portland, OR, USA DA - 03.08.2019 KW - Thin films KW - EPMA KW - µ-XRF KW - Elemental composition KW - Atomic fraction KW - Fe-Ni KW - Si-Ge PY - 2019 AN - OPUS4-48709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Temperature in micromagnetism: Cell size and scaling effects of the stochastic Landau-Lifshitz equation N2 - The movement of the macroscopic magnetic moment in ferromagnetic systems can be described by the Landau-Lifshitz (LL) or Landau-Lifshitz-Gilbert (LLG) equation. These equations are strictly valid only at absolute zero temperature. To include temperature effects a stochastic version of the LL or LLG equation for a spin density of one per unit cell can be used instead. To apply the stochastic LL to micromagnetic simulations, where the spin density per unit cell is generally higher, a conversion regarding simulation cell size and temperature has to be established. Based on energetic considerations, a conversion for ferromagnetic bulk and thin film systems is proposed. The conversion is tested in micromagnetic simulations which are performed with the Object Oriented Micromagnetic Framework (OOMMF). The Curie temperatures of bulk Nickel, Cobalt and Iron systems as well as Nickel thin-film systems with thicknesses between 6.3 mono layer (ML) and 31ML are determined from micromagnetic simulations. The results show a good agreement with experimentally determined Curie temperatures of bulk and thin film systems when temperature scaling is performed according to the presented model. T2 - EUROMAT 2019 CY - Stockholm, Sweden DA - 01.09.2019 KW - Magnetic nanoparticles KW - Stochastic Landau Lifshitz Gilbert equation KW - Magnetic moment KW - Landau Lifshitz equation KW - Exchange interaction KW - OOMMF KW - Object oriented micromagnetic framework KW - Temeprature scaling KW - LLG KW - Ferromagnetism KW - Micromagnetism PY - 2019 AN - OPUS4-48762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Bernd R. A1 - Cabeza, Sandra A1 - Pereyra, R. A1 - Fernández, R. A1 - González-Doncel, G. A1 - Kupsch, Andreas A1 - Bruno, Giovanni T1 - Evidence of damage evolution during creep of Al–Mg alloy using synchrotron X-ray refraction N2 - In order to provide further evidence of damage mechanisms predicted by the solid-state transformation creep (SSTC) model, direct observation of damage accumulation during creep of Al–3.85Mg was made using synchrotron X-ray refraction (SXRR). X-ray refraction techniques capture the specific surface (i.e. surface per unit volume) with a field of view comparable to the specimen size but with microscopic sensitivity. A significant rise of the internal specific surface with increasing creep time was observed, providing evidence for the creation of a fine grain substructure, as predicted by the SSTC model. T2 - Tenth Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 05.12.2018 KW - Aluminium alloys KW - Creep KW - Damage KW - Synchrotron X-ray refraction KW - Electron microscopy KW - Subgrain structure PY - 2018 AN - OPUS4-46861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ehlers, Henrik A1 - Pelkner, Matthias T1 - Eddy Current Testing for Laser Beam Melting N2 - This poster presents a new application for high-spatial resolution eddy current testing (ET) with magnetoresistive (MR) sensor arrays for additive manufacturing (AM) T2 - Workshop on Additive Manufacturing CY - Berlin, Germany DA - 13.05.2019 KW - GMR KW - Additive Manufacturing KW - 316L KW - LBM KW - SLM KW - Eddy Current PY - 2019 AN - OPUS4-47992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Häusler, Ines A1 - Darvishi Kamachali, Reza A1 - Heidl, Daniel A1 - Skrotzki, Birgit T1 - Influence of heat treatment and creep loading on an Al-Cu-Li alloy N2 - The influence of heat treatment and creep loading on the microstructure of an Al-Cu-Li alloy was investigated. Especially the formation of different precipitates (T1 and Theta') were characterized and the microstructural changes under different ageing conditions (with and without external strain) were investigated to determine the effect od stress on the ageing process. T2 - 19th International Microscopy Congress (IMC19) CY - Sydney, Australia DA - 09.09.2018 KW - Aluminium KW - Degradation KW - Coarsening KW - Dark-field transmission electron microscopy PY - 2018 AN - OPUS4-46131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Piedade, M. F. M. A1 - Joseph, A. A1 - Alves, J. R. A1 - Bernardes, C. E. S. A1 - Emmerling, Franziska A1 - Minas da Piedade, M. E. T1 - Crystal Engineering through Solvent Mediated Control of Molecular Conformation: The Case of 5-Hydroxynicotinic Acid N2 - The importance of molecular conformation for polymorphism and its repercussions in terms of tight control over the industrial production of crystalline organic materials with highly reproducible physicochemical properties has long been recognized. Efforts to understand how a crystallization solvent can direct the formation of a polymorph containing a specific molecular conformation are, however, relatively scarce. Nicotinic acid (NA) and its hydroxyl derivatives (2-, 4-, 5-, and 6-hydroxynicotinic acids) are very good models for such studies. Indeed, regardless of the solvent, NA always crystallizes as a single polymorph with the molecule in the same neutral conformation. In contrast, the hydroxyl derivatives are prone to polymorphism and solvate formation and, depending on the crystallization conditions, the molecules in the crystal lattice can exhibit hydroxyl, oxo, or zwitterionic conformations. The present study focused on 5-hydroxynicotinicacid (5HNA) shows that by judicious selection of the solvent it is possible to obtain 1:1 solvates, where solvation memory is not completely lost and the tautomer preferred in solution persists in the crystalline state: zwitterionic in 5HNA·H2O and neutral in 5HNA·DMSO. Nevertheless, upon thermal desolvation the obtained materials evolve to the same unsolvated form where the molecule is in a zwitterionic conformation. The structures of 5HNA·H2O and 5HNA·DMSO obtained from single crystal-ray diffraction are discussed and compared with that of 5HNA solved from powder data. The energetics of the dehydration/desolvation process was also fully characterized by thermogravimetry (TG), differential scanning calorimetry (DSC) and Calvet microcalorimetry. T2 - BACG 2018 CY - Limerick, Ireland DA - 20.06.2018 KW - Crystal Engineering KW - 5-hydroxynicotinic acid KW - Molecular Conformation PY - 2018 AN - OPUS4-45519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kabelitz, Anke A1 - Dinh, H. A. A1 - Emmerling, Franziska T1 - A02: In situ WAXS studies on the crystallization of Al 13 keggin clusters in water N2 - Polynuclear aluminium species (Al13 keggin cluster) find application in different areas like water purification [1], contaminant transport [2], and as pilling clays with high specific surface areas[3], due to their strong binding ability to aggregates and high positive charge. In the present contribution, we report on the in situ investigation of the Al13 sulfate synthesis by synchrotron wide-angle X-ray scattering (WAXS). Al13 cluster were crystallized by precipitating hydrolyzed aluminum solutions by the addition of sodium sulfate. The measurements were performed using a custom-made acoustic levitator as sample holder. The study provides information about the intermediates during the crystallization process. From the data, a mechanism was derived indicating the influence of the crystallization process. T2 - Final Meeting of the CRC 1109 & Edith Flanigen Award Ceremony 2018 CY - Berlin, Germany DA - 10.10.2018 KW - Crystallization KW - WAXS KW - Keggin Cluster PY - 2018 AN - OPUS4-47005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kabelitz, Anke A1 - Emmerling, Franziska A1 - de Oliveira Guilherme Buzanich, Ana A1 - Kraehnert, R. A1 - Kraffert, K. A1 - Schmack, R. T1 - In-situ characterisation of nucleation, growth, crystallisation and dissolution of nanoscaled iron oxides N2 - We present the synthesis of four mesoporous templated iron oxides: Ferrihydrite, Hematite, Maghemite, Magnetite/Maghemite and the influence of water on the crystallization mechanism and the kinetics. The absence of water stabilize the ferrihydrite structure. By monitoring the dissolution in situ by using a QCMB and ex situ microscopy we got details in the dissolution mechanism of ferrihydrite. T2 - Final Meeting of the CRC 1109 & Edith Flanigen Award Ceremony 2018 CY - Berlin, Germany DA - 10.10.2018 KW - Mesoporous KW - Iron oxide KW - Mechanism PY - 2018 AN - OPUS4-47010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Peetz, Andreas A1 - Kranzmann, Axel T1 - Interaction of Reactive Components in CO2 Streams with Transport Pipeline Steel X70 N2 - In context of CLUSTER project, impacts of impurities (SO2, NO2, O2, CO, H2S, H2, N2, Ar and H2O) in CO2 streams captured from different sources in a regional cluster on transport, injection and storage were investigated. Corrosion studies of oxidizing, reductive or mixed atmospheres towards transport pipeline steel X70 were carried out applying high pressure (10 MPa) at low temperatures (278 K or 313 K). T2 - GHGT-14 Conference CY - Melbourne, Australia DA - 22.10.2018 KW - Carbon capture KW - CCS KW - Carbon dioxide KW - Corrosion PY - 2018 AN - OPUS4-47017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schenderlein, Matthias A1 - Dimper, Matthias A1 - Nicolai, K. A1 - Noack, R. A1 - Özcan Sandikcioglu, Özlem T1 - Monitoring early stage corrosion processes during biofilm formation N2 - To investigate early stage corrosion processes of stainless steel 1.4301 taking place during the biofilm formation of the organism Shewanella putrefaciens electrochemical impedance spectroscopy (EIS) in a multielectrode approach has been used. The multielectrode array consisted of up to 25 electrically isolated electrodes made of stainless steel wires of diameters ranging from 100 µm to 500 µm. They were connected to a multichannel microelectrode analyzer (MMA) electrically coupled through zero resistance ammeters. Current flow between electrodes in the array as well as changes in impedance of individual electrodes over time were recorded and analyzed with respect to the onset of localized corrosion and biofilm formation. The results were complemented by optical microscopy, SEM and AFM images which were taken immediately after the respective experiment. To verify that the multielectrode arrays correctly indicated the initial stages of the corrosion process and of biofilm formation they were introduced in a flow cell reaction vessel containing test specimens made from stainless steel 1.4301, which were checked regularly for signs of localized corrosion and biofilms. Preceding results with the multielectrode array in solutions containing high amounts of chloride ions and hydrogen peroxide at low pH also showed that it is possible with the MMA to monitor individual electrodes becoming local anodes as local corrosion set in, while the remaining electrodes predominantly acted as cathodes. T2 - 69th Annual Meeting of the International Society of Electrochemistry CY - Bologna, Italy DA - 02.09.2018 KW - Corrosion KW - Multielectrode KW - Biofilm KW - Monitoring KW - Stainless steel PY - 2018 AN - OPUS4-47095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rütters, H. A1 - May, Franz A1 - Bettge, Dirk A1 - Fischer, S. A1 - Ganzer, L. A1 - Jäger, P. A1 - Kather, A. A1 - Lempp, C. A1 - Lubenau, U. T1 - Combining CO2 Streams from Different Emitters – A Challenge For Transport And Storage Infrastructure N2 - The European Directive 2009/31/EC on the geological storage of CO2 envisages an open access of CO2 streams from different emitters to a nation- or even EUwide CO2 pipeline network if CO2 stream compositions meet “reasonable minimum composition thresholds”. As of today it is not known how such “composition thresholds” may be defined and which impurity levels may be viable in practical application. To set up recommendations for criteria and respective threshold values for CO2 stream compositions, the project “CLUSTER” will investigate how a dynamic interplay – both in terms of mass fluxes and compositions – of CO2 streams from regionally clustered CO2 sources sharing a transport and storage infrastructure will impact corrosion, e.g., of pipelines and plant components, and geochemical alteration of cap rocks and reservoir rocks. In addition, the behaviour of such a highly dynamic CCS system will be considered for an overall optimization of system design including CO2 stream mixing schemes and facilities or interim CO2 storage. T2 - TCCS-8 – The 8th Trondheim Conference on CO2 Capture, Transport and Storage CY - Trondheim, Norway DA - 16.06.2015 KW - Carbon capture KW - Carbon dioxide KW - Corrosion KW - CCS PY - 2015 AN - OPUS4-47018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kullolli, Borana A1 - Cuéllar, Pablo A1 - Baeßler, Matthias T1 - Numerical modelling of soil-structure interfaces N2 - The governing load bearing mechanism of multi-pile foundations is often the shaft friction. Under cyclic loading the soil particles next to the foundation rearrange and tend to compact leading to a decrease of the surrounding normal stress. The reduction of the normal stress leads to a lower threshold for shear stress (friction fatigue), which results in a degraded shaft bearing capacity. The common interface models used for numerical simulations (e.g. Mohr-Coulomb) are not able to capture such behavior. This work aims to develop an interface material model that incorporates such features of the contact behavior at the soil-structure interface. T2 - Alert Geomaterial Workshop CY - Aussois, France DA - 01/10/2018 KW - Soil-structure interaction KW - Interface KW - Material model KW - Numerical modelling PY - 2018 AN - OPUS4-47066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akhmetova, Irina A1 - Schutjajew, Konstantin A1 - Roth, Christina A1 - Emmerling, Franziska T1 - Mechanochemical synthesis of metal phosphonates N2 - The exploration of metal phosphonates chemistry has gained great interest during the last decades, because of their structural diversity. Transition metal phosphonates are promising candidates for an application as electrocatalysts in oxygen evolution reactions (OER). Here, we present the in situ investigation of mechanochemical syntheses of different manganese phosphonates by synchrotron X-ray diffraction. Nitrilotri(methylenephosphonic acid) and N,N-Bis(phosphonomethyl)glycine were chosen as ligands. The liquid-assisted milling process can be divided into three steps, including an amorphous stage. One of the products has not been obtained by classical solution chemistry before. These metal phosphonates and/or their derivatives are considered to be active in electrochemical energy conversion. The verification of their applicability is one of the topics of our resent research. T2 - Fundamental Bases of Mechanochemical Technologies CY - Novosibirsk, Russia DA - 25.06.2018 KW - Metal phosphonates KW - Mechanochemistry KW - PXRD KW - Thermography PY - 2018 AN - OPUS4-46996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haferkamp, Sebastian A1 - Emmerling, Franziska A1 - Akhmetova, Irina A1 - Kulla, Hannes A1 - Rademann, Klaus T1 - In situ investigation of mechanochemical Knoevenagel condensations of benzaldehyde derivates N2 - Mechanochemistry is known for short reaction times, nearly quantitative conversions, and decreasing amount of solvents. Among organic syntheses, the Knoevenagel condensation is an important C-C bond forming reaction. We investigated the reaction of benzaldehyde derivates (nitro- and fluoro-derivates) with malononitrile syntheses by a combination of different in situ investigation techniques. T2 - BESSY II User Meeting CY - Berlin, Germany DA - 05.12.2018 KW - Mechanochemistry KW - In situ PY - 2018 AN - OPUS4-46997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akhmetova, Irina A1 - Emmerling, Franziska A1 - Schutjajew, Konstantin A1 - Roth, Christina T1 - In situ investigation of milling reactions and structure determination of the products using X-ray diffraction N2 - Mechanochemistry is a versatile approach for green and fast synthesis of pure substances. By milling the reactants, various organic, inorganic, and metal-organic compounds can be obtained in high yields. Although mechanochemistry is widely used, the underlying mechanisms are not fully understood making mechanochemical reactions difficult to predict. Metal phosphonates are metal-organic compounds accessible by grinding. Because of their structural diversity, the exploration of the chemistry of metal phosphonates has gained considerable interest during the last decades. Transition metal phosphonates are promising candidates for an application as electrocatalysts in oxygen evolution reaction (OER). Here, we present the in situ investigation of the mechanochemical synthesis of a manganese(II)-phosphonate by synchrotron X-ray diffraction and thermography. The product has not been obtained by classical solution chemistry before and its crystal structure was determined from PXRD data. The milling process can be divided into different steps, with the product crystallization corresponding with the highest temperature rise. The activity of this metal phosphonate towards OER was measured and is presented here. T2 - International School of Crystallography - 52nd Course: Quantum Crystallography CY - Erice, Italy DA - 1.06.2018 KW - Metal phosphonates KW - Mechanochemistry KW - PXRD KW - OER KW - Thermography PY - 2018 AN - OPUS4-46998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Akhmetova, Irina A1 - Haferkamp, Sebastian A1 - Schutjajew, Konstantin A1 - Roth, Christina A1 - Emmerling, Franziska T1 - In situ investigation of mechanochemical syntheses of manganese phosphonates with N-containing ligands N2 - Mechanochemistry is a versatile approach for green and fast synthesis of pure substances. The exploration of the chemistry of metal phosphonates has gained considerable interest during the last decades due to their structural diversity. We synthesized manganese phosphonates in milling reactions. The mechanochemical reactions were investigated in situ to reveal the underlying mechanisms. T2 - Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 05.12.2018 KW - Metal phosphonates KW - Mechanochemistry KW - PXRD KW - In situ KW - Thermography PY - 2018 AN - OPUS4-46999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weise, Matthias A1 - Hertwig, Andreas A1 - Beck, Uwe T1 - Scanning White Light Interference Microscopy - Measurement of Topometry and Layer Thickness N2 - 3D coherence scanning interferometry (CSI) is anoptical, non-contact and rapide measurement technique using a defined bandwidth of white light at normal incidence. White light interference microscopy (WLIM) providest here-dimensional surface topometry data up to a resolution of 0.4 µm lateral and 0.1 nm vertical. Three operating modi, surface, films and advanced films, enable measurements of step heights, roughness, wear volume, cone angle, surface pattern and layer thickness. Traceability to SI system is ensured by certified standards (PTB/NIST) within a DAkkS DIN EN ISO/IEC 17025:2018 accredited lab. T2 - EFDS, V2019, Vakuum und Plasma, WS 4, Beschichtungen für Werkzeuge & Bauteile CY - Dresden, Germany DA - 08.10.2019 KW - DIN EN ISO/IEC 17025:2018 KW - Certified standards KW - White light interference microscopy(WLIM) KW - 3D coherence scanning interferometry (CSI) KW - Topometry PY - 2019 AN - OPUS4-49323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fleck, M. A1 - Tielemann, Christopher A1 - Scheffler, F. A1 - Brauer, D. S. A1 - Müller, Ralf T1 - Surface crystallization of BT0.75S (fresnoite) glass in different atmosphere N2 - Fresnoite glass with excess SiO2 exhibits oriented surface crystallization, in contrast to the stoichiometric glass composition. Recent EBSD studies documented that the crystals in BTS (2BaO-TiO2-xSiO2, x=0-3) can occur in a distinct [101]-orientation perpendicular to the surface and claimed that this orientation is not a result of growth selection. During these previous studies, however, the effect of surface preparation and surrounding atmosphere during the crystallization experiments were not considered. As these parameters may influence crystal orientation, we studied the surface crystallization of a BTS glass (2BaO-TiO2–2.75SiO2) under controlled conditions with the help of light, electron and polarisation microscopy as well as EBSD. Heat treatments for one hour at 840°C of fractured BTS glass surfaces in air resulted in a large number of not-separable surface crystals. This large number of crystals can be caused by dust particles, which act as nucleation agents. As crystal growth velocity could further be influenced by humidity, our experiments are performed in a filtered and dried air atmosphere. The crystal morphology and orientation will be analysed in dependence of the sample preparation and a differing surrounding atmosphere. T2 - 93rd Annual Meeting of the German Society of Glass Technology in Conjunction with the Annual Meeting of French Union for Science and Glass Technology (USTV) CY - Nuremberg, Germany DA - 13.05.2019 KW - BTS KW - Fresnoit KW - Glass ceramic KW - Glass-ceramic KW - Glass PY - 2019 AN - OPUS4-49294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Busch, R. A1 - Tielemann, Christopher A1 - Reinsch, Stefan A1 - Patzig, C. A1 - Höche, T. A1 - Müller, Ralf T1 - Characterization of early crystallization stages in surface-crystallized diopside glass-ceramics N2 - Structure formation in glass-ceramics by means of surface crystallization is a challenging open question and remains elusive to definite answers. In several glass-ceramic systems, oriented crystal layers have been observed at the immediate surface, including diopside and some fresnoite systems. However, it is still open to debate, whether oriented surface crystallization is the result of oriented nucleation or growth selection effects. In the same vein, there is still discussion whether surface nucleation is governed by surface chemistry effects or by defects serving as active nucleation sites. In order to help answer these questions, annealing experiments at 850°C have been performed on a MgO·CaO·2SiO2 glass, leading to the crystallization of diopside at the surface. Different annealing durations and surface treatment protocols (i.a. lapping with diamond slurries between 16 µm and 1 µm grain size) have been applied. Particular focus has been put on earliest crystallization stages, with crystal sizes down to about 200 nm. The resultant microstructure has been analyzed by electron backscatter diffraction (EBSD) and two different kinds of textures have been observed, with the a- or b-axis being perpendicular to the sample surface and the c-axis lying in the sample plane. Even at shortest annealing durations, a clear texture was present in the samples. Additionally, selected samples have been investigated with energy-dispersive x-ray spectroscopy in the scanning transmission electron microscope (STEM-EDX). The diopside crystals have been found to exhibit distinguished submicron structure variations and the glass around the crystals was shown to be depleted of Mg. T2 - 93rd Annual Meeting of the German Society of Glass Technology in Conjunction with the Annual Meeting of French Union for Science and Glass Technology (USTV) CY - Nuremberg, Germany DA - 13.05.2019 KW - Glass KW - Crystallization KW - Diopside KW - EBSD KW - Orientation PY - 2019 AN - OPUS4-49296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Borghetti, P. A1 - Ortel, Erik A1 - Wirth, Thomas A1 - Garcia, S. A1 - Gómez, E. A1 - Blanco, M. A1 - Alberto, G. A1 - Martra, G. T1 - Organic Surface Modification and Analysis of Titania Nanoparticles for Self-Assembly in Multiple Layers N2 - The characteristics of TiO2 coatings can greatly influence their final performance in large-scale applications. In the present study self-assembly of TiO2 nanoparticles (NPs) in multiple layers was selected as a deposition procedure on various substrates. For this, the main prerequisite constitutes the surface modification of both NPs and substrate with e.g. silane coupling agents. A set of functionalized TiO2 NPs has been produced by reaction with either (3- aminopropyl)triethoxysilane (APTES) or (3-aminopropyl)phosphonic acid (APPA) to functionalize the NP surface with free amino-groups. Then, the complementary functionalized NP set can be obtained from an aliquot of the first one, through the conversion of free surface amino-groups to aldehydes by reaction with glutaraldehyde (GA). Several types of TiO2 NPs differing in size, shape and specific surface area have been functionalized. FTIR, TGA, SEM/EDS, XPS, Auger electron spectroscopy (AES) and ToF-SIMS analyses have been carried out to evaluate the degree of functionalization, all the analytical methods employed demonstrating successful functionalization of TiO2 NP surface with APTES or APPA and GA. T2 - European Conference on Applications of Surface and Interface Analysis ECASIA 2019 CY - Dresden, Germany DA - 15.09.2019 KW - TiO2 KW - Layer-by-layer deposition KW - Surface functionalization KW - P25 KW - Surface characterization PY - 2019 AN - OPUS4-49279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Fries, S. A1 - Agudo Jácome, Leonardo T1 - Thermodynamic study of a refractory complex concentrated alloy using the CALPHAD method N2 - Introduction/purpose: Multi-principal-element alloys (MPEAs), also known as complex concentrated alloys (CCAs), have recently come to the attention of the scientific community due to some interesting and unexpected microstructures, and their potential for improving properties such as, e.g. mechanical strength and oxidation resistance in high temperature structural applications. The AlMo0.5NbTa0.5TiZr refractory (r)CCA is one such candidate, showing a two-phase microstructure after a two-stage heat treatment under argon atmosphere at a controlled cooling rate. Since the application conditions intended for this alloy require a long-term high temperature (> 700 °C) mechanical and oxidation resistance, it becomes necessary to assess the possible phase development in this regime. Methods: In this contribution, the CALPHAD method is used to calculate phase equilibria for the AlMo0.5NbTa0.5TiZr CCA in the presence and absence of oxygen. Equilibrium phase amount evolution with temperature and Scheil Model for solidification (e.g. Fig.1a and Fig.1b, respectively) are analyzed, which are obtained using the databases TCNI9 and TTNI7 and the Gibbs energy minimizer in the Thermo-Calc software. Results: The diagrams reveal that two BCC-based phases could form during alloy solidification, where one phase would be enriched with Mo, Nb and Ta while the other phase, with Al, Ti and Zr. Activity oxides diagrams show that a stable form of aluminum oxide (α-Al2O3, Pearson symbol: hR10, corundum) can be formed. Results obtained by both databases, as well as discrepancies between property phase and Scheil approaches are discussed on the base of experimental results. Conclusions: A modeling tool is used to support alloy characterization and development, providing also the possibility to feedback information to improve existing thermodynamic databases. T2 - EUROMAT 2019 CY - Stockholm, Sweden DA - 01.09.2019 KW - CALPHAD databases analysis KW - Thermodynamic analysis KW - Complex concentrated alloy (CCA) PY - 2019 AN - OPUS4-49345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Torge, Manfred A1 - Seneschal-Merz, Karine A1 - Günther, Tobias A1 - Wilsch, Gerd T1 - Determination of boron in 19th and 20th century paint layers using LIBS N2 - 19th and 20th centuries glass paint layers consist of a colour body and a colourless lead silicate flux, in which borax or boric acid was added as further component to improve the paint ability and to reduce the firing temperature for multiple layers of paint. Model glasses were used in laboratory tests to investigate the stability of glass paints with additions of boron oxide. To determine boron in paint layers, a LIBS-system with pulsed NdYAG-laser was used. T2 - Technart 2019 CY - Brugge, Belgien DA - 07.05.2019 KW - Stained glass windows KW - Glass paints KW - LIBS PY - 2019 AN - OPUS4-48229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waniek, Tassilo A1 - Ghasem Zadeh Khorasani, Media A1 - Braun, Ulrike A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Water as side effect of reinforcing boehmite filler Local changes in anhydride cured epoxy resin N2 - Nanocomposites offer wide opportunities for lightweight constructions and enable reduction of weight and volume. Beside macroscopic toughening nanoparticle reinforced polymers show a soft interface around boehmite (AlOOH) filler nanoparticles. A related strong interaction between boehmite and the anhydride cured resin system is widely suspected in literature but not determined by structural Analysis. Determination of the molecular structure is important to allow simulations approaching the real system and predict future reinforcing effects. DRIFT (diffuse refletance infrared fourier transformed) spectra of the boehmite reinforced anhydride cured epoxy show significant changes in the molecular structure compared to the neat polymer. Further investigations of the interactions between the single components of the resin system and the boehmite filler pointed out reactions between released water released from the boehmite filler and the anhydride hardener or amine accelerator. This leads to the discussion of competing polymerisation mechanisms that highly influence the polymer properties. Ongoing experiments and literature research approve that this impact of water is able to locally change the stoichiometrie, alter the curing mechanism or support an inhomogeneous crosslink density. T2 - Polydays 2019 CY - Erwin-Schrödinger-Zentrum, Berlin Adlershof, Germany DA - 11.09.2019 KW - Nanocomposites KW - Epoxy KW - FTIR spectroscopy KW - Boehmite alumina PY - 2019 AN - OPUS4-49010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zakel, S. A1 - Schröder, Volkmar A1 - Gabel, D. A1 - Hirsch, W. A1 - Kleinert, J. A1 - Krause, U. A1 - Krietsch, Arne A1 - Meistes, J. A1 - Sachtleben, A. A1 - Schmidt, Martin A1 - Askar, Enis T1 - Safety characteristics of hybrid mixtures for explosion protection N2 - In this joint project, standardized measurement methods for hybrid mixtures are developed, which serve to determine safety characteristics for explosion protection. A hybrid mixture is a multi-phase System consisting of fuel gas or vapor, as well as air and flammable dust. This combination can occur for instance in drying processes or during heterogenous reaction processes. T2 - 27th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS) CY - Beijing, VR China DA - 28.07.2019 KW - Explosionsschutz KW - Gas-Staub-Gemische KW - Hybride Gemische KW - Sicherheitstechnische Kenngrößen PY - 2019 AN - OPUS4-48992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Taparli, Ugur Alp A1 - Griesche, Axel A1 - Michalik, K. A1 - Mory, D. A1 - Kannengießer, Thomas T1 - In situ Tungsten inert gas welding monitoring by LIBS N2 - TIG welding process was monitored using LIBS for the in situ measurement of chemical compositions in austenitic stainless steels. This research aims to prototype a real-time chemical composition analysis system for welding applications and prove the feasibility of such a quality control loop. The chemical compositions of the weld pool, considering the welding metallurgy, is the most critical parameter for any occurring weld defects, e.g. hot cracking. Hence, controlling the weld pool chemical composition allows governing of the weld pool solidification behavior by monitoring and adjusting the respective welding parameters, e.g. welding current. LIBS measurements were conducted during a TIG-welding process. The effect of the welding plasma on the LIBS signal was thoroughly investigated by varying various LIBS settings, e.g. delay and exposure time. Quantification of the main alloying elements Cr and Ni in the weld pool during welding was achieved by univariate calibration procedure. T2 - 10th Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy CY - Brünn, Czech Republic DA - 08.09.2019 KW - LIBS TIG welding KW - Austenitic stainless steels KW - Chemical composition KW - In situ measurement, PY - 2019 AN - OPUS4-48996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hennersdorf, Felix A1 - Weltschev, Margit A1 - Hertwig, Andreas T1 - ATR Investigations into the effect of ageing on HD-PE heating oil storage tanks after a service life of more than 30 years N2 - Heating oil storage tanks made of polyethylene grades have been on the market in Germany since the early 1970s. To ensure safety, their replacement is recommended by tank manufacturers after a period of 30 years. Polyethylene is subject to ageing by alteration of the properties during its life cycle. The degree of degradation and the nature of the process mainly depend on the chemical alteration of the polyethylene, the wall thickness of the tank and the environmental conditions. There are no data available on the long-term behaviour of the polyethylene grades, especially after a service life of more than 30 years. The aim of this investigation was to find a suitable test method to determine the factual degree of damage in comparison to the uncontaminated polyethylene grades. Material data of the used polyethylene grades are available because the BAM was the competent authority for the tests and expert reports for the approval of these tanks until the middle of the 1990s. Therefore, tank sections from the bottom, the shell and the roof of 22 individual storage tanks produced of polyethylene grades A and B have been examined by Melt Flow Rate (MFR) and Attenuated Total Reflectance (ATR). Their service life was in the range between 20 and 41 years. The MFR measurements of the tank sections showed differences in the values depending on the weight which was used (5 kg or 21.6 kg). An increase of the MFR was determined for the samples of polyethylene grade A, whereas a reduction of the MFR values was measured for most samples of polyethylene grade B. This grade is mainly subject to the internal ageing by cross-linkages, increased degree of branched molecules and loss of the plasticizer. ATR analysis exhibits an absorption band at 909 cm‒1 predominantly in samples of polyethylene grade A indicating chain scission and concomitantly formed terminal vinyl groups. This absorption band can be used for the characterization of the ageing of the polyethylene grades. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Heating oil tanks KW - Polyethylene KW - Ageing KW - Service life PY - 2019 AN - OPUS4-49000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shapovalov, Oleg A1 - Gaal, Mate A1 - Hönig, Gerald A1 - Gradt, Thomas A1 - Weiss, S. T1 - Temperature dependence of the propagation speed of a longitudinal wave in different solids for use as a wedge material in an extreme temperature resistant ultrasonic transducer N2 - In special cases of angle beam ultrasonic measurement the applied transducer has to withstand extreme temperatures. Since the irradiation angle depends on the speed of sound in both the wedge material and the tested object, the developer must take into account the speed of Sound in a wedge material over the whole temperature range of transducers application. T2 - 23rd International Congress on Acoustics CY - Aachen, Germany DA - 09.09.2019 KW - Ultrasonic Transducer KW - Speed of sound KW - Longitudinal Wave KW - Temperature PY - 2019 AN - OPUS4-48982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - Häusler, I. A1 - Piesker, B. A1 - Skrotzki, Birgit T1 - Influence of prestraining on the aging response of an Al-Cu-Li alloy N2 - The influence of prestraining on the aging response of an Al-Cu-Li alloy is investigated by preparation of different strain states (3 %, 4 %, 6 %) of the initial aging state. The Brinell hardness of the subsequently aged samples (up to 60 h aging time) was measured and it was found that the increasing dislocation concentration in the 3 different initial states leads to faster hardness increases and slightly higher maximum hardness. T2 - Microscopy Conference 2019 (MC2019) CY - Berlin, Germany DA - 01.09.2019 KW - Al-Cu-Li alloys KW - Degradation KW - Hardness PY - 2019 AN - OPUS4-48953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rockenhäuser, Christian A1 - von Hartrott, P. A1 - Metzger, M. A1 - Skrotzki, Birgit T1 - Digital material representation of alloy 2618A for the lifetime assessment of radial compressor wheels N2 - The concept of digital material representation is introduced and the aluminium alloy 2618A is discussed as an example of this concept regarding the simulation of material ageing based on nanoscaled precipitates. T2 - Microscopy Conference 2019 (MC2019) CY - Berlin, Germany DA - 01.09.2019 KW - Alloy 2618A KW - Degradation KW - Coarsening KW - Transmission electron microscopy KW - Digital material representation PY - 2019 AN - OPUS4-48954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breßler, Ingo T1 - SASfit and McSAS - Analyzing Small-Angle Scattering of Polymers N2 - Small-angle scattering (SAS) offers a reliable route to characterize the nanostructure of large amounts of material with a minimum of tedium, for example, easily extracting size distributions and volume fractions. There are a variety of analysis programs available while the evaluation of SAS measurements has been dominated by the classical curve fitting approach. SASfit represents such a classical curve fitting toolbox: it is one of the mature programs for SAS data analysis and has been available and used for many years. The latest developments will be presented and a scattering function of a mass fractal model of branched polymers in solution is provided as an example for implementing a plug-in. Alternatively to classical curve fitting, part two presents the latest developments of the user-friendly open-source Monte Carlo regression package McSAS. The form-free Monte Carlo nature of McSAS means, it is not necessary to provide further restrictions on the mathematical form of the parameter distribution: without prior knowledge, McSAS is able to extract complex multimodal or odd- shaped parameter distributions from SAS data. The headless mode is presented by an example of operation within interactive programming environments such as a Jupyter notebook. T2 - PolyDays 2019 CY - Berlin, Germany DA - 11.09.2019 KW - Small-angle scattering KW - SAXS KW - Software PY - 2019 AN - OPUS4-48958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Kraus, David A1 - Kübler, Stefan A1 - Eisermann, René T1 - Multiaxial fatigue damage of glass fiber reinforced polymers N2 - Fiber reinforced polymers (FRPs) are a well established material in lightweight applications, e.g. in automotive, aerospace or wind energy. The FRP components are subjected to multiaxial mechanical as well as hygrothermal loads. Common operation temperatures are in the range of 213 K and 373 K (-60 °C and 100 °C) at a relative humidity of 10% to 90%. In spacecraft applications, the environmental conditions are even more extreme. However, the correlation between multiaxial mechanical loading and harsh environment conditions have to-date not been investigated in detail. The project aims to investigate the fatigue behavior of FRPs dependent on multiaxial mechanical loading, temperature, and humidity. Extensive experimental testing is performed on flat plate and cylindrical tube specimens, accompanied by numerical and analytical calculations. T2 - 24. Nationales SAMPE Symposium CY - Dresden, Germany DA - 06.02.2019 KW - Composite KW - Fatigue KW - Thermomechanics KW - Distributed fiber optic sensors PY - 2019 AN - OPUS4-47335 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chapartegui, Ander A1 - Emmerling, Franziska A1 - Schneider, Rudolf T1 - MOFs as optical sensor elements against endocrine disrupting phthalates N2 - The development of optical sensing technologies for Endocrine Disrupting Chemicals (EDCs) was urgently needed to facilitate currently unmet demands on comprehensive monitoring of These substances, thus ensuring consumer safety. T2 - SALSA CY - Berlin, Germany DA - 01.05.2018 KW - MOF KW - Short chained phthalates PY - 2018 AN - OPUS4-46889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Breitfeld, Steffen A1 - Scholz, Gudrun A1 - Emmerling, Franziska A1 - Kemnitz, Erhard T1 - High energy ball milling of a new representative of coordination polymers without organofluorine linkers N2 - Metal organic frameworks and coordination polymers play an important role in different fields of applications. Moreover, particularly fluorinated metal-organic frameworks (FMOFs) are in the focus of interest during the last years. In most cases, fluorine is implemented using perfluorinated organic linkers at the synthesis, usually performed by solvothermal synthesis. However, only few examples are known so far where fluorine is coordinated directly to the metal cation. Recently, we reported about mechanochemical syntheses and characterization of fluorine-containing coordination polymers of alkaline earth metals by milling M(OH) (M: Ca, Sr, Ba) with fluorinated benzene dicarboxylic acids 2 and we reported about mechanochemical syntheses of alkaline earth metal fluorides with ammonium fluoride. Now we are reporting about a combination of both synthesis routes. That is the first mechanochemical synthesis of coordination polymers where fluorine is coordinated directly to the metal cation. T2 - Konferenz CY - Berlin, Germany DA - 30.11.2017 KW - Metal organic frameworks KW - Coordination polymer KW - Mechanochemical syntheses KW - Direct fluorine-metal bond KW - Alkaline earth metal PY - 2017 AN - OPUS4-46898 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heilmann, Maria A1 - Bernardes, C. A1 - Minas da Piedade, M. A1 - Emmerling, Franziska T1 - Real Time In Situ Study of Simvastatin Crystallization on Levitated Droplets N2 - In this contribution we describe an in-situ study of the crystallization of simvastatin in three solvents. The studies were carried out by solvent evaporation at the µSpot beamline using acoustically levitated solution droplets in combination with simultaneous X-ray diffraction, Raman spectroscopy, and imaging analysis. T2 - 10th Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 05.12.2018 KW - Crystallization KW - Simvastatin KW - In-Situ Characterization PY - 2018 AN - OPUS4-46965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brandl, F. A1 - Lederle, F. A1 - Härter, C. A1 - Thünemann, Andreas A1 - Beuermann, S. T1 - From gaseous vinylidene fluoride to electroactive poly(vinylidene fluoride) – Inducing β-phase by formation of block copolymers and composite materials N2 - Polymeric core-shell particles were synthesized in a semi-batch emulsion polymerization process. The shell of the particles consist of PVDF with a high amount of beta-phase. Small-angle X-ray scattering (SAXS) was used to quantify the size of the cores of the particles and the thickness of the shell. T2 - Macromolecular Colloquium Freiburg CY - Freiburg, Germany DA - 20.02.2019 KW - Small-angle x-ray scattering KW - SAXS KW - Nanoparticle KW - Polymer PY - 2019 AN - OPUS4-47467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haferkamp, Sebastian A1 - Akhmetova, Irina A1 - Kulla, Hannes A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Mechanochemical Knoevenagel condensations of benzaldehyde derivates investigated in situ N2 - Mechanochemistry is widely applicable for the synthesis of inorganic, metal-organic, and organic compounds. It is known for short reaction times, nearly quantitative conversions, and decreasing amount of solvents, which opens the field to more environmentally friendly syntheses routes. Among organic syntheses, the Knoevenagel condensation is an important C-C bond forming reaction leading to α,β-unsaturated compounds. To gain more information on the underlying processes, we investigated the syntheses by a combination of different in situ investigation techniques, including synchrotron X-ray diffraction, Raman spectroscopy and thermography. This combination provides information on the structural changes and temperature influences during milling. Benzaldehyde derivates (nitro- and fluoro-derivates) reacted with malononitrile to the respective benzylidenemalononitriles. The in situ investigations show direct and quantitative conversions. In the case of the fluorinated benzaldehyde derivates we showed the possibility of using liquid substrates in mechanochemical organic synthesis. Surprisingly, after crystallization from a viscous state, the material was suitable for single-crystal X-ray analysis. T2 - Powder Diffraction School 2018 CY - Villigen, Switzerland DA - 24.09.2018 KW - C-C coupling KW - Mechanochemistry KW - In situ KW - Knoevenagel PY - 2018 AN - OPUS4-46320 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gollwitzer, Christian A1 - Scholz, Philipp A1 - Ulbricht, Alexander A1 - Joshi, Yogita A1 - Weidner, Steffen T1 - Synchrotron based absorption edge tomography for the analysis of 3D printed polymer MOF N2 - Absorption edge tomography is a method which exploits the sudden change of the attenuation coefficient, when the photon energy crosses the absorption edge of an element. The beamline BAM line at BESSY II, which is operated by the Federal Institute for Materials Research and Testing, can provide a monochromatized beam in a photon energy range from 5 keV up to 80 keV with a bandwidth of 2%. Together with the microtomography setup, this enables differential tomography sensitive to any element with N >= 24 (Cr) by using an appropriate K- or L-edge in this range. Here, a polymer filament embedding metal organic framework (MOF) was prepared and used for 3D printing. Absorption edge tomography at the copper K edge was employed to perform a non-destructive 3D characterization of the microstructure of the embedded MOF. Data fusion was then used to determine the size distribution of the embedded MOF. T2 - iCT 2019 CY - Padua, Italy DA - 12.02.2019 KW - Synchrotron tomography KW - BAMline KW - MOF KW - Absorption edge tomography PY - 2019 AN - OPUS4-47391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfretzschner, Beate T1 - Characterization of texture in SLM IN 718 samples using monochromatic neutron radiography N2 - Additive Manufacturing (AM) offers the opportunity to produce easier geometrically complex parts compared to traditional production technologies. An important AM technology for metals is selective laser melting (SLM) where a part is produced by melting and solidifying powder in layers. This technique is known to cause a pronounced texture in the produced AM products due to the specific heat flow and the associated solidification of the material during SLM deposition. In order to evaluate the influence of the deposition hatch length during SLM of nickel based superalloy Inconel 718 samples on the texture and in order to identify any preferred crystallographic direction, we performed monochromatic neutron radiography scans (using wavelength from 1.6 Å to 4.4 Å, step size 0.05 Å) to image the samples while rotating it through 90°. Samples produced with short hatch length showed fine textured columnar grains oriented along the sample building direction in high-resolution radiographs. Whereas processing the sample using a ten-fold longer hatch length reduced the texture. The neutron radiographic experiments were accompanied by scanning electron microscopy including electron back-scattered diffraction to visualize and verify the microstructure and texture. T2 - German Conference for Research with Synchrotron Radiation, Neutrons and Ion Beams at Large Facilities CY - Garching, Germany DA - 17.09.2018 KW - Bragg-edge KW - Neutron KW - Texture KW - Additive manufacturing PY - 2018 AN - OPUS4-47260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chen, Cong A1 - Müller, Bernd R. A1 - Lebedev, O.I. A1 - Giovannelli, F. A1 - Bruno, Giovanni A1 - Delorme, F. T1 - Stability of the low thermal conductivity in Fe2TiO5 ceramics N2 - An increase in the thermal diffusivity of Fe2TiO5 is observed after only three cycles of measurement. X-ray refraction shows an increase in the mean specific surface. A segregation of Ca- and F-rich nanocrystals at grain boundaries is also observed by SEM and STEM-EDX. This emphasizes the importance of precursor purity and the influence of redistribution of impurities on thermoelectric properties. T2 - 10th Joint BER II and BESSY II User Meeting CY - Berlin, Germany DA - 05.12.2018 KW - X-ray refraction KW - Fe2TiO5 KW - Thermoelectrics PY - 2018 AN - OPUS4-47267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Thiede, Tobias A1 - Léonard, Fabien A1 - Farahbod, L. T1 - In-Situ Compression CT on Additively Manufactured in 625 Lattice Structures N2 - The porosity and the surface roughness are recently discussed problems for SLM parts. The influence of SLM process parameters on porosity is well studied for different materials. Nevertheless, the build angle (i.e. the angle between part orientation and build plate) needs to be understood as an additional SLM process parameter, as it has been shown, that the microstructure and hence the mechanical performance of various materials depend on the build angle. The inherent build angle of each strut as a part of a lattice structure is the motivation to investigate the influence of the build angle on the porosity and roughness on round-shaped (1 mm diameter) struts by means of CT. Conventional Coordinate Measuring Machine (CMM) has the limitation towards small and round shaped samples. The need for Computed Tomography (CT) regarding investigations of SLM parts will increase because no other non-destructive technique allows the assessment of complex geometries with inner laying surfaces. We used CT to assess the pores and the strut surface. Seven struts out of the nickel alloy Inconel 625 with build angles from 30° to 90° were studied. It was found that the number of pores is smaller, and the size of pores is larger for the 90° strut. In case of 30° strut, the number of pores is increased towards down-skin side, additionally, this strut orientation showed to have the largest number of attached powder particles. The elongated pores exist exclusively near the strut surface. While the roughness at the down-skin surface is highly depending of the biud angle, the roughness at the up-skin surface is the same for all struts. The mechanisms of pore and surface roughness formation is not mainly driven by gravity. T2 - ISAM Konferenz 2019 CY - Dresden, Germany DA - 29.01.2019 KW - Computed Tomography KW - Additive Manufacturing KW - Metals KW - Microstructure PY - 2019 AN - OPUS4-47327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evans, Alexander A1 - Mishurova, Tatiana A1 - Bruno, Giovanni A1 - Artzt, K. A1 - Haubrich, J. A1 - Requena, G. T1 - Influence of manufacturing parameters on microstructure and subsurface residual stress in SLM Ti-6Al-4V N2 - Using non-optimum combination of manufacturing parameters in selective laser melting (SLM) may lead to reduction of quality of component: defects generation, distortion of geometry and even cracking. Usually, the optimization of parameters is performed by changing volumetric energy density (Ev) and selecting parameters giving low porosity values. However, not only low porosity but also stable microstructure and low residual stresses will help to achieve advanced mechanical behavior of the component. In present work, we investigated cuboid-shaped Ti-6Al-4V samples produced with different manufacturing parameters. The parameters leading to the same Ev were considered as well as parameters which are not included in Ev. Residual stresses in subsurface region were investigated by synchrotron X-ray diffraction, which allows to penetrate around 100 µm from the surface therefore overcome the problem of high roughness of SLM components without additional sample preparation. Only tensile stresses were found along the building direction, that can play critical role especially during cyclic loading. In parallel, using X-ray computed tomography we also observe that porosity is mainly concentrated in the contour region, except in case where the laser speed is small. However, by using some process parameters it was possible to decrease residual stresses and obtain uniform α+β Ti microstructure and relatively low porosity. Additionally, it was found that not included in Ev (e.g., base plate position, focus distance) should be considered as additional manufacturing parameters during SLM process. T2 - ISAM Konferenz 2019 CY - Dresden, Germany DA - 29.01.2019 KW - Computed Tomography KW - Additive Manufacturing KW - Metals KW - Microstructure PY - 2019 AN - OPUS4-47328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stock, V. A1 - Fahrenson, C. A1 - Voss, L. A1 - Thünemann, Andreas A1 - Boehmert, L. A1 - Sieg, S. A1 - Lampen, A. T1 - Impact of artificial digestion on the sizes and shapes of microplastic particles N2 - The environmental pollution with plastic debris is one of the great challenges scientists are facing in recent times Due to degradation by UV radiation and other environmental factors, larger pieces of plastic can decompose into microscale fragments which can enter human foodstuff through the food chain or by environmental entry Recent publications show a contamination of various food products with microplastic particles suggesting a widespread exposure Thus, orally ingested plastic particles pose a potential health risk to humans In this study, we investigated the impact of artificial digestive juices on the size and shape of the three environmentally relevant microplastic particles polystyrene (PS), polypropylene (PP) and polyvinyl chloride (PVC). T2 - 12th International Particle Toxicology CY - Salzburg , Austria DA - 11.09.2019 KW - Microplastic KW - Particle PY - 2019 AN - OPUS4-48847 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Zutta Villate, J. M. T1 - Radioactive gold nanoparticles for cancer treatment: Size and cluster dependent damage studied by Geant4 Monte-Carlo simulations N2 - Dose enhancement by gold nanoparticles (AuNP) was shown to increase the biological effectiveness of radiation damage in biomolecules and tissue. Most of the current studies focus on external beam therapy on combination with AuNP. Here we present a Monte-Carlo study (Geant4) to characterise radioactive AuNP. Radioactive ¹⁹⁸Au emits beta and gamma rays and is considered for applications with solid tumours. To effectively apply ¹⁹⁸AuNP their energy deposit characteristics have to be determined in terms of intrinsic and extrinsic properties e.g. AuNP diameter, AuNP density, and their clustering behaviour. After each decay process, the energy deposit, inelastic scattering events, kinetic energy spectrum of secondary particles within the AuNP themselves and in a spherical target volume of water up to 1 μm radius were determined. Simulations were performed for AuNP radii ranging from 2.5 nm to 20 nm radius, different cluster sizes and densities. The results show an increase of the energy deposit in the vicinity of the AuNP up to 150 nm. This effect nearly vanishes for distances up to one micron. For the case of AuNP clusters and the same activity, the enhancement of the energy deposit increases with the relative gold mass percentage and therefore can be adjusted by changing AuNP radius or clustering behaviour. T2 - EUROMAT 2019 CY - Stockholm, Sweden DA - 01.09.2019 KW - DNA KW - Dosimetry KW - Microdosimetry KW - Geant4 KW - MCS KW - Nanoparticle KW - AuNP KW - Gold Nanoparticle KW - low energy electrons KW - LEE KW - OH radicals KW - particle scattering KW - Radiationtherapy KW - Radioactive decay KW - Monte-Carlo simulation KW - Energy deposit KW - DNA damage PY - 2019 AN - OPUS4-48763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sachse, René A1 - Hertwig, Andreas A1 - Kraehnert, R. A1 - Hodoroaba, Vasile-Dan T1 - Analysis of elemental composition and porosity of mesoporous IrOx-TiOx thin films by SEM/EDS N2 - Porous materials play an important role in several fields of technology, especially for energy applications like photovoltaics, electrolysis or batteries. The activity of porous films is affected by properties like porosity, film thickness, chemical composition of the material as well as the crystallinity of the framework. The complex morphology of such porous films constitutes a challenge even for modern analytical techniques and requires new approaches employing the combination/complementation of data of different analytical methods. In this contribution we characterize thin mesoporous iridium-titanium mixed oxide film properties by Electron Probe Microanalysis (EPMA) with energy dispersive X-ray spectroscopy (EDS) at an SEM. T2 - EMAS 2019 - 16th European Workshop on MODERN DEVELOPMENTS AND APPLICATIONS IN MICROBEAM ANALYSIS CY - Trondheim, Norway DA - 19.05.2019 KW - Electron probe microanalysis (EPMA) KW - Iridium-titanium mixed oxides KW - Spectroscopic ellipsometry KW - Mesoporous thin films PY - 2019 AN - OPUS4-48769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano Munoz, Itziar A1 - Shiozawa, D. A1 - Dancette, S. A1 - Lachambre, J. A1 - Verdu, C. A1 - Buffiere, J.-Y. T1 - Torsional crack propagation mechanisms of an A357-T6 cast aluminium alloy N2 - This poster is an example of what it can be achieved when performing in-situ fatigue testing synchrotron tomography T2 - Euromat 2019 CY - Stockholm, Sweden DA - 02.09.2019 KW - In situ testing KW - Synchrotron tomography KW - Torsional fatigue KW - Propagation modes PY - 2019 AN - OPUS4-48893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fabry, Çağtay A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - WelDX – data and quality standards for welding research N2 - The WelDX research project aims to foster the exchange of scientific data inside the welding community by developing and establishing a new open source file format suitable for documentation of experimental welding data and upholding associated quality standards. In addition to fostering scientific collaboration inside the national and international welding community an associated advisory committee will be established to oversee the future development of the file format. The proposed file format will be developed with regards to current needs of the community regarding interoperability, data quality and performance and will be published under an appropriate open source license. By using the file format objectivity, comparability and reproducibility across different institutes and experimental setups can be improved. T2 - Open Research Data - Open your data for research CY - Berlin, Germany DA - 21.10.2019 KW - Welding KW - Research data management KW - Open science KW - Open data KW - Digitalization PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-493842 DO - https://doi.org/10.5281/zenodo.3514199 AN - OPUS4-49384 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bärmann, F A1 - Dittmann, Daniel A1 - Braun, Ulrike A1 - Jonas, U. A1 - Fuchs, S. T1 - Degradation analysis of polypropylene in the presence of phosphorus and sulfur containing additives - TGA-FTIR N2 - Polyolefins as polypropylene are widely used in packaging, automotive, consumer goods, construction, infrastructure, agricultural film and other film and sheet applications. Due to their molecular structure, polyolefins inherently burn well. The wide and growing usage implements that fire retardancy of polyolefin products is necessary and gains more attention. Sulfurous additives with synergistic flame retarding effects were shown in polymers like polystyrene and polyolefins by Bellin et al. and Fuchs et al. earlier. For polystyrene compounds, Braun et al. revealed that thermal degradation in the presence of phosphorus and sulfurous additives changes massively. The total release, the composition, and the onset temperature of evolved decomposition products changes. For polypropylene, mixtures containing triphenyl phosphate (TPP), sulfur (S8) and poly(tertbutylphenol) disulphide (PBDS) (Table 1) were prepared and investigated via thermogravimetric analysis coupled to Fourier transformed infrared spectroscopy (TGA-FTIR). T2 - FRPM 2019 CY - Turku, Finland DA - 26.06.2019 KW - TGA-FTIR KW - Polypropylene KW - Phosphorus KW - Sulfur PY - 2019 AN - OPUS4-49391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simkin, Roman A1 - Kranzmann, Axel A1 - Pfennig, Anja A1 - Heide, G. T1 - Oxidation behavior of FeCr model alloys in synthetic air at temperatures above 600 °C N2 - The life time of mechanical components in high temperature applications is basically determined by their workings. Corrosion determines the loss of material corresponding to the loss of the effective load-bearing section and consequently increasing stress levels. To improve the material selection for such applications a numerical life prediction corrosion model for different alloys and environments is needed. Based on the ferritic alloys FeCr and FeCrCo a first quantitative model is to be developed. For this purpose, the alloys are aged at 600°C, 650°C and 700°C in synthetic air under normal pressure for between 10 and 240 hours. The first objective is to establish a quantitative relationship between the oxidation rate as a function of composition and microstructure of the alloys. The influence of the inner interface as an essential parameter for transport by diffusion on the oxidation kinetics is discussed in this presentation. T2 - Gordon Research Conference CY - New London, New Hempshire, USA DA - 21.07.2019 KW - High temperature corrosion KW - Oxidation KW - Synthetic air KW - Modeling KW - FeCr- alloys PY - 2019 AN - OPUS4-49464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Werder, Julia A1 - Simon, Sebastian A1 - Meng, Birgit T1 - Hydrothermal Treatment of Ultra-High-Performance Concrete: Mechanical Propertoes and Phase Composition N2 - The advantages of treating prefabricated components made of Ultra-High-Performance Concrete (UCPC) at 90 °C are largely recognized, while hydrothermal treatment at 185 °C and the corresponding saturation pressure of 1.1 MPa, in contrast, is not applied in building practice so far and was studied only by a few researchers. In the research presented, the parameters pre-storage-time before treatment and dwell time in the autoclave were systematically varied. The results illustrate in which way compressive strength increases with the duration of treatment. Already samples which were only heated up and immediately cooled down show an increase in strength compared to the 28-day reference of about 10 %. After 20 h the maximum increase of about 25 % is reached. Interestingly the compressive strength of samples treated very long hardly decreases. It can be therefore concluded that for the composition investigated the achievable mechanical strength is not severely sensitive regarding the duration of the treatment. Also, pre-storage times before autoclaving longer than 0.5 days showed no significant impact on strength development. The phase composition measured by XRD exhibits significant changes compared to the reference. The amount of ettringite and portlandite have vanished, the cement clinker phases are substantially decreased and hydroxylellestadite and hydrogarnet are formed as new phases. The increase in strength can be assigned to an improved pozzolanic and hydraulic reaction. Contradictory to literature, there was found no obermorite, a mineral which is known to be susceptible for disintegration at Long autoclaving duration. This explains why no significant strength loss appeared. T2 - 15th International Congress on the Chemistry of Cement CY - Prague, Czech Republik DA - 16.09.2019 KW - Hydrothermal treatment KW - UHPC KW - Phase composition KW - Mechanical strength PY - 2019 AN - OPUS4-49469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ziemann, M. A. A1 - Sigmund, Sandra A1 - Simon, Sebastian A1 - Meng, Birgit T1 - Insight into Concrete Deterioration with Raman Spectroscopy N2 - Alkali-silica reaction (ASR) is a serious Problem concerning the deterioration of concrete. This leads to significant maintenance and reconstruction costs for concrete infrastructures all over the world. The geographical regions, which play a major role in concrete deterioration, are for example coastal Areas or in general, areas with a high air humidity/salinity due to closeness of rivers or lakes. These exemplary results show, the application of Raman spectroscopy establishes a valuable approach for characterizing the chemical and structural composition of ASR-products. The results prove the potential to trace the kind of reaction products, developing in dependence on the aggregate and to follow up its local alteration from origin of the gel. T2 - 10th International Congress on the Application of Raman Spectroscopy in Art and Archaeology (RAA2019) CY - Potsdam, Germany DA - 03.09.2019 KW - Building Materials KW - Alkali-silica-reaction KW - ASR KW - Raman Spectroscopy PY - 2019 AN - OPUS4-49471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koclega, Damian A1 - Radziszewska, A. A1 - Dymek, S. A1 - Kranzmann, Axel T1 - Corrosion behaviour of Ni-Cr-Mo-W coatings in environments containing sulfur N2 - The ferritic steel 13CrMo4-5 due to good properties with relation to attractive price is frequently use in power plants industry. According EN10028-2 this steel can be used up to 570 °C because of its creep behavior but its corrosion resistance limits the use frequently to lower temperatures, depending on gas temperature and slag formation. The corrosion test were performed in environment containing mixture of gases like: O2, COx, SOx and ashes, with elements e.g. Na, Cl, Ca, Si, C, Fe, Al. Exposure time was respectively 240 h, 1000 h and 4500 h in temperature 600 °C. The oxide scale on the 13CrMo4-5 steel was significant thicker than for In686 coating and the difference increase according for longer exposure time. The microstructure, chemical and phase composition of the oxide scales were investigated by means of a light microscope, the electron scanning and transmission microscopes (SEM,TEM) equipped with the EDS detectors. T2 - Gordon Research Conference CY - New London, New Hampshire, USA DA - 21.07.2019 KW - High temperature KW - Corrosion resistance KW - Laser cladding KW - Inconel 686 KW - Aggressive environment PY - 2019 AN - OPUS4-49358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Altenburg, Simon A1 - Pignatelli, Giuseppe A1 - Baensch, Franziska A1 - Rethmeier, Michael T1 - Laser Metal Deposition (LMD) in ProMoAM N2 - During the last years Additive Manufacturing (AM) became increasingly important. That becomes clear, while looking at the advantages like a high degree of freedom concerning the geometry of the parts, low waste rates and a reduction of postprocessing, to name just three. Laser Metal Deposition (LMD) is one of those AM- methods. It can be used for different kinds of applications, e.g. repair weldings of used parts, coatings to increase the corrosion resistance or to build up new components. But for all applications, the production of defect free parts is crucial. Therefore, different kinds of non-destructive monitoring techniques were tested for the LMD-process to identify their potential to detect imperfections in-situ. T2 - Workshop on Additive Manufacturing: Process, materials, testing, simulation & implants CY - Berlin, Germany DA - 13.05.2019 KW - Acoustic Emission KW - LMD KW - Thermography KW - Optical Emission Spectroscopy PY - 2019 AN - OPUS4-49657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Nolze, Gert A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - The use of time-of-flight secondary ion mass spectrometry for the investigation of hydrogen-induced effects in austenitic steel AISI 304L N2 - In the course of the energy transformation from fossil fuels to renewable energy sources, the use of hydrogen as fuel and energy storage can play a key role. This presents new challenges to industry and scientific community alike. The storage and transport of hydrogen, which is nowadays mainly realised by austenitic stainless steels, remains problematic. That is due to the degradation of mechanical properties and the possibility of phase transformation by hydrogen diffusion and accumulation. Development of materials and technologies requires a fundamental understanding of these degradation processes. Therefore, studying the behaviour of hydrogen in austenitic steel contributes to an understanding of the damage processes which is crucial for both life assessment and safe use of components in industry and transportation. As one of the few tools that is capable of depicting the distribution of hydrogen in steels, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was conducted after electrochemical charging. To obtain furthermore information about the structural composition and cracking behaviour, electron-backscattered diffraction (EBSD) and scanning electron microscopy (SEM) were performed. Gathered data of chemical composition and topography was treated employing data fusion, thus creating a comprehensive portrait of hydrogen-induced effects in the austenite grade AISI 304L. Specimens were electrochemically charged with deuterium instead of hydrogen. This arises from the difficulties to distinguish between artificially charged hydrogen and traces existing in the material or the rest gas in the analysis chamber. Similar diffusion and permeation behaviour, as well as solubility, allow nonetheless to draw conclusions from the experiments. T2 - SIMS21 CY - Krakau, Poland DA - 11.09.2017 KW - Austenitic stainless steel KW - ToF-SIMS KW - Hydrogen PY - 2017 AN - OPUS4-42315 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded A1 - Röhsler, Andreas A1 - Nolze, Gert A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - Sputtering derived artefacts in austenitic steel during Time-of-Flight Secondary Ion Mass Spectrometry analyses N2 - Among the very few techniques to localize hydrogen (H) at the microscale in steels, Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was proven to be a reliable tool. The necessity to detect hydrogen stems from its deleterious effects in metals, that are often used as structural components and to obtain better understanding of the underlying metallurgical mechanisms of hydrogen embrittlement (HE) which are still unclear. Austenitic stainless steels are nowadays commonly used in a wide variety of application, from hydrogen transport and storage facilities to petrochemical and offshore applications where they are exposed to aggressive environments and therefore prone to HE. One of the greater risks in the austenitic class is the embrittlement of the material due to the instability of the γ austenite and its transformation into a brittle α martensitic phase. This transformation takes place due to the local stresses that are induced by the uptake of hydrogen during service. Nonetheless, it was shown that this transformation can occur as an artefact during SIMS analysis itself where Cs-sputtering is necessary not only to remove surface contaminations but mainly to enhance H/D secondary ion yield. In the following contribution we show the influence of different sputtering conditions on AISI 304L austenitic stainless steel in order to distinguish the artefact from the hydrogen induced transformation. The material was charged electrochemically in a deuterium based electrolyte. Deuterium (D) must be in these experiments as a replacement for hydrogen which cannot be used because adsorbed hydrogen superimposes hydrogen originating from charging the sample in the SIMS images. ToF-SIMS analyses were conducted by ToF SIMS IV (IONTOF GmbH, Münster, Germany). The experiments were carried out on deuterium charged and non-charged samples. The structural characterization was carried out by SEM and EBSD examinations before and after charging, both with a Leo Gemeni 1530VP field-emission scanning electron microscope and a Zeiss Supra 40 instrument (Carl Zeiss Microscopy GmbH, Oberkochen, Germany). The results showed that the use of 1keV Cs+ beam induces stacking faults while higher sputter beam energies results in γ→α transformation. T2 - SIMS Europe 2018 CY - Münster, Germany DA - 16.09.2018 KW - Austenitic steel KW - Hydrogen KW - ToF-SIMS KW - Artefact PY - 2018 AN - OPUS4-46701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Nolze, Gert A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - In-situ observation of the hydrogen behaviour in austenitic stainless steel by time-of-flight secondary ion mass spectrometry during mechanical loading N2 - The reduction of harmful emissions to the environment is one of the most urgent challenges of our time. To achieve this goal, it is inevitable to shift from using fossil fuels to renewable energy sources. Within this transition, hydrogen can play a key role serving as fuel in transportation and as means for energy storage. The storage and transport of hydrogen using austenitic stainless steels as the infrastructure, as well as the use of these grades in hydrogen containing aggressive environments, remains problematic. The degradation of the mechanical properties and the possibility of phase transformation by ingress and accumulation of hydrogen are the main drawbacks. Advanced studies of the behaviour of hydrogen in austenite is necessary to fully understand the occurring damage processes. This knowledge is crucial for the safe use of components in industry and transportation facilities of hydrogen. A powerful tool for depicting the distribution of hydrogen in steels, with high accuracy and resolution, is time-of-flight secondary ion mass spectrometry (ToF-SIMS). We here present a comprehensive research on the hydrogen degradation processes in AISI 304L based on electrochemical charging and subsequent ToF-SIMS experiments. To obtain furthermore information about the structural composition and cracking behaviour, electron-backscattered diffraction (EBSD) and scanning electron microscopy (SEM) were performed afterwards. All the gathered data was treated employing data fusion, thus creating a thorough portrait of hydrogen diffusion and its damaging effects in AISI 304L. Specimens were charged with deuterium instead of hydrogen. This necessity stems from the difficulty to separate between artificially charged hydrogen and traces existing in the material or adsorbed from the rest gas in the analysis chamber. Similar diffusion and permeation behaviour, as well as solubility, allow nonetheless to draw onclusions from the experiments. T2 - International Conference on Metals and Hydrogen; Steely Hydrogen 2018 CY - Ghent, Belgium DA - 29.05.2018 KW - Hydrogen KW - Deuterium KW - ToF-SIMS KW - AISI 304L PY - 2018 AN - OPUS4-45079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Li, Wei T1 - Crack propagation in filled and unfilled polymers: Separation of surface energy and irreversible deformation energy N2 - Fiber-reinforced-polymers (FRPs) are in current research focus in the lightweight construction industry, because of their extraordinary characteristics (stiffness and strength-to-density relation). The structure of polymer matrix and the interaction with reinforcement are crucial for optimization of the mechanical and thermal properties of FRPs. Due to the macromolecular chain structure, the mechanical properties of a polymer strongly vary with temperature: Below the glass transition, the chain segments of a polymer are “frozen”. Regarding fracture, the total changed energy during fracture if only dissipates for the generation of the new surfaces. However, in the region of the glass transition, the polymer chain segments start to get “unfrozen”, and the energy is not only required for generating new surfaces, but also for irreversibly deformation. This irreversible deformation is affected by the global temperature and the local temperature near the crack tip, which is affected by the local strain rate and crack propagation velocity. Hence, in this research project, the irreversible deformation of neat and reinforced polymers will be controlled by changing the global temperature as well as the local temperature. With using different fracture experiments, the amount of energy required for creating new surfaces and for the irreversible deformation will be separated. The fracture tests include the conventional tensile test, the macroscopic peel test and the single fiber peel – off test. T2 - PhD Day 2018 of BAM CY - Berlin, Germany DA - 31.05.2018 KW - Crack Propagation KW - Polymer PY - 2018 AN - OPUS4-48471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Li, Wei T1 - Crack propagation in polymers: Separation of surface energy and irreversible deformation energy N2 - Fiber-reinforced-polymers (FRPs) are in current research focus in the lightweight construction industry, because of their extraordinary characteristics (stiffness and strength-to-density relation). The structure of polymer matrix and the interaction with reinforcement are crucial for optimization of the mechanical and thermal properties of FRPs. Due to the macromolecular chain structure, the mechanical properties of a polymer strongly vary with temperature: Below the glass transition, the chain segments of a polymer are “frozen”. Regarding fracture, the total changed energy during fracture if only dissipates for the generation of the new surfaces. However, in the region of the glass transition, the polymer chain segments start to get “unfrozen”, and the energy is not only required for generating new surfaces, but also for irreversibly deformation. This irreversible deformation is affected by the global temperature and the local temperature near the crack tip, which is affected by the local strain rate and crack propagation velocity. Hence, in this research project, the irreversible deformation of neat and reinforced polymers will be controlled by changing the global temperature as well as the local temperature. With using different fracture experiments, the amount of energy required for creating new surfaces and for the irreversible deformation will be separated. This poster is the summary of the first part of the whole project. In the first part, the basic crack propagation theory for neat polymers is established and the special fracture experiment sample is prepared and tested at room temperature. In addition, the fracture experiment at room temperature is validated numerically. T2 - PhD Day 2019 of BAM CY - Berlin, Germany DA - 22.05.2019 KW - Crack Propagation KW - Polymer PY - 2019 AN - OPUS4-48472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Höhne, Patrick A1 - Kuchenbecker, Petra A1 - Rabe, Torsten T1 - Superior granule properties by spray drying controlled destabilized slurries with ultrasound N2 - Homogeneous introduction of organic additives is a key of ceramic powder processing. Addition of organics to ceramic slurries holds advantages compared to dry processing like organic content reduction and a more homogeneous additive distribution on the particle surface. Investigations of the alumina slurries were primarily based on zeta potential measurements and sedimentation analysis by optical centrifugation. Both methods were combined to determine a suitable additive type, amount and composition, whereas the spray drying suitability has been ensured by viscosity measurements. Granules, yielded by spray drying of such ideally dispersed alumina slurries, are mostly hollow and possess a hard shell. Those granules cannot easily be processed and can only hardly be destroyed in the following shaping step, leading to sinter bodies with many defects and poor strength and density. The precise slurry destabilization, carried out after ideally dispersing the ceramic powder, shows a strong influence on the drying behavior of the granules and hence on the granule properties. A promising degree of destabilization and partial flocculation was quantified by optical centrifugation and resulted in improved granule properties. Spray drying the destabilized alumina slurries yielded homogeneous “non-hollow” granules without the above mentioned hard shell. Sample bodies produced of these granules exhibited a reduction of defect size and number, leading to better results for sinter body density and strength. The positive effect of the slurry destabilization has been further improved, by exchanging the atomizing unit from a two-fluid one to an ultrasound atomizer with only minor slurry adjustments necessary. The controlled destabilization and ultrasound atomization of the ceramic slurry show excellent transferability for zirconia and even ZTA (zirconia toughened alumina) composite materials. T2 - Partec 2019 CY - Nuremberg, Germany DA - 09.04.2019 KW - Destabilization KW - Slurry KW - Ultrasound KW - Atomization PY - 2019 AN - OPUS4-48291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kiefer, P. A1 - Deubener, J. A1 - Waurischk, Tina A1 - Balzer, R. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. T1 - Subcritical crack growth in water bearing soda-aluminosilicate glasses N2 - The subcritical crack growth in water bearing soda-aluminosilicate glasses is compared to the crack growth in a commercial soda-lime silicate glass. The water speciation is shown for comparison of water species in the material. Differences will be discussed in the poster session. T2 - Glastechnische Tagung 2019 CY - Nürnberg, Germany DA - 13.05.2019 KW - Glass KW - Crack growth KW - Vickers KW - Water speciation PY - 2019 AN - OPUS4-48343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Nolze, Gert A1 - Böllinghaus, Thomas A1 - Unger, Wolfgang T1 - Analysis of deuterium in austenitic stainless steel AISI 304L by Time-of-Flight Secondary Ion Mass Spectrometry N2 - Due to their excellent combination of ductility, strength and corrosive resistance, austenitic stainless steels (ASS) are widely used in many industrial applications. Thus, these steel grades can be found as structural components in the (petro-)chemical industry, in offshore applications and more recent for storage and transport of hydrogen fuel. Steels employed for these applications are exposed to aggressive environments and hydrogen containing media. The ingress and accumulation of hydrogen into the microstructure is commonly observed during service leading to a phenomenon called “hydrogen embrittlement”. A loss in ductility and strength, the formation of cracks and phase transformations are typical features of this hydrogen-induced degradation of mechanical properties. Although, great efforts are made to understanding hydrogen embrittlement, there is an ongoing debate of the underlying mechanisms. This knowledge is crucial for the safe use and durability of components on the one side and the development of new materials on the other. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was proven to be a powerful tool for depicting the distribution of the hydrogen isotope deuterium in the microstructure of austenitic and duplex steels. The combination with imaging techniques such as electron backscatter diffraction (EBSD) and scanning electron microscopy (SEM), delivering structural and morphological information, creates a comprehensive picture of the hydrogen/deuterium-induced effects in the materials. All the gathered data is treated with principal component analysis (PCA) and data fusion to enhance the depth of information. The mobility of hydrogen and deuterium in a steel microstructure is affected by external mechanical stress. To investigate the behaviour of deuterium in a strained microstructure, a new in situ experimental approach was developed. This gives the possibility of analysing samples in the SIMS instrument simultaneously to four-point-bending-tests. Specimens made from ASS AISI 304L were electrochemically charged with deuterium instead of hydrogen. This necessity stems from the difficulty to separate between artificially charged hydrogen and hydrogen existing in the pristine material or adsorbed from the rest gas in the analysis chamber. Nonetheless, similar diffusion, permeation and solubility data allow to draw qualitative conclusions from the experiments, which are relevant for the application addressed. T2 - SIMS Europe 2018 CY - Münster, Germany DA - 16.09.2018 KW - Hydrogen KW - Deuterium KW - Austenitic stainless steel KW - SIMS PY - 2018 AN - OPUS4-46029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -