TY - CONF A1 - Stelzner, Ludwig A1 - Weise, Frank A1 - Oesch, Tyler A1 - Dlugosch, R. A1 - Powierza, Bartosz T1 - Transport and reconfiguration of moisture in HPC due to unilateral heating N2 - Explosive spalling is caused by, among others, the thermohydraulic spalling mechanism. During this process, vaporization, dehydration, moisture-transport and condensation processes interact. As a result, a drying and dehydration zone as well as a saturated zone, known as a moisture clog, are observed inside the unilaterally-heated concrete. The presented research is focused on the experimental investigation of the underlying thermohydraulic processes. To investigate these, a test methodology based on X-ray computed tomography (CT) and nuclear magnetic resonance (NMR) was developed. Thereby, the X-ray CT scans are carried out simultaneously during the application of a defined unilateral-heating regime on a specially-constructed specimen. This miniaturized specimen, equipped with a double-layer casing, reproduces the condition within a planar, unilaterally-heated building component. A preliminary test methodology and the first experimental results were presented at the 5th International Workshop on Concrete Spalling in Borås, Sweden (2017). The contribution for the upcoming workshop presents an improved version of this test methodology and new results for a high-performance concrete (HPC) mixture exposed to temperatures up to 500 °C. Regarding the CT measurements, a higher time-resolution of 15 min was achieved and a quantification of the moisture changes was implemented. Due to an increase in signal quality of the NMR measurements, a pore-size specific moisture distribution can now be resolved. This allows to conclude about the moisture reconfiguration between small gel pores and larger interhydrate pores. Additionally, the NMR measurement are no longer limited to first 2.5 cm below the heated surface but a one-dimensional moisture distribution can now be estimated over the whole 10 cm long specimen. The presented results demonstrate that the combination of X-ray CT and NMR measurements enables to image and quantify the thermally-induced moisture transport and reconfiguration from small gel pores up to macro pores. This provides important insights into the thermohydraulic damage mechanism and leads to a better understanding of spalling avoidance strategies, like the addition of polypropylene fibres. T2 - 6th International Workshop on Concrete Spalling due to fire exposure CY - Sheffield, UK DA - 19.09.2019 KW - Moisture clog KW - X-ray CT KW - NMR KW - Moisture transport KW - HPC PY - 2019 AN - OPUS4-49159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - A theoretical study of influence of electromagnetic stirring on transport phenomena in wire feed laser beam welding N2 - The additional element from the filler wire in the laser beam welding is usually distributed inhomogeneously in the final weld due to the high solidification rate of weld pool. It has been found that the electromagnetic stirring produced by an external oscillating magnetic field can enhance the material mixing in the weld pool to achieve a more uniform element distribution. However, the magnetic field has a highly non-linear and multi-coupled interaction with the weld pool behavior, which makes the quantitative explanation of the physical mechanism difficult. In this study, the effect of electromagnetic stirring on the transport phenomena in the wire feed laser beam welding is investigated by a numerical modelling. A 3D transient multi-physical model considering the magnetohydrodynamics, heat transfer, fluid flow, keyhole dynamics and element transport is developed. The multiple reflections and the Fresnel absorption of the laser on the keyhole wall are calculated using the ray tracing method. The numerical results show that a Lorentz force produced by the oscillating magnetic field and its induced eddy current gives significant influence on the transport phenomena in the molten pool. The forward and downward flow is enhanced by the electromagnetic stirring, which homogenizes the distribution of the additional elements from a nickel-based filler wire in a steel weld pool. The numerical results show a good agreement with the high-speed images of the molten pool, the fusion line from the optical micrograph and the element distribution from the energy dispersive X-ray spectroscopy. This work provides a physical base for the electromagnetic-controlled laser beam welding and some guidance for the selection of electromagnetic parameters. T2 - ICALEO 2019 CY - Orlando, US DA - 07.10.2019 KW - Magnetohydrodynamics KW - Molten pool dynamics KW - Element transport KW - Laser beam welding PY - 2019 AN - OPUS4-49300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brunner-Schwer, C. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Laser-Plasma-Hybrid-Cladding: Possibilities in the combination of arc and laser for deposition welding N2 - Plasma-Transferred-Arc (PTA) welding is a process that enables high deposition rates, but also causes increased thermal 9 load on the component. Laser based Direct Energy Deposition (DED) welding, on the other hand, achieves a high level of 10 precision and thus comparatively low deposition rates, which can lead to high processing costs. Combining laser and arc 11 energy aims to exploit the respective advantages of both technologies. 12 In this study, different possibilities of this process combination are presented using a PTA system and a 2 kW disk laser. 13 This includes the combination in a common process zone as a highspeed plasma laser cladding technology (HPLC), which 14 achieves process speeds of 10 m/min. Besides that it is being examined whether a pre-running plasma arc can be used to 15 coat difficult-to-weld rail steel with a carbon content of 0.8 % due to a preheating effect. Furthermore, a smoothing of the 16 coating by a plasma arc following the laser is investigated. T2 - LiM 2019 CY - Aachen, Germany DA - 25.06.2019 KW - Plasma-Transferred-Arc KW - Direct Energy Deposition KW - Highspeed plasma KW - Laser cladding KW - Deposition welding PY - 2019 AN - OPUS4-49247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Frenzel, Florian A1 - Grauel, Bettina A1 - Nirmalananthan-Budau, Nithiya A1 - Pauli, Jutta A1 - Hoffmann, Katrin T1 - Photoluminescence at BAM – Photoluminescence at BAM – Photophysical Studies, Quantum Yield Measurements, Multiplexing Strategies, and Standards N2 - Photoluminescence applications in the life and material sciences require bright molecular and nanocrystalline emitters, stimuli-responsive optical probes, signal enhancement, multiplexing, and barcoding strategies and traceable methods to quantify the signal-relevant optical properties of luminescent materials at the ensemble and single molecule/particle level. In this context, current research at Division Biophotonics of BAM is presented ranging from dye and nanocrystal photophysics, absolute measurements of photoluminescence quantum yields in the UV/vis/NIR/SWIR, lifetime multiplexing, and the development of different types of fluorescence standards for validating optical-spectroscopic measurements. T2 - Institutskolloquium IPHT CY - Jena, Germany DA - 22.10.2019 KW - Surface group analysis KW - NIR KW - SWIR KW - Quantum dot KW - Lanthanide KW - Cleavable probe KW - Lifetime KW - Multiplexing KW - Sensor KW - Assay PY - 2019 AN - OPUS4-49360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Pötzsch, Sina T1 - Compatibility of polymeric sealing materials with biodiesel heating oil blends at different temperatures N2 - Biodiesel is subject to degradation processes like oil and grease. The oxidative degradation products of vegetable oil esters in biodiesel particularly lead to enhanced sedimentation in blended fuels. The polarity of biodiesel increases its solvency and facilitates permeation and extraction. Solvation, swelling and/or extraction lead to changes in the physical properties and chemical changes of polymeric materials. It also accelerates the degradation (hydrolysis and oxidation) of these materials with the loss of additives and stabilizers. The objective of this research was to determine the resistance of frequently used polymeric materials such as ACM, EPDM, FKM, FVMQ, CR, CSM, IIR, HNBR, NBR, PA, PE; POM, PUR, PVC and VMQ in biodiesel and heating oil with 10 %/20 % biodiesel (B10/B20) at 40°C and 70°C. Mass, tensile strength and breaking elongation of the test specimens were determined before and after the exposure for 84 days in the biodiesel heating oil blends. The visual examination of some elastomer test specimens clearly showed the great volume increase until break or partial dissolution. Shore hardness A and D were determined before and after exposure of the test specimens in the biofuels for 42 days. The elastomers CR, CSM, EPDM, IIR, NBR and VMQ were generally not resistant to biodiesel and B10 at 40°C and 70°C. FKM, ACM, HNBR, PA, PE, POM, and PVC showed high compatibility in B10/B20 at 40°C. A lower compatibility was determined for ACM in biodiesel. ACM and HNBR were not resistant in B20 at 70°C. T2 - Biofuels & Bioenergy CY - Rome, Italy DA - 14.10.2019 KW - Heating oil-Biodiesel-Blend KW - Compatibility evaluations KW - Tensile properties KW - Shore hardness PY - 2019 AN - OPUS4-49306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Artinov, Antoni A1 - Karkhin, V. A1 - Bakir, Nasim A1 - Meng, Xiangmeng A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Lamé curves approximation for the assessment of the 3-D temperature distribution in keyhole mode welding processes N2 - A novel approach for the reconstruction of an equivalent volumetric heat source from a known weld pool shape is proposed. It is based on previously obtained weld pool geometries from a steady-state thermo-fluid dynamics simulation. Hereby the weld pool dimensions are obtained under consideration of the most crucial physical phenomena, such as phase transformations, thermo-capillary convection, natural convection and temperature-dependent material properties. The algorithm provides a time and calibration efficient way for the reproduction of the weld pool shape by local Lamé curves. By adjusting their parameters, the identification of the finite elements located within the weld pool is enabled. The heat input due to the equivalent heat source is assured by replacing the detected nodes’ temperature by the melting temperature. The model offers variable parameters making it flexible and adaptable for a wide range of workpiece thicknesses and materials and allows for the investigation of transient thermal effects, e.g. the cooling stage of the workpiece. The calculation times remain acceptably short especially when compared to a fully coupled process simulation. The computational results are in good agreement with performed complete-penetration laser beam welding experiments. T2 - International Congress on Applications of Lasers & Electro-Optics (ICALEO 2019) CY - Orlando, FL, USA DA - 07.10.2019 KW - Weld pool shape approximation KW - Keyhole mode laser beam welding KW - Numerical simulation KW - Superelliptic Lamé curves PY - 2019 AN - OPUS4-49309 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - A decoupling numerical approach for the study of hot cracking formation during high power keyhole mode welding of steel plates with a high sheet thickness N2 - The weld pool dynamics and shape play a fundamental role in keyhole mode welding. The presented work aims the experimental and numerical investigation of the influence of the weld pool characteristics on the formation of hot cracking. The experimental procedure allows recording the molten pool in the longitudinal section of a butt joint configuration of 15 mm thick structural steel and transparent quartz glass by using a high-speed video camera and two thermal imaging cameras. The observations show that the dimensions of the weld pool vary depending on the depth. The regions close to the surface form a teardrop-shaped weld pool. A bulge-region and its temporal evolution are observed approximately in the middle of the depth of the weld pool, where hot cracking appears. A numerical framework including models for the weld pool dynamics, global temperature field, transient stress state, crystal growth, diffusion and macro-segregation and subroutines for their one-way couplings is developed. The numerically obtained and experimentally observed results are in a good agreement. It is shown that the bulge-region leads to a delay in the solidification behavior, increased temporal tensile stresses and accumulation of impurities in the defect region and hence enhance the probability of hot cracking formation. T2 - Colloquium, Dept. Materials Science & Engineering, The Ohio State University CY - Columbus, Ohio, USA DA - 18.10.2019 KW - Keyhole mode welding KW - Weld pool shape KW - Bulge KW - Hot cracking PY - 2019 AN - OPUS4-49339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael A1 - Karkhin, V. T1 - Mathematical modeling of the geometrical differences between the weld end crater and the steady-state weld pool N2 - The geometrical characteristics of the weld end crater are commonly used for the validation of numerical results in welding simulation. A semi-analytical model calculating the cooling stage of the welding process after the moving energy source is turned off has been developed. A solution for various combinations of heat sources and workpieces has been found. The theoretical limits for the heat transfer of the absorbed energy during cooling in a thin plate and a semi-infinite body were studied. It is shown that after turning off the energy source, an additional melting of the base material in longitudinal direction may occur. The developed technique is applied to complete-penetration keyhole laser beam welding of a 2 mm thick austenitic chromium-nickel 316L steel plate at a welding speed of 20 mm/s and a laser power of 2.3 kW. The results show a theoretical increase of the weld end crater length in comparison to the length of the steady-state weld pool of up to 19 %. A shift of the centre of the end crater, in which the solidification of the liquid metal ends, towards the tail of the end crater relative to the axis of the heat source at the time of its termination, was computed. The speed and the direction of crystallization of the molten material in the weld pool and the end crater were found to be different. A good agreement between the computational results and the welding experiments was achieved. T2 - ICALEO 2019 - The International Congress on Applications of Lasers & Electro-Optics CY - Orlando, FL, USA DA - 07.10.2019 KW - Keyhole mode welding KW - Weld pool shape KW - End-crater KW - Heat conduction PY - 2019 AN - OPUS4-49341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erning, Johann Wilhelm A1 - Kamaraj, Abinaya T1 - Susceptibility of 304 stainless steel to crevice corrosion in electrochemically active fluids N2 - The crevice corrosion behaviour of stainless steel 304 L n ECA fluids is investigated. Results are described, rules for operation are suggested T2 - Ceocor-Tagung 2019 CY - Copenhagen, Denmark DA - 21.05.2019 KW - Desinfection KW - Crevice corrosion KW - ECA PY - 2019 AN - OPUS4-49280 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erning, Johann Wilhelm T1 - Observations of copper pitting corrosion in german tap waters N2 - In recent years, a new type of pitting corrosion is observed on half-had copper pipes. examples are given and possible reasons are discussed T2 - Eurocorr 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Water KW - Pitting KW - Corrosion KW - Copper KW - Drinking PY - 2019 AN - OPUS4-49281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -