TY - CONF A1 - Aristia, Gabriela A1 - Bäßler, Ralph A1 - Roth, C. T1 - Electrochemical study of polyaniline/silicon dioxide containing coatings in geothermal solution N2 - Polyaniline/Silicon Dioxide containing coatings were electrochemically investigated in a saline geothermal solution. With the increase of exposure time, impedance values of coated specimens decreased at low frequency, which could be caused by the decrease of pore resistance due to electrolyte or water uptake. Coating system needs further optimization work. T2 - NACE International Annual Corrosion Conference CY - Phoenix, AZ, USA DA - 15.04.2018 KW - Geothermal KW - Coating KW - SiO2 KW - Polyaniline KW - Corrosion PY - 2018 AN - OPUS4-44918 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela A1 - Bäßler, Ralph A1 - Roth, C. T1 - Polyaniline/silicon dioxide containing coating for use in artificial geothermal brines N2 - Geothermal brine is a complex system containing a wide variety of dissolved salts resulting from the condition s in a geothermal well. These fluids lead to corrosion in pipes and other parts of geothermal system construction and necessitate intense research efforts in finding new suitable materials. Carbon steel is susceptible to corrosion in geothermal brine especially when it is exposed to a high temperature and high-pressure medium, which is considered to be an aggressive environment. An artificial geothermal water, bas ed on a brine composition found in Indonesia, was used to investigate the performance of high alloyed materials. The electrolyte has pH 4 and contains 1,500 mg/l Cl-, 20 mg/l SO4 2-, 15 mg/l HCO3 -, 200 mg/l Ca 2+, 250 mg/l K+, and 600 mg/l Na+. In order to protect the bare material in geothermal application, it is necessary to either use high alloyed material s or coatings. In this research, a coating system consisting of polyaniline and silicon dioxide was investigated regarding its behavior to protect carbon steel. In detail, the effect of SiO2 and polyaniline (PANi) addition was evaluated by exposure and electrochemical tests for 7 days, i.e. electrochemical impedance spectroscopy (EIS) and open circuit potential (OCP) at room temperature and 150 °C with 1 MPa pressure. T2 - NACE International Annual Corrosion Conference CY - Phoenix, AZ, USA DA - 15.04.2018 KW - Geothermal KW - Coating KW - SiO2 KW - Polyaniline KW - Corrosion PY - 2018 AN - OPUS4-44919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela A1 - Le, Quynh Hoa A1 - Bäßler, Ralph T1 - Electrochemical deposition of polyaniline on carbon steel for corrosion study in geothermal solution N2 - Polyaniline has been widely developed for many applications, e.g., sensor, supercapacitor component, electrochromic devices, and anticorrosion pigments [1]. Although the addition of polyaniline pigment in organic coatings has been an alternative for corrosion protection in industrial application, the protection mechanism is still not fully understood [2]. Herein in this study, as a part of the development of polyaniline/silicon dioxide coating for geothermal application, polyaniline has been deposited electrochemically on carbon steel surface and tested in geothermal solution to study the contribution of polyaniline in the corrosion protection of a polyaniline-based composite in the geothermal system. The electrochemical deposition was carried out by immersing carbon steel in 0.1 M oxalic acid and 0.05 M aniline, with the polarization potential of -0.6 – 1.5 V vs. Ag/AgCl, and a scan rate of 10 mV/s. To observe the surface/interface reaction between the electrolyte and electrode surface during the electrochemical polymerization, electrochemical impedance spectroscopy (EIS) measurement was applied after each cycle. For corrosion study in the geothermal application, this experiment used an artificial geothermal solution with the composition of 1,500 mg/l Cl-, 20 mg/l SO42-, 15 mg/l HCO3-, 200 mg/l Ca2+, 250 mg/l K+, and 600 mg/l Na+, and pH 4 to simulate a geothermal brine found in Sibayak, Indonesia. Electrochemical measurements were performed by monitoring the open circuit potential over seven days, with the interruption of EIS every 22 hours. The experiments were performed at room temperature and 150 °C (1 MPa) in a free oxygen environment. Polyaniline coated carbon steel is more durable in a room temperature environment compared to 150 °C, which could be caused by the iron oxalate dissolution at elevated temperature. This degradation was further proven by the impedance spectra, which showed a reduction of approximately ten times for specimens measured at 150 °C as compared to the specimens measured at room temperature. T2 - 4th International Conference on Functional Materials Science 2018 (ICFMS 2018) CY - Bali, Indonesia DA - 13.11.2018 KW - Polyaniline KW - Electrochemical deposition KW - Corrosion PY - 2018 AN - OPUS4-46742 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela T1 - Corrosion study of carbon steel in Indonesian geothermal brine N2 - Results of corrosion studies performed on carbon steel in saline brine are presented and discussed. T2 - PhD-Seminar at Institut Teknologi Sepuluh Nopember (ITS) CY - Surabaya, Indonesia DA - 09.11.2018 KW - Corrosion KW - Electrochemistry PY - 2018 AN - OPUS4-46743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - An, Biwen Annie A1 - Kleinbub, Sherin A1 - Schreiber, Frank A1 - Koerdt, Andrea T1 - Investigating the effects of biocides and corrosion inhibitors on corrosive methanogens N2 - Microbiologically influenced corrosion (MIC) is the deterioration of metals due to the metabolic activities of microorganisms. Microorganisms can take electrons directly from the metal surface (EMIC) thereby causing corrosion. Well known culprits of EMIC are: sulfate-reducing bacteria (SRB), acetogens and methanogens. Our aims - Develop a novel flow system to study MIC by methanogens to mimic industrial Environments - Investigate the inhibitory concentrations of biocides targeting SRB on corrosive methanogenic strains - Investigate the inhibitory effects of corrosion inhibitors on methanogens - Compare the inhibitory concentrations to SRB T2 - BAM meeting CY - BAM, Berlin, Germany DA - 06.06.2018 KW - MIC projekt KW - Mikrobiell beeinflusste Korrosion KW - Microbiologically influenced corrosion KW - Korrosion KW - Corrosion KW - Material degradation KW - Biocide PY - 2018 AN - OPUS4-46010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -