TY - JOUR A1 - Orlov, Nikolai A1 - Kiseleva, A. K. A1 - Milkini, P. A. A1 - Evdokimov, P. V. A1 - Putlayev, V. I. A1 - Günster, Jens T1 - Potentialities of Reaction Sintering in the Fabrication of High-Strength Macroporous Ceramics Based on Substituted Calcium Phosphate N2 - Calcium alkali metal (potassium and sodium) double and triple phosphates have been synthesized in different ways. Was for the first time used reaction sintering to produce ceramics based on calcium alkali metal mixed phosphates and investigated the densification behavior of mixed phosphate-based multiphase materials during sintering by this method. Was presented the microstructure of polished surfaces of sintered samples differing in phase composition and determined the density of ceramics prepared using reaction mixtures differing in composition. The effect of reaction sintering on the porosity of the ceramics has been assessed. Using stereolithographic printing and reaction sintering, was produced macroporous mixed Calcium phosphate-based ceramic implants. Their compressive strength has been determined to be 0.78 ± 0.21 MPa for two-phase samples and 1.02 ± 0.13 MPa for three-phase samples. KW - Reaction Sintering KW - Bio Ceramics PY - 2020 DO - https://doi.org/10.1134/s0020168520120146 VL - 56 IS - 12 SP - 1298 EP - 1306 PB - Pleiades Publishing LTD AN - OPUS4-52004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Bettge, Dirk A1 - Buggisch, E. A1 - Schiller, Bernadette Nicole A1 - Beck, M. T1 - Corrosion Study on Wellbore Materials for the CO2 Injection Process N2 - For reliability and safety issues of injection wells, corrosion resistance of materials used needs to be determined. Herein, representative low-cost materials, including carbon steel X70/1.8977 and low alloyed steel 1.7225, were embedded in mortar to mimic the realistic casing-mortar interface. Two types of cement were investigated: (1) Dyckerhoff Variodur commercial Portland cement, representing a highly acidic resistant cement and (2) Wollastonite, which can react with CO2 and become stable under a CO2 stream due to the carbonation process. Exposure tests were performed under 10 MPa and at 333 K in artificial aquifer fluid for up to 20 weeks, revealing crevice corrosion and uniform corrosion instead of expected pitting corrosion. To clarify the role of cement, simulated pore water was made by dispersing cement powder in aquifer fluid and used as a solution to expose steels. Surface analysis, accompanied by element mapping on exposed specimens and their crosssections, was carried out to trace the chloride intrusion and corrosion process that followed. KW - Carbon capture storage KW - CCS KW - Carbon dioxide KW - Corrosion KW - Carbon steel KW - Aquifer fluid KW - Cement KW - Casing KW - Pitting PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519774 DO - https://doi.org/10.3390/pr9010115 SN - 2227-9717 VL - 9 IS - 1 SP - 115 PB - MDPI CY - Basel AN - OPUS4-51977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nadammal, Naresh A1 - Mishurova, Tatiana A1 - Fritsch, Tobias A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Haberland, C. A1 - Portella, Pedro Dolabella A1 - Bruno, Giovanni T1 - Critical role of scan strategies on the development of microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing N2 - Laser based powder bed fusion additive manufacturing offers the flexibility to incorporate standard and userdefined scan strategies in a layer or in between the layers for the customized fabrication of metallic components. In the present study, four different scan strategies and their impact on the development of microstructure, texture, and residual stresses in laser powder bed fusion additive manufacturing of a nickel-based superalloy Inconel 718 was investigated. Light microscopy, scanning electron microscopy combined with electron backscatter diffraction, and neutron diffraction were used as the characterization tools. Strong textures with epitaxially grown columnar grains were observed along the build direction for the two individual scan strategies. Patterns depicting the respective scan strategies were visible in the build plane, which dictated the microstructure development in the other planes. An alternating strategy combining the individual strategies in the successive layers and a 67◦ rotational strategy weakened the texture by forming finer microstructural features. Von Mises equivalent stress plots revealed lower stress values and gradients, which translates as lower distortions for the alternating and rotational strategies. Overall results confirmed the scope for manipulating the microstructure, texture, and residual stresses during laser powder bed fusion additive manufacturing by effectively controlling the scan strategies. KW - Additive manufacturing KW - Laser powder bed fusion KW - Nickel-based superalloys KW - Scan strategies KW - Residual stresses KW - Microstructure and texture PY - 2021 DO - https://doi.org/10.1016/j.addma.2020.101792 VL - 38 SP - 1792 PB - Elsevier B.V. AN - OPUS4-51944 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Darvishi Kamachali, Reza A1 - da Silva, A. A1 - McEniry, E. A1 - Gault, B. A1 - Neugebauer, J. A1 - Raabe, D. T1 - Segregation-assisted spinodal and transient spinodal phase separation at grain boundaries N2 - Segregation to grain boundaries affects their cohesion, corrosion, and embrittlement and plays a critical role in heterogeneous nucleation. In order to quantitatively study segregation and low-dimensional phase separation at grain boundaries, here, we apply a density-based phase-field model. The current model describes the grain-boundary thermodynamic properties based on available bulk thermodynamic data, while the grain-boundary-density profile is obtained using atomistic simulations. To benchmark the performance of the model, Mn grain-boundary segregation in the Fe–Mn system is studied. 3D simulation results are compared against atom probe tomography measurements conducted for three alloy compositions. We show that a continuous increase in the alloy composition results in a discontinuous jump in the segregation isotherm. The jump corresponds to a spinodal Phase separation at grain boundary. For alloy compositions above the jump, we reveal an interfacial transient spinodal phase separation. The transient spinodal phenomenon opens opportunities for knowledge-based microstructure design through the chemical manipulation of grain boundaries. The proposed density-based model provides a powerful tool to study thermodynamics and kinetics of segregation and phase changes at grain boundaries. KW - Grain Boundary Spinodal KW - Densty-based Thermodynamics KW - Microstrucrue Design PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519497 DO - https://doi.org/10.1038/s41524-020-00456-7 VL - 6 IS - 1 SP - 191 PB - Nature AN - OPUS4-51949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Riechers, Birte A1 - Roed, L. A1 - Mehri, S. A1 - Ingebrigtsen, T. A1 - Hecksher, T. A1 - Dyre, J. A1 - Niss, K. T1 - Predicting nonlinear physical aging of glasses from equilibrium relaxation via the material time N2 - The noncrystalline glassy state of matter plays a role in virtually all fields of materials science and offers complementary properties to those of the crystalline counterpart. The caveat of the glassy state is that it is out of equilibrium and therefore exhibits physical aging, i.e., material properties change over time. For half a century, the physical aging of glasses has been known to be described well by the material-time concept, although the existence of a material time has never been directly validated. We do this here by successfully predicting the aging of the molecular glass 4-vinyl-1,3-dioxolan-2-one from its linear relaxation behavior. This establishes the defining property of the material time. Via the fluctuation-dissipation theorem, our results imply that physical aging can be predicted from thermal-equilibrium fluctuation data, which is confirmed by computer simulations of a binary liquid mixture. KW - Physical aging KW - Equilibrium relaxation KW - Glass PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546015 DO - https://doi.org/10.1126/sciadv.abl9809 SN - 2375-2548 VL - 8 IS - 11 SP - 1 EP - 8 PB - American Association for the Advancement of Science CY - Washington, DC AN - OPUS4-54601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, A. A1 - Kranzmann, Axel T1 - Understanding the Anomalous Corrosion Behaviour of 17% Chromium Martensitic Stainless Steel in Laboratory CCS-Environment—A Descriptive Approach N2 - To mitigate carbon dioxide emissions CO2 is compressed and sequestrated into deep geological layers (Carbon Capture and Storage CCS). The corrosion of injection pipe steels is induced when the metal is in contact with CO2 and at the same time the geological saline formation water. Stainless steels X35CrMo17 and X5CrNiCuNb16-4 with approximately 17% Cr show potential as injection pipes to engineer the Northern German Basin geological onshore CCS-site. Static laboratory experiments (T = 60 ◦C, p = 100 bar, 700–8000 h exposure time, aquifer water, CO2-flow rate of 9 L/h) were conducted to evaluate corrosion kinetics. The anomalous surface corrosion phenomena were found to be independent of heat treatment prior to exposure. The corrosion process is described as a function of the atmosphere and diffusion process of ionic species to explain the precipitation mechanism and better estimate the reliability of these particular steels in a downhole CCS environment. KW - Corrosion KW - Steel KW - High alloyed steel KW - Corrosion mechanism KW - CCS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545700 DO - https://doi.org/10.3390/cleantechnol4020014 VL - 4 IS - 2 SP - 239 EP - 257 PB - MDPI AN - OPUS4-54570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xing, H. A1 - Jing, H. A1 - Dong, X. A1 - Wang, Lei A1 - Han, Y. A1 - Hu, R. T1 - Cellular growth during rapid directional solidification: Insights from quantitative phase field simulations N2 - In this paper, columnar cellular growth with kinetic effects including kinetic undercooling and solute trapping in rapid directional solidification of alloys was investigated by using a recent quantitative phase-field model for rapid solidification. Morphological transition and primary spacing selection with and without kinetic effects were numerically investigated. Numerical results show that doublon structure is an intermediate state in the primary spacing adjustment of cellular arrays. It was found that the inclusions of kinetic effects result in the increase of the solute in the solid phase and the solute enrichment in the interdendritic liquid channel. Moreover, predicted results indicate that the growth directions of the cellular arrays in rapid directional solidification with and without kinetic effects are independent of the Péclet number. Therefore, the kinetic effects play important roles in numerical simulations of the growth pattern selection and solute distribution during rapid solidification. Neglecting them will result in the inaccurately predicted results. KW - Rapid solidification KW - Phase-field model PY - 2022 DO - https://doi.org/10.1016/j.mtcomm.2022.103170 VL - 30 SP - 103170 PB - Elsevier Ltd. AN - OPUS4-54571 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Suárez Ocano, Patricia A1 - Fries, S. G. A1 - Lopez-Galilea, I. A1 - Darvishi Kamachali, Reza A1 - Roik, J. A1 - Agudo Jácome, Leonardo T1 - The AlMo0.5NbTa0.5TiZr refractory high entropy superalloy: Experimental findings and comparison with calculations using the CALPHAD method N2 - Detailed microstructural characterization of the AlMo0.5NbTa0.5TiZr refractory high entropy superalloy in the as-cast state is reported for first time and compared with the state annealed at 1400 oC for 24 h. The former shows a dendritic structure, with a mixture of A2/B2 phases < 20 nm in both the dendritic and interdendritic regions. A mostly amorphous phase, rich in Al and Zr, is found within the interdendritic region. The annealed state reproduced the combination of A2/B2/Al-Zr-rich phases reported previously. Calculations from two relevant ThermoCalc databases were compared with the experimental results. Equilibrium calculations were compared with results for the annealed alloy, whereas solidification paths calculated using Scheil-Gulliver model were used for comparison with the as-cast alloy. A previously hypothesized spinodal decomposition during cooling as the mechanism responsible for the patterned A2/B2 microstructure is confirmed via the CALPHAD calculations, pointing to its use as an efficient design tool for such alloys. Finally, the comparison between the experimental and computational findings allowed better understanding the solidification path and equilibrium stability of this alloy, giving a base to make better decisions on the field of new refractory superalloy design. KW - CALPHAD database analysis KW - Refractory superalloys KW - Chemically complex alloy KW - Characterization KW - Microstructure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545906 DO - https://doi.org/10.1016/j.matdes.2022.110593 SN - 1873-4197 VL - 217 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam AN - OPUS4-54590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Kranzmann, Axel T1 - Local Corrosion of Martensitic Stainless Steels during Exposure to Saline Aquifer Water and CO2 Environment N2 - Carbon Capture and Storage (CCS) is well acknowledged to mitigate climate change. Therefore, pipe Steels suitable for CCS technology require resistance against the corrosive environment of a potential CCS-site, e.g. heat, pressure, salinity of the aquifer, CO2-partial pressure. Samples of different mild and high alloyed stainless injection-pipe Steels partially heat treated: 42CrMo4, X20Cr13, X46Cr13, X35CrMo4 as well as X5CrNiCuNb16-4 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h - 8000 h in a CO2-saturated synthetic aquifer environment similar to possible geological on-shore CCS-sites in the northern German Basin. Main corrosion products analysed on pits are FeCO3 and FeOOH. The carbon content does not show significant influence on the pitting behaviour. Generally, higher chromium Content results in better corrosion resistance. Although X35CrMo17-1 and X5CrNiCuNb16-4 show low surface corrosion rates, their resistance against local corrosion in CCS environment is not significantly better compared to the much less costly Steels X20Cr13 and X46Cr13. KW - Corrosion KW - CCS KW - Carbon storage KW - Aquifer KW - Heat treatment PY - 2018 DO - https://doi.org/10.18178/ijcea.2018.9.1.694 SN - 2010-0221 VL - 9 SP - 26 EP - 31 PB - International Association of Computer Science and Information Technology Press CY - Singapore AN - OPUS4-46627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sonntag, Nadja A1 - Cabeza, S. A1 - Kuntner, M. A1 - Mishurova, Tatiana A1 - Klaus, M. A1 - Kling e Silva, L. A1 - Skrotzki, Birgit A1 - Genzel, Ch. A1 - Bruno, Giovanni T1 - Visualisation of deformation gradients in structural steel by macroscopic magnetic domain distribution imaging (Bitter technique) N2 - Abstract While classically used to visualise the magnetic microstructure of functional materials (e.g., for magnetic applications), in this study, the Bitter technique was applied for the first time to visualise macroscopic deformation gradients in a polycrystalline low-carbon steel. Spherical indentation was chosen to produce a multiaxial elastic–plastic deformation state. After removing the residual imprint, the Bitter technique was applied, and macroscopic contrast differences were captured in optical microscopy. To verify this novel characterisation technique, characteristic “hemispherical” deformation zones evolving during indentation were identified using an analytical model from the field of contact mechanics. In addition, near-surface residual stresses were determined experimentally using synchrotron radiation diffraction. It is established that the magnetic domain distribution contrast provides deformation-related information: regions of different domain wall densities correspond to different “hemispherical” deformation zones (i.e., to hydrostatic core, plastic zone and elastic zone, respectively). Moreover, the transitions between these three zones correlate with characteristic features of the residual stress profiles (sign changes in the radial and local extrema in the hoop stress). These results indicate the potential of magnetic domain distribution imaging: visualising macroscopic deformation gradients in fine-grained ferromagnetic material with a significantly improved spatial resolution as compared to integral, mean value-based measurement methods. KW - Bitter technique KW - Deformation KW - Expanding cavity model KW - Indentation KW - Magnetic domain distribution KW - Residual stress PY - 2018 DO - https://doi.org/10.1111/str.12296 SN - 1475-1305 VL - 54 IS - 6 SP - e12296, 1 EP - 15 PB - Wiley AN - OPUS4-46569 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karl, D. A1 - Kamutzki, F. A1 - Zocca, Andrea A1 - Görke, O. A1 - Günster, Jens A1 - Gurlo, A. T1 - Towards the colonization of Mars by in-situ resource utilization: Slip cast ceramics from Martian soil simulant N2 - Here we demonstrate that by applying exclusively Martian resources a processing route involving suspensions of mineral particles called slurries or slips can be established for manufacturing ceramics on Mars. We developed water-based slurries without the use of additives that had a 51 wt. % solid load resembling commercial porcelain slurries in respect to the particle size distribution and rheological properties. These slurries were used to slip cast discs, rings and vases that were sintered at temperatures between 1000 and 1130 °C using different sintering schedules, the latter were set-up according the results of hot-stage microscopic characterization. The microstructure, porosity and the mechanical properties were characterized by SEM, X-ray Computer tomography and Weibull analysis. Our wet processing of minerals yields ceramics with complex shapes that show similar mechanical properties to porcelain and could serve as a technology for future Mars colonization. The best quality parts with completely vitrificated matrix supporting a few idiomorphic crystals are obtained at 1130 °C with 10 h dwell time with volume and linear shrinkage as much as ~62% and ~17% and a characteristic compressive strength of 51 MPa. KW - Ceramic KW - Mars PY - 2018 DO - https://doi.org/10.1371/journal.pone.0204025 SN - 1932-6203 VL - 13 IS - 10 SP - e0204025, 1 EP - 7 PB - Public Library of Science CY - San Francisco, Kalifornien, Vereinigte Staaten AN - OPUS4-46612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kindrachuk, Vitaliy A1 - Fedelich, Bernard A1 - Rehmer, Birgit A1 - Peter, Frauke T1 - Computational methods for lifetime prediction of metallic components under high-temperature fatigue N2 - The issue of service life prediction of hot metallic components subjected to cyclic loadings is addressed. Two classes of lifetime models are considered, namely, the incremental lifetime rules and the parametric models governed by the fracture mechanics concept. Examples of application to an austenitic cast iron are presented. In addition, computational techniques to accelerate the time integration of the incremental models throughout the fatigue loading history are discussed. They efficiently solve problems where a stabilized response of a component is not observed, for example due to the plastic strain which is no longer completely reversed and accumulates throughout the fatigue history. The performance of such an accelerated Integration technique is demonstrated for a finite element simulation of a viscoplastic solid under repeating loading–unloading cycles. KW - Fatigue KW - Incremental lifetime models KW - Finite element analysis PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-481215 UR - https://www.mdpi.com/2075-4701/9/4/390 DO - https://doi.org/10.3390/met9040390 SN - 2075-4701 VL - 9 IS - 4 SP - 390, 1 EP - 24 PB - mdpi CY - Basel, Switzerland AN - OPUS4-48121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Balzer, R. A1 - Behrens, H. A1 - Reinsch, Stefan A1 - Fechtelkord, M. T1 - Structural investigation of hydrous phosphate glasses N2 - Dissolved water has major impact on the physical and chemical properties of phosphate glasses. In the present study we have investigated the structural response to water incorporation for glasses in the system Li2O–MgO–Al2O3–P2O5. Glasses containing 0–8 wt% H2O were synthesised at 500 MPa confining pressure in internally heated gas pressure vessels at 1323 K (LMP, Al-poor glass) and 1423 K (LMAP, Al-enriched glass). Water contents of glasses were determined by pyrolysis and subsequent Karl-Fischer titration (KFT) and/or by infrared spectroscopy. Density varies nonlinearly with water content implying large structural changes when adding up to 2 wt% H2O to the dry glass. Glass Transition temperatures measured by differential thermal analysis (DTA) continuously decrease with water content. The trend can be explained by depolymerisation of the phosphate network. Near-infrared spectroscopy shows that even in Al poor glasses only a minority of dissolved water is present as H2O molecules, but the largest amount is present as OH Groups formed by hydrolysis of P–O–P bonds. The network is stabilised by aluminium which is predominantly six-coordinated in these glasses as shown by 27Al MAS NMR spectroscopy. With increase of Al in the glasses, breaking up of the Phosphate network through hydrolysis is depressed, i.e. much lower OH Contents are formed at same total water content. Network depolymerisation upon addition of H2O is evident also from 31P MAS NMR spectroscopy. While Phosphate tetraheda are crosslinked by two to three bridging oxygen in dry glasses, diphosphate Groups are dominant in glasses containing 8 wt% H2O. T2 - 2. INT. CONF. ON PHOSPHATE GLASSES CY - Oxford, UK DA - 26.07.2017 KW - water speciation KW - phosphate glasses KW - infrared spectroscopy KW - NMR spectroscopy KW - high pressure PY - 2019 DO - https://doi.org/10.13036/17533562.60.2.041 SN - 1753-3562 VL - 60 IS - 2 SP - 49 EP - 61 PB - Society of Glass Technology CY - Sheffield AN - OPUS4-48122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Falkenberg, Rainer T1 - Modelling of environmentally assisted material degradation in the crack phase-field framework N2 - The simulation of crack propagation was conducted with a diffusive crack model in a variational framework. Moreover, the physically sound introduction of mass transport and coupling mechanisms due to environmentally assisted effects could be realised in this framework. The objective consists of the application of the phase-field Approach towards the simulation of environmentally assisted material degradation with the advantage of a non-required predefined crack path and a mesh-independent non-local formulation that facilitates the damage evolution with respect to material softening. The sharp crack is regularised by the introduction of a phase-field order parameter leading to a diffusive crack formulation. Besides the equations originating from the linear momentum balance an additional evolution equation for the crack phase-field is introduced. Furthermore, mass transport is simulated by a Diffusion equation. The description delivered by the variational phase-field framework is able to simulate crack propagation according to published numerical test cases. Additionally, the calculation of stress intensity factors is possible as well as crack resistance curves that describe stable crack propagation. KW - Fracture mechanics KW - Crack propagation KW - Phase-field KW - Mass transport KW - Environmentally assisted cracking PY - 2019 DO - https://doi.org/10.1177/1464420718761220 SN - 1464-4207 VL - 233 IS - 1 SP - 5 EP - 12 PB - SAGE AN - OPUS4-47152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Häusler, Ines A1 - Darvishi Kamachali, Reza A1 - Hetaba, W. A1 - Skrotzki, Birgit T1 - Thickening of T-1 Precipitates during Aging of a High Purity Al–4Cu–1Li–0.25Mn Alloy N2 - The age hardening response of a high-purity Al–4Cu–1Li–0.25Mn alloy (wt. %) during isothermal aging without and with an applied external load was investigated. Plate shaped nanometer size T1 (Al2CuLi) and θ′ (Al2Cu) hardening phases were formed. The precipitates were analyzed with respect to the development of their structure, size, number density, volume fraction and associated transformation strains by conducting transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) studies in combination with geometrical Phase analysis (GPA). Special attention was paid to the thickening of T1 phase. Two elementary types of single-layer T1 precipitate, one with a Li-rich (Type 1) and another with an Al-rich (Defect Type 1) central layer, were identified. The results show that the Defect Type 1 structure can act as a precursor for the Type 1 structure. The thickening of T1 precipitates occurs by alternative stacking of These two elementary structures. The thickening mechanism was analyzed based on the magnitude of strain associated with the precipitation transformation normal to its habit plane. Long-term aging and aging under load resulted in thicker and structurally defected T1 precipitates. Several types of defected precipitates were characterized and discussed. For θ′ precipitates, a ledge mechanism of thickening was observed. Compared to the normal aging, an external load applied to the peak aged state leads to small variations in the average sizes and volume fractions of the precipitates. KW - Al-Cu-Li-alloy KW - Precipitation KW - T1 precipitate KW - Microstructure evolution KW - Thickening KW - Creep KW - Volume fraction KW - Number density KW - Strain difference PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471207 DO - https://doi.org/10.3390/ma12010030 SN - 1996-1944 VL - 12 IS - 1 SP - 30, 1 EP - 23 PB - MDPI AN - OPUS4-47120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Klinger, Christian A1 - Bettge, Dirk A1 - Murakami, Y. T1 - Defects as a root cause of fatigue failure of metallic components. I: Basic aspects N2 - According to the definition of the ASM handbook [1,3], a defect is "an imperfection. that can be shown to cause failure by a quantitative analysis and that would not have occurred in the absence of the imperfection". The topic of the present three-part review is a discussion of defects which can cause failure in cyclically loaded structures. The features discussed comprise material defects such as non-metallic inclusions, pores or micro-shrinkages, etc. and geometric defects such as surface roughness and secondary notches which have their origin in manufacturing, and defects such as surface damage due to scratches, impact events or contact fatigue as well as corrosion pits which arise in service. In this first part, the discussion is prefaced by an introduction to basic aspects which are essential for a deeper understanding of the characteristics and mechanisms how the defects influence fatigue crack initiation and propagation. These include the life cycle of a fatigue crack from initiation up to fracture, crack arrest, multiple crack initiation and coalescence, and the material and geometrical properties affecting these. KW - Defects KW - Fatigue crack propagation stages KW - Crack arrest KW - Multiple cracks PY - 2019 DO - https://doi.org/10.1016/j.engfailanal.2019.01.055 SN - 1350-6307 VL - 97 SP - 777 EP - 792 PB - Pergamon-Elsevier Science Ltd CY - Oxford, England AN - OPUS4-47372 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Klinger, Christian A1 - Bettge, Dirk A1 - Murakami, Y. T1 - Defects as a root cause of fatigue failure of metallic components. III: Cavities, dents, corrosion pits, scratches N2 - This third part of the review on defects as root cause of fatigue failure addresses cavities (pores, micro-shrinkages, unmelted regions), defective microstructures and microcracks as material defects and defects due to local damage during manufacturing, service and maintenance such as dents, scratches and localized corrosion. In addition, damage due to contact fatigue and the effect of surface roughness are discussed in the context of fatigue failure. Also addressed is the competition between different kinds of defects in controlling the initiation and early growth of fatigue cracks. KW - Pores KW - Micro-shrinkages KW - Impact damage KW - Contact fatigue KW - Corrosion pits KW - Scratches PY - 2019 DO - https://doi.org/10.1016/j.engfailanal.2019.01.034 SN - 1350-6307 VL - 97 SP - 759 EP - 776 PB - Pergamon-Elsevier Science Ltd CY - Oxford, England AN - OPUS4-47373 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bresch, Sophie A1 - Mieller, Björn A1 - Schönauer-Kamin, D. A1 - Moos, R. A1 - Giovanelli, F. A1 - Rabe, Torsten T1 - Influence of pressure assisted sintering and reaction sintering on microstructure and thermoelectric properties of bi-doped and undoped calcium cobaltite N2 - Calcium cobaltite (Ca3Co4O9) is considered as one of the most promising thermoelectric p-type oxides for energy harvesting applications at temperatures above 500 °C. It is challenging to sinter this material as its stability is limited to 920 °C. To facilitate a practicable and scalable production of Ca3Co4O9 for multilayer generators, a systematic study of the influence of powder calcination, Bi-doping, reaction sintering, and pressure-assisted sintering (PAS) on microstructure and thermoelectric properties is presented. Batches of doped, undoped, calcined, and not calcined powders were prepared, tape-cast, and sintered with and without uniaxial pressure at 900 °C. The resulting phase compositions, microstructures and thermoelectric properties were analysed. It is shown that the beneficial effect of Bi-doping observed on pressureless sintered samples cannot be transferred to PAS. Liquid phase formation induces distortions and abnormal grain growth. Although the Seebeck coefficient is increased to 139 µV/K by Bi-doping, the power factor is low due to poor electrical conductivity. The best results were achieved by PAS of calcined powder. The dense and textured microstructure exhibits a high power factor of 326 µW/mK² at 800 °C but adversely high thermal conductivity in the relevant direction. The figure of merit is higher than 0.08 at 700 °C. KW - Ceramics KW - Calcium cobaltite KW - Thermoelectric properties KW - Calcination KW - Pressure-assisted sintering PY - 2019 DO - https://doi.org/10.1063/1.5107476 SN - 0021-8979 VL - 126 IS - 7 SP - 075102-1 EP - 075102-11 PB - AIP Publishing CY - Melville AN - OPUS4-48708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kiefer, P. A1 - Balzer, R. A1 - Deubener, J. A1 - Behrens, H. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf T1 - Density, elastic constants and indentation hardness of hydrous soda-lime silica glasses N2 - The effect of structural water on density, elastic constants and microhardness of water-bearing soda-lime-silica glasses of up to 21.5 mol% total water is studied. It is found that the Poisson ratio and the water content are positively correlated, while density and the elastic moduli decrease with increasing water content. Vickers hardness decreases by approximately 27% from the dry to the most hydrous glass. For water fractions <3 mol%, the dependencies are non-linear reflecting the non-linear change in the concentrations of OH and H2O molecules dissolved, whereas for water fractions >3 mol% linear dependencies are found. To distinguish the effect of structural water and environmental water, indentations were performed in toluene, nitrogen gas and air. Timedependent softening was evident for testing dry glasses in humid atmospheres as well as for tests of hydrous glasses in dry atmospheres. This indicates that the response times of dissolved water species are effectively equal in both scenarios. KW - Elastic constants KW - Soda-lime-silica KW - Glass KW - Water content KW - Microhardness PY - 2019 DO - https://doi.org/10.1016/j.jnoncrysol.2019.119480 SN - 0022-3093 SN - 1873-4812 VL - 521 SP - 119480 PB - Elsevier B.V. AN - OPUS4-48758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Balzer, R. A1 - Behrens, H. A1 - Schuth, S. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Fechtelkord, M. A1 - Deubener, J. T1 - The influence of H2O and SiO2 on the structure of silicoborate glasses N2 - To understand the impact of dissolved water on structure and properties, four boron-rich glasses of molar compositions 15-x Na2O x CaO 15 SiO2 70 B2O3 (with x=0, 7.5, 10) and 10 Na2O 15 SiO2 75 B2O3 were prepared and subsequently hydrated (up to 8 wt% H2O). Density measurements show a non-linear trend upon hydration implying large structural changes in particular at water contents<2 wt%. Near-infrared spectroscopy shows hydroxyl groups are the dominant species in all glasses upon the entire range of water content. Molecular H2O is detectable only at total water contents>2 wt%. 11B MAS NMR spectra show that the abundance of BO4 species is mainly controlled by ratio of (Na2O+CaO)/B2O3 while incorporation of water plays a minor role. Compared to borate glasses, the efficiency of formation of BO4 tetrahedra is favored by crosslinking of the network by SiO4-units. The glass transition temperatures, determined by differential thermal analysis, decreases continuously with water content due to breakage of B-O-B bonds by hydrolysis. However, compared to Silicates and aluminosilicates, the effect of dissolved water is less pronounced which can be explained by weaker B-O-B bonds in comparison to Si-O-Si bonds. KW - High pressure KW - Water speciation KW - Silicoborate glasses KW - Infrared spectroscopy KW - NMR spectroscopy PY - 2019 DO - https://doi.org/10.1016/j.jnoncrysol.2019.05.030 VL - 519 SP - 38 EP - 51 PB - Elsevier B.V. AN - OPUS4-48748 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weber, Kathrin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Stephan-Scherb, Christiane T1 - A µ‐XANES study of the combined oxidation/sulfidation of Fe–Cr model alloys N2 - The precise analysis of cation diffusion profiles through corrosion scales is an important aspect to evaluate corrosion phenomena under multicomponent chemical load, as during high‐temperature corrosion under deposits and salts. The present study shows a comprehensive analysis of cation diffusion profiles by electron microprobe analysis and microbeam X‐ray absorption near edge structure (µ‐XANES) spectroscopy in mixed oxide/sulfide scales grown on Fe–Cr model alloys after exposing them to 0.5% SO2. The results presented here correspond to depth‐dependent phase identification of oxides and sulfides in the corrosion scales by µ‐XANES and the description of oxidation‐state‐dependent diffusion profiles. Scales grown on low‐ and high‐alloyed materials show both a well‐pronounced diffusion profile with a high concentration of Fe3+ at the gas and a high concentration of Fe2+ at the alloy interface. The distribution of the cations within a close‐packed oxide lattice is strongly influencing the lattice diffusion phenomena due to their different oxidation states and therefore different crystal‐field preference energies. This issue is discussed based on the results obtained by µ‐XANES analysis. KW - X-ray absorption spectroscopy KW - Oxidation KW - Sulfidation PY - 2019 DO - https://doi.org/10.1002/maco.201810644 VL - 70 IS - 8 SP - 1360 EP - 1370 PB - Wiley VCH-Verlag AN - OPUS4-47934 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Höhne, Patrick A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Slurry development for spray granulation of ceramic multicomponent batches N2 - The granules commonly yielded by spray drying procedures exhibit a hard shell and an irregular, dimpled shape, which is often described as donut-like morphology. Sintered parts produced from such granules suffer from microstructural defects and reduced mechanical properties resulting from these disadvantageous granule properties. Using the example of alumina, zirconia and zirconia-toughened alumina (ZTA) batches, this paper shows that the morphology of the granules can be tuned by adjusting slurry stability. High zeta potential is essential to optimally disperse the particles. But to achieve spherical and soft granules the electrostatic repulsion forces between the particles should be reduced before spray granulation. Electrostatic repulsion forces were changed with the addition of nitric acid. Measurements of zeta potential and viscosity, as well as sedimentation investigations with an optical centrifuge were used for precise slurry assessment as a major precondition for optimal and reproducible adjustment of slurries before spray drying. Sedimentation analysis using an optical centrifuge was performed to investigate different influences like that of additive composition, solids content or pH-value on the sedimentation behavior. Adequately flocculated slurries lead to homogeneous, soft granules that can be easily deformed and pressed. The fraction of donut-shaped particles and the rigidity of granules were reduced. Consequently, the sintered parts produced from these granulates show improvements regarding porosity, pore size distribution, sintered density and biaxial strength. KW - Slurry optimization KW - Optical centrifugation KW - Destabilization KW - Spray drying KW - Biaxial strength PY - 2018 DO - https://doi.org/10.4416/JCST2018-00022 SN - 2190-9385 VL - 9 IS - 3 SP - 327 EP - 336 PB - Göller Verlag AN - OPUS4-46225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emmerling, Franziska A1 - Villajos Collado, José Antonio A1 - Jagorel, Noëmie A1 - Reinsch, Stefan T1 - Increasing Exposed Metal Site Accessibility in a Co-MOF-74 Material With Induced Structure-Defects N2 - Metal-organic frameworks (MOFs) are promising nanoporous materials with many practical applications. This owes largely to their remarkable porosity and the presence of specific chemical functionalities, such as exposed metal sites (EMS). The MOF-74 structure is known for exhibiting one of the highest EMS densities among porous materials. Moreover, the inclusion of structural defects has been proposed to enhance activity further. This was previously achieved by mixing the original linker together with a second one, having lower topology. The presence of structural defects was evidenced by the resulting crystalline properties and thermal stability. In this work, different mixtures of tetratopic 2,5-dihydroxyterephthalic acid with up to 60% of the tritopic hydroxyterephtalic acid were used to synthesize crystalline Co-MOF-74-like materials. Materials synthesized from higher proportions than 30% of hydroxyterephtalic acid in the synthesis media collapse upon partial removal of the solvent molecules. This indicates the presence of structural defects and the importance of the solvent molecules in stabilizing the crystalline structures. Electron microscope images show that crystal size reduces with inclusion of hydroxyterephtalic acid as the second linker. The presence of coordinated solvent molecules at the EMS was evaluated by Fourier-transform infrared spectra (FTIR) spectroscopy, so that a higher degree of solvent-exchange was observed during washing for defective structures. Furthermore, TG analysis suggests defective structures exhibit lower desolvation temperatures than the defect-free structures. Finally, N2 adsorption-desorption analyses at −196°C showed an enhanced accessibility of the gas to the inner porosity of the defective structures and therefore, the EMS of the material. All these finding make this pathway interesting to enhance the potential interest of these materials for an industrial application because of both a facilitated activation and a better access to the active sites. KW - MOF-74 KW - Structural defects KW - Mixed-linkers KW - Exposed metal sites KW - Facilitated activation PY - 2019 DO - https://doi.org/10.3389/fmats.2019.00230 VL - 6 SP - 230 PB - Frontiers Media CY - Lausanne AN - OPUS4-49256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholz, Philipp A1 - Wachtendorf, Volker A1 - Elert, Anna Maria A1 - Falkenhagen, Jana A1 - Becker, Roland A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Tschiche, Harald A1 - Reinsch, Stefan A1 - Weidner, Steffen ED - Scholz, Philipp T1 - Analytical toolset to characterize polyurethanes after exposure to artificial weathering under systematically varied moisture conditions N2 - Polyether and -ester urethanes (PU) were exposed to artificial weathering at 40 °C and artificial UV radiation in a weathering chamber. In 3 parallel exposures, humidity was varied between dry, humid, and wet conditions. Material alteration was investigated by various analytical techniques like size exclusion chromatography (SEC), liquid chromatography-infrared spectroscopy (LC-FTIR), thermal-desorption gas chromatography-mass spectrometry (TD-GC-MS), fluorescence mapping and dynamic mechanical analysis (DMA). Our results show that depending on the weathering conditions, different degradation effects can be observed. By means of SEC an initial strong decrease of the molar masses and a broadening of the mass distributions was found. After a material dependent time span this was followed by a plateau where molar mass changes were less significant. A minor moisture-dependent degradation effect was only found for polyester PU. Fluorescence measurements on two materials revealed an increase in the luminescence intensity upon weathering process reaching a saturation level after about 500 h. The changes in the optical properties observed after different exposure conditions and times were very similar. The TD-GC-MS data showed the fate of the stabilizers and antioxidant in the course of weathering. LC-FTIR measurements revealed a change in peak intensities and the ratio of urethane and carbonyl bands. KW - Polyurethane KW - Artificial weathering KW - Moisture KW - Crosslinking KW - Degradation PY - 2019 UR - https://www.sciencedirect.com/science/article/pii/S0142941819303708 DO - https://doi.org/10.1016/j.polymertesting.2019.105996 SN - 0142-9418 VL - 78 SP - 105996, 1 EP - 9 PB - Elsevier CY - Amsterdam AN - OPUS4-48625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Saliwan Neumann, Romeo A1 - Reith, F. A1 - Etschmann, B. A1 - Kilburn, M. R. A1 - Brugger, J. T1 - Unravelling the formation histories of placer gold and platinum-group mineral particles from Corrego Bom Successo, Brazil: A window into noble metal cycling N2 - Gold and platinum-group-metals (PGM) are cycled through Earth's environments by interwoven geological, physical, chemical and biological processes leading to the trans/neoformation of metallic particles in placers. The placer deposit at Corrego Bom Successo (CBS, Brazil) is one of the few localities worldwide containing secondary gold- and PGM-particles. Placer gold consists of detrital particles from nearby hydrothermal deposits that were transformed in the surface environment. Processes that have affected these particles include shortdistance transport, chemical de-alloying of the primary Gold silver, and (bio)geochemical dissolution/reprecipitation of Gold leading to the formation of pure, secondary gold and the Dispersion of gold nanoparticles. The latter processes are likely mediated by non-living organic matter (OM) and bacterial biofilms residing on the particles. The biofilms are largely composed of metallophillic β- and γ-Proteobacteria. Abundant mobile gold and platinum nanoparticles were detected in surface waters, suggesting similar mobilities of these metals. Earlier hydrothermal processes have led to the formation of coarsely-crystalline, arborescent dendritic potarite (PdHg). On potarite surfaces, biogeochemical processes have then led to the formation of platinum- and palladium-rich micro-crystalline layers, which make up the botryoidal platinum palladium aggregates. Subsequently potarite was dissolved from the core of many aggregates leaving voids now often filled by secondary anatase (TiO2) containing biophilic elements. The presence of fungal structures associated with the anatase suggests that fungi may have contributed to ist formation. For the first time a primary magmatic PGM-particle comprising a mono-crystalline platinum palladium-alloy with platinum iridium osmium inclusions was described from this locality, finally defining a possible primary source for the PGM mineralisation. In conclusion, the formation of modern-day placer gold- and PGM-particles at CBS began 100s ofmillions of years ago bymagmatic and hydrothermal processes. These provided the metal sources for more recent biogeochemical cycling of PGEs and gold that led to the trans/neoformation of gold- and PGM-particles. KW - Gold KW - Platinum-group-metals KW - Biogeochemical cycling KW - Magmatic and hydrothermal processes KW - Biomineralisation PY - 2019 DO - https://doi.org/10.1016/j.gr.2019.07.003 SN - 1342-937X VL - 76 SP - 246 EP - 259 PB - Elsevier AN - OPUS4-48657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blaeß, Carsten A1 - Müller, Ralf A1 - Poologasundarampilai, G. A1 - Brauer, D. S. T1 - Sintering and concomitant crystallization of bioactive glasses N2 - The sintering of bioactive glasses allows for the preparation of complex structures, such as three‐dimensional porous scaffolds. Such 3D constructs are particularly interesting for clinical applications of bioactive glasses in bone regeneration, as the scaffolds can act as a guide for in‐growing bone cells, allowing for good Integration with existing and newly formed tissue while the scaffold slowly degrades. Owing to the pronounced tendency of many bioactive glasses to crystallize upon heat treatment, 3D scaffolds have not been much exploited commercially. Here, we investigate the influence of crystallization on the sintering behavior of several bioactive glasses. In a series of mixed‐alkali glasses an increased CaO/alkali metal oxide Ratio improved sintering compared to Bioglass 45S5, where dense sintering was inhibited. Addition of small amounts of calcium fluoride helped to keep melting and sintering temperatures low. Unlike glass 13‐93, these new glasses crystallized during sintering but this did not prevent densification. Variation in bioactive glass particle size allowed for fine‐tuning the microporosity resulting from the sintering process. KW - Bioactive glass KW - Crystallization KW - Scaffolds KW - Sintering PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-485458 DO - https://doi.org/10.1111/ijag.13477 SN - 2041-1286 VL - 10 IS - 4 SP - 449 EP - 462 PB - Wiley AN - OPUS4-48545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mieller, Björn T1 - Influence of test procedure on dielectric breakdown strength of alumina N2 - Dielectric strength testing of ceramics can be performed with various setups and parameters. Comparisons of results from different sources are often not meaningful, because the results are strongly dependent on the actual testing procedure. The aim of this study is to quantify the influence of voltage ramp rate, electrode size, electrode conditioning, and sample thickness on the measured AC dielectric strength of a commercial alumina. Mean values, Weibull moduli, and failure probabilities determined in standardized short time tests are evaluated and related to withstand voltage tests. Dielectric strength values in the range from 21.6 to 33.2 kV/mm were obtained for the same material using different testing procedures. Short time tests resulted in small standard deviations (< 2 kV/mm) and high Weibull moduli around 30, while withstand tests at voltage levels with low and virtual zero failure probability in short time tests resulted in large scatter of withstand time and Weibull moduli < 1. The strong decrease in Weibull moduli is attributed to progressive damage from partial discharge and depolarization during AC testing. These findings emphasize the necessity of a thorough documentation of testing procedure and highlight the importance of withstand voltage tests for a comprehensive material characterization. KW - Ceramic KW - High-voltage testing KW - Dielectric breakdown KW - Alumina PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483852 DO - https://doi.org/10.1007/s40145-018-0310-4 SN - 2226-4108 SN - 2227-8508 VL - 8 IS - 2 SP - 247 EP - 255 PB - Springer AN - OPUS4-48385 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knauer, S A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Jaeger, P T1 - Contact angle and corrosion of a Water – CO2 system on X70 and S41500 at 278 K and pressures up to 20 MPa N2 - Interfacial properties related to wettability and corrosion in CO2 transport pipelines are experimentally determined by the sessile and the pendant drop methods. The contact angle of a water drop in a compressed CO2 atmosphere is analyzed on an X70 pipeline carbon steel and compared to that on a martensitic steel S41500 to elucidate the effect of corrosion process on active wetting behaviour. The measurements are performed with liquid CO2 at 278 K and pressures ranging from 5 to 20 MPa. The results show that the contact angle (CA) increases with pressure from 132 ° to 143 ° for S41500 and from 117 ° to 137 ° for X70 and decreases with drop age by 20 ° to 24 ° regardless of the pressure and of the fact that corrosion only occurs on X70, which is confirmed by scanning electron microscopy, element mapping and energy dispersive x-ray spectrometry (EDS) analysis. At higher pressure, the contact angles on both materials converge. Further, related properties like density and interfacial tension were determined. CO2 - saturated water has a higher density than pure water: At 5 MPa saturated water reaches a density of 1017 kg⋅m^(-3) and at 20 MPa 1026 kg⋅m^(-3) compared to pure water with a density of 1002 kg⋅m^(-3) and 1009 kg⋅m^(-3), respectively. In this pressure range the IFT drops from 33 mN⋅m^(-1)at 5 MPa to 23 mN⋅m^(-1) at 20 MPa. KW - Carbon capture KW - Utilization, and storage (CCUS) technology KW - Contact angle KW - Wetting KW - Corrosion KW - Condensate KW - Impurities KW - Carbon steel PY - 2019 UR - https://www.sciencedirect.com/science/article/pii/S1750583618309472?dgcid=author DO - https://doi.org/10.1016/j.ijggc.2019.06.021 SN - 1750-5836 SN - 1878-0148 VL - 89 SP - 33 EP - 39 PB - Elsevier, ScienceDirect AN - OPUS4-48601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Maren A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Hentschel, Manfred P. A1 - Niebergall, Ute A1 - Böhning, Martin A1 - Bruno, Giovanni ED - Erdmann, Maren T1 - Diesel-induced transparency of plastically deformed high-density polyethylene N2 - High-density polyethylene becomes optically transparent during tensile drawing when previously saturated with diesel fuel. This unusual phenomenon is investigated as it might allow conclusions with respect to the material behavior. Microscopy, differential scanning calorimetry, density measurements are applied together with two scanning X-ray scattering techniques: wide angle X-ray scattering (WAXS) and X-ray refraction, able to extract the spatially resolved crystal orientation and internal surface, respectively. The sorbed diesel softens the material and significantly alters the yielding characteristics. Although the crystallinity among stretched regions is similar, a virgin reference sample exhibits strain whitening during stretching, while the diesel-saturated sample becomes transparent. The WAXS results reveal a pronounced fiber texture in the tensile direction in the stretched region and an isotropic orientation in the unstretched region. This texture implies the formation of fibrils in the stretched region, while spherulites remain intact in the unstretched parts of the specimens. X-ray refraction reveals a preferred orientation of internal surfaces along the tensile direction in the stretched region of virgin samples, while the sample stretched in the diesel-saturated state shows no internal surfaces at all. Besides from stretching saturated samples, optical transparency is also obtained from sorbing samples in diesel after stretching. KW - PE-HD Sorption KW - Cavitation KW - Diesel Fuel KW - X-ray refraction KW - WAXS KW - Internal Surfaces KW - Crystal Texture PY - 2019 DO - https://doi.org/10.1007/s10853-019-03700-8 SN - 1573-4803 SN - 0022-2461 VL - 54 IS - 17 SP - 11739 EP - 11755 PB - Springer US CY - US AN - OPUS4-48226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Munzke, Dorit A1 - Kraus, David A1 - Eisermann, René A1 - Kübler, Stefan A1 - Schukar, Marcus A1 - Nagel, Lukas A1 - Hickmann, Stefan A1 - Trappe, Volker T1 - Distributed fiber-optic strain sensing with millimeter spatial resolution for the structural health monitoring of multiaxial loaded GFRP tube specimens N2 - Due to their high strength-to-weight ratio and excellent fatigue resistance, glass fiber reinforced polymers (GFRP) are used as a construction material in a variety of applications including composite high-pressure gas storage vessels. Thus, an early damage detection of the composite material is of great importance. Material degradation can be determined via measuring the distributed strain profile of the GFRP structures. In this article, swept wavelength interferometry based distributed strain sensing (DSS) was applied for structural health monitoring of internal pressure loaded GFRP tube specimens. Measured strain profiles were compared to theoretical calculation considering Classical Lamination Theory. Reliable strain measurements with millimeter resolution were executed even at elongations of up to 3% in the radial direction caused by high internal pressure load. Material fatigue was localized by damaged-induced strain changes during operation, and detected already at 40% of burst pressure. KW - GFRP KW - Swept wavelength interferometry KW - Distributed fiber optic sensing KW - Material degradation KW - Structural health monitoring PY - 2019 DO - https://doi.org/10.1016/j.polymertesting.2019.106085 SN - 0142-9418 VL - 80 SP - 106085 PB - Elsevier Ltd. AN - OPUS4-48950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Knauer, S A1 - Jaeger, P A1 - Kratzig, Andreas A1 - Bettge, Dirk A1 - Kranzmann, Axel T1 - Droplet corrosion of CO2 transport pipeline steels in simulated oxyfuel flue gas N2 - The research focus of this study was set on the corrosion process of condensate as droplets on the surface of carbon steels (X52, X70) martensitic steel UNS S41500, and super austenite UNS N08031 in CO2 atmosphere with impurities at 278 K (to simulate the offshore transportation condition in a buried pipeline). The possibility of dew/droplet formation on the steel surface and wetting behavior of corresponding materials were evaluated by contact angle measurement in dense CO2 at 278 K. To observe the effect of impurities (SO2 and O2) on droplet corrosion process, exposure tests were carried out in the mixed atmosphere with a drop, 1 ‑ 10 µL in volume, of CO2 saturated ultra-pure water on steel surface. Comparable exposure tests were carried out with the same gas mixture and the same volume of water, as vapor, to observe the droplet formation and the corrosion process that follows. Effects of surface roughness on the droplet formation and its corrosion process were further studied and showed no significant role upon long time exposure. The results from droplet experiments were compared to those from the bulk electrolyte for the further recommendation on the quality control of gas stream along with the use of carbon steels as transport pipelines in CCS - Carbon Capture and Storage system. KW - CCUS, supercritical/dense phase CO2, carbon steels, martensitic steel, superaustenite steel, droplet corrosion PY - 2018 UR - http://corrosionjournal.com/doi/abs/10.5006/2927 DO - https://doi.org/10.5006/2927 SN - 0010-9312 SN - 1938-159X VL - 74 IS - 12 SP - 1406 EP - 1420 PB - NACE International CY - Houston, Texas, USA AN - OPUS4-46903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Klinger, Christian A1 - Bettge, Dirk A1 - Murakami, Y. T1 - Defects as a root cause of fatigue failure of metallic components. II: Non-metallic inclusions N2 - This second part of the review on defects as root cause of fatigue failure comprises the origin, the nature and the effects of non-metallic inclusions. Topics addressed are the different kinds of inclusions formed during the manufacturing process, various types of mis-match causing local stresses and, as a consequence, fatigue crack initiation, and effects of characteristics such as size, morphology, localization, spatial distribution and orientation of the defects on the fatigue behavior. Methods for inclusion counting and sizing are discussed along with statistical aspects necessary to be considered when evaluating structural components. KW - Non-metallic inclusions KW - Mis-match KW - Inclusion size KW - Inclusion cluster KW - Statistics PY - 2019 DO - https://doi.org/10.1016/j.engfailanal.2019.01.054 SN - 1350-6307 VL - 98 SP - 228 EP - 239 PB - Elsevier Ltd. AN - OPUS4-47459 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chandra, K. A1 - Dörfel, Ilona A1 - Wollschläger, N. A1 - Kranzmann, Axel T1 - Microstructural investigation using advanced TEM techniques of inner ocide layers formed on T92 steel in oxyfuel environment N2 - T92 steel was oxidized at 650 °C for 1000 h in dry and wet oxyfuel gases. The microstructure of inner oxide layer was investigated using scanning transmission electron microscopy and energy dispersive spectroscopy on thin lamellas of oxide cross-sections. The oxides were composed of fine equiaxed grains and separated into Fe-rich and Cr-rich regions. Fe-rich regions were wustite and iron sulphide while Cr-rich regions consisted of Fe-Cr spinel with different stoichiometries. Precipitates of (W,Mo)-rich oxides were formed within the oxide scale and beneath the oxide/alloy interface. Often iron sulphide and (W,Mo)-rich oxide were surrounded by Cr-rich spinel. KW - Steel KW - STEM KW - High temperature corrosion KW - Oxidation KW - Internal oxidation PY - 2019 DO - https://doi.org/10.1016/j.corsci.2018.12.008 SN - 0010-938X SN - 1879-0496 VL - 148 SP - 94 EP - 109 PB - Elsevier AN - OPUS4-47423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Falk, Florian A1 - Menneken, M. A1 - Stephan-Scherb, Christiane T1 - Real-time observation of high- temperature gas corrosion in dry and wet SO2-containing atmosphere N2 - Sulfur and water have a fundamental impact on the corrosion rate and potential failure of materials. It is therefore necessary to understand the mechanisms, rates, and potential means of transport, as well as the reactions of these elements with an alloy. This paper investigates the effect of water vapor in the initial stages of SO2 corrosion of an Fe-9Cr-0.5Mn model alloy at 650°C in situ under laboratory conditions using energy-dispersive x-ray diffraction analysis. Two separate experiments were run, one with a 99.5% Ar + 0.5% SO2 atmosphere and one with a 69.5% Ar + 0.5% SO2 + 30% H2O atmosphere. With a wet atmosphere, the alloy formed a scale with decreasing oxygen content towards the scale–alloy interface. Sulfides were identified above and below a (Fe, Cr)3O4 layer in the inner corrosion zone. In contrast to this, the overall scale growth was slower in a dry SO2 atmosphere. KW - Early oxidation KW - Early sulfidation KW - Ferritic steels PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-472844 UR - https://link.springer.com/article/10.1007/s11837-019-03335-9#enumeration DO - https://doi.org/10.1007/s11837-019-03335-9 SN - 1047-4838 SN - 1543-1851 VL - 71 SP - 1 EP - 6 PB - Springer CY - New York AN - OPUS4-47284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiede, Tobias A1 - Cabeza, S. A1 - Mishurova, Tatiana A1 - Nadammal, N. A1 - Kromm, Arne A1 - Bode, Johannes A1 - Haberland, C. A1 - Bruno, Giovanni T1 - Residual stress in selective laser melted Inconel 718: Influence of the removal from base plate and deposition hatch length N2 - The residual stress distribution in IN718 elongated prisms produced by Selective Laser Melting was studied by means of neutron (bulk) and laboratory X-ray (surface) diffraction. Two deposition hatch lengths were considered. A horizontal plane near the top surface (perpendicular to the building direction) and a vertical plane near the lateral surface (parallel to the building direction) were investigated. Samples both in as-built (AB) condition and removed (RE) from the base plate were characterized. While surface stress fields seem constant for AB condition, X-ray diffraction shows stress gradients along the hatch direction in the RE condition. The stress profiles correlate with the distortion maps obtained by tactile probe measurements. Neutron diffraction shows bulk stress gradients for all principal components along the main sample directions. We correlate the observed stress patterns with the hatch length, i.e. with its effect on temperature gradients and heat flow. The bulk stress gradients partially disappear after removal from the baseplate. KW - Residual stress KW - Additive manufacturing KW - Neutron diffraction KW - Selective laser melting KW - Laboratory X-ray diffraction KW - Coordinate measurement machine KW - IN718 PY - 2018 DO - https://doi.org/10.1520/MPC20170119 SN - 2379-1365 VL - 7 IS - 4 SP - 717 EP - 735 PB - ASTM International CY - USA, West Conshohocken AN - OPUS4-46673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jürgens, Maria A1 - Olbricht, Jürgen A1 - Fedelich, Bernard A1 - Skrotzki, Birgit T1 - Low Cycle Fatigue and Relaxation Performance of Ferritic–Martensitic Grade P92 Steel N2 - Due to their excellent creep resistance and good oxidation resistance, 9–12% Cr ferritic–martensitic stainless steels are widely used as high temperature construction materials in power plants. However, the mutual combination of different loadings (e.g., creep and fatigue), due to a “flexible” operation of power plants, may seriously reduce the lifetimes of the respective components. In the present study, low cycle fatigue (LCF) and relaxation fatigue (RF) tests performed on grade P92 helped to understand the behavior of ferritic–martensitic steels under a combined loading. The softening and lifetime behavior strongly depend on the temperature and total strain range. Especially at small strain amplitudes, the lifetime is seriously reduced when adding a hold time which indicates the importance of considering technically relevant small strains. KW - Ferritic–martensitic steel KW - P92 KW - Low cycle fatigue KW - Relaxation fatigue KW - Cyclic softening PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-473905 DO - https://doi.org/10.3390/met9010099 VL - 9 IS - 1 SP - 99, 1 EP - 25 PB - MDPI AN - OPUS4-47390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Bettge, Dirk T1 - On the corrosion mechanism of CO2 transport pipeline steel caused by condensate: Synergistic effects of NO2 and SO2 N2 - To study the effects of condensed acid liquid, hereafter referred to as condensate, on the CO2 transport pipeline steels, gas mixtures containing a varying concentration of H2O, O2, NO2, and SO2, were proposed and resulted in the condensate containing H2SO4 and HNO3 with the pH ranging from 0.5 to 2.5. By exposing the pipeline steel to the synthetic condensate with different concentration of acidic components, the corrosion kinetic is significantly changed. Reaction kinetic was studied using electrochemical methods coupled with water analysis and compared with surface analysis (scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffractometry (XRD)) of corroded coupons. The results showed that, although the condensation of NO2 in the form of HNO3 causes faster general corrosion rate, it is the condensation of SO2 in the form of H2SO4 or the combination of SO2 and NO2 that may cause much more severe problems in the form of localized and pitting corrosions. The resulting corrosion forms were depended on the chemical nature of acids and their concentration at the same investigated pH. The effects of changing CO2 flow rate and renewing condensate on pitting corrosion were further studied. KW - Carbon capture, utilization and storage technology KW - CCUS KW - Corrosion KW - Condensate KW - Electrochemical characterisation KW - Pitting corrosion KW - Impurities KW - Carbon steel PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-473685 UR - https://www.mdpi.com/1996-1944/12/3/364 DO - https://doi.org/10.3390/ma12030364 SN - 1996-1944 VL - 12 IS - 3 SP - 364, 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-47368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erdmann, Maren A1 - Böhning, Martin A1 - Niebergall, Ute T1 - Physical and chemical effects of biodiesel storage on high-density polyethylene: Evidence of co-oxidation N2 - The physical and chemical effects of diesel and biodiesel fuels on two high-density polyethylene (PE-HD) types were investigated. Both semi-crystalline PE-HD are common thermoplastic materials for container and storage tank applications. Biodiesel, a composition of unsaturated fatty acid esters from renewable resources, was chosen as it is regarded a possible green alternative to fossil fuels. The study aims at identifying significant differences between biodiesel and conventional diesel fuels based on the differences in the chemical nature of the two. The physical effects of the fuels on the polymer at first comprises the sorption behavior, i.e. kinetics and final equilibrium concentration. Not only are both fuels absorbed by the amorphous phase of the semi-crystalline PE-HD, they also induce a plasticization effect that modifies the molecular mobility and therefore also the characteristic yielding properties, manifest in the obtained stress-strain curves. The chemical effects related to degradation phenomena is investigated by a long-term storage scenario using partially immersed tensile test specimens in diesel and biodiesel. We were able to confirm the proposed co-oxidation mechanism by Richaud et al. for polyethylene-unsaturated penetrant systems on a larger scale based on practical tensile tests. One of the investigated polyethylene grades subjected to tensile drawing showed a significant loss of plastic deformation and the onset of premature failure after 150 days of storage in biodiesel. Further biodiesel storage showed a systematically reduced elongation at break before necking. None of these effects were observed in diesel. Oxidation of fuels and polymer after progressing storage times were analyzed by the evolution of carbonyl species in FT-IR/ATR spectroscopy. KW - Biodiesel KW - Degradation KW - Long-term storage KW - Sorption KW - Diesel PY - 2019 DO - https://doi.org/10.1016/j.polymdegradstab.2019.01.018 SN - 0141-3910 VL - 161 IS - 1 SP - 139 EP - 149 PB - Elsevier CY - Amsterdam AN - OPUS4-47268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghasem Zadeh Khorasani, Media A1 - Elert, Anna Maria A1 - Hodoroaba, Vasile-Dan A1 - Agudo Jácome, Leonardo A1 - Altmann, Korinna A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Short- and long-range mechanical and chemical interphases caused by interaction of Boehmite (γ-AlOOH) with anhydride-cured epoxy resins N2 - Understanding the interaction between boehmite and epoxy and the formation of their interphases with different mechanical and chemical structures is crucial to predict and optimize the properties of epoxy-boehmite nanocomposites. Probing the interfacial properties with atomic force microscopy (AFM)-based methods, especially particle-matrix long-range interactions, is challenging. This is due to size limitations of various analytical methods in resolving nanoparticles and their interphases, the overlap of interphases, and the effect of buried particles that prevent the accurate interphase property measurement. Here, we develop a layered model system in which the epoxy is cured in contact with a thin layer of hydrothermally synthesized boehmite. Different microscopy methods are employed to evaluate the interfacial properties. With intermodulation atomic force microscopy (ImAFM) and amplitude dependence force spectroscopy (ADFS), which contain information about stiffness, electrostatic, and van der Waals forces, a soft interphase was detected between the epoxy and boehmite. Surface potential maps obtained by scanning Kelvin probe microscopy (SKPM) revealed another interphase about one order of magnitude larger than the mechanical interphase. The AFM-infrared spectroscopy (AFM-IR) technique reveals that the soft interphase consists of unreacted curing agent. The long-range electrical interphase is attributed to the chemical alteration of the bulk epoxy and the formation of new absorption bands. KW - Nanocomposites KW - Interphase KW - Intermodulation AFM KW - Electron microscopy KW - Infrared nano AFM PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483672 UR - https://www.mdpi.com/2079-4991/9/6/853/htm DO - https://doi.org/10.3390/nano9060853 SN - 2079-4991 VL - 9 IS - 6 SP - 853, 1 EP - 20 PB - MDPI AN - OPUS4-48367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gili, A. A1 - Bischoff, B. A1 - Simon, U. A1 - Schmidt, Franziska A1 - Kober, D. A1 - Görke, O. A1 - Bekheet, M. A1 - Gurlo, A. T1 - Ceria-based dual-phase membranes for high-temperature Carbon dioxide separation: Effect of iron doping and pore generation with MgO template N2 - Dual-phase membranes for high-temperature carbon dioxide Separation have emerged as promising technology to mitigate anthropogenic greenhouse gases emissions, especially as a pre- and post-combustion separation technique in coal burning power plants. To implement These membranes industrially, the carbon dioxide permeability must be improved. In this study, Ce_(0.8) Sm_(0.2) O_(2-d) (SDC) and Ce_(0.8)Sm_(0.19)Fe_(0.01)O_(2-d) (FSDC) ceramic powders were used to form the skeleton in dual-Phase membranes. The use of MgO as an environmentally friendly pore generator allows control over the membrane porosity and microstructure in order to compare the effect of the membrane’s ceramic phase. The ceramic powders and the resulting membranes were characterized using ICP-OES, HSM, gravimetric analysis, SEM/EDX, and XRD, and the carbon dioxide flux density was quantified using a high-temperature membrane permeation setup. The carbon dioxide permeability slightly increases with the addition of iron in the FSDC membranes compared to the SDC membranes mainly due to the reported scavenging effect of iron with the siliceous impurities, with an additional potential contribution of an increased crystallite size due to viscous flow sintering. The increased permeability of the FSDC system and the proper microstructure control by MgO can be further extended to optimize carbon dioxide permeability in this membrane system. KW - Samarium doped ceria KW - SDC KW - FSDC KW - CO2 separation membranes KW - Scavenging effect of iron KW - Permeability PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-488612 DO - https://doi.org/10.3390/membranes9090108 SN - 2077-0375 VL - 9 IS - 9 SP - 108, 1 EP - 15 PB - MDPI AN - OPUS4-48861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Palantöken, Sinam A1 - Bethke, K. A1 - Zivanovic, V. A1 - Kneipp, Janina A1 - Rademann, Klaus A1 - Kalinka, Gerhard T1 - Cellulose hydrogels physically crosslinked by glycine: Synthesis, characterization, thermal and mechanical properties N2 - Biopolymers are very efficient for significant applications ranging from tissue engineering, biological devices to water purification. There is a tremendous potential value of cellulose because of ist being the most abundant biopolymer on earth, swellability, and functional groups to be modified. A novel, highly efficient route for the fabrication of mechanically stable and natural hydrogels is described in which cellulose and glycine are dissolved in an alkaline solution of NaOH and neutralized in an acidic solution. The dissolving temperature and the glycine amount are essential parameters for the self-assembly of cellulose chains and for Tuning the morphology and the aggregate structures of the resulting hydrogels. Glycine plays the role of a physical crosslinker based on the Information obtained from FTIR and Raman spectra. Among the prepared set of hydrogels, CL5Gly30 hydrogels have the highest capacity to absorb water. The prepared CL5Gly30 gels can absorb up to seven times their dry weight due to its porous 3-D network structure. CL5Gly10 hydrogel exhibits 80% deformation under 21 N force executed. The method developed in this article can contribute to the application of heavy metal adsorption in aqueous solutions for water purification and waste management. KW - Biopolymer KW - Cellulose KW - Hydrogel KW - Natural KW - Synthesis PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486845 DO - https://doi.org/10.1002/APP.48380 SN - 1097-4628 SN - 0021-8995 VL - 136 SP - 48380, 1 EP - 11 PB - Wiley CY - USA AN - OPUS4-48684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aristia, Gabriela A1 - Le, Quynh Hoa A1 - Bäßler, Ralph T1 - Electrochemical deposition of polyaniline on carbon steel for corrosion study in geothermal solution N2 - Polyaniline has been widely developed for many applications, e.g. sensor, supercapacitor components, electrochromic devices, and anticorrosion pigments. Although the addition of polyaniline pigment in organic coatings has been an alternative for corrosion protection in industrial applications, the protection mechanism is still not fully understood. Herein in this study, as a part of the development of polyaniline/silicon dioxide coating for geothermal application, polyaniline has been deposited electrochemically on carbon steel surface in oxalic acid medium and tested in geothermal solution to understand the contribution of polyaniline to the corrosion protection of a polyaniline-based composite in the geothermal system. To observe the surface/interface reaction between the electrolyte and electrode surface during the electrochemical polymerization, electrochemical impedance spectroscopy (EIS) was applied after each cycle. For corrosion study in the geothermal application, an artificial geothermal solution was used with the composition of 1,500 mg/l Cl⁻, 20 mg/l SO₄²⁻, 15 mg/l HCO₃⁻, 200 mg/l Ca²⁺, 250 mg/l K⁺, and 600 mg/l Na⁺, and pH 4 to simulate a geothermal brine found in Sibayak, Indonesia. An electrochemical measurement was performed by monitoring the open circuit potential over seven days, with the interruption by EIS every 22 hours. The experiments were performed at room temperature and 150 °C (1 MPa) in an oxygen-free environment. Impedance spectra showed a reduction of the total impedance value of approximately 10 times for specimens measured at 150 °C compared to the specimens measured at room temperature, suggesting a less stable layer at high temperature. KW - Corrosion KW - Electrochemical deposition KW - Polyaniline PY - 2019 DO - https://doi.org/10.4028/www.scientific.net/MSF.966.107 SN - 1662-9752 VL - 966 SP - 107 EP - 115 PB - Trans Tech Publications Ltd CY - Zürich AN - OPUS4-48776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, X. A1 - Schmidt, Franziska A1 - Gurlo, A. T1 - Fabrication of polymer-derived ceramics with hierarchical porosities by freeze casting assisted by thiol-ene click chemistry and HF etching N2 - The freeze casting technique assisted with cryo thiol-ene photopolymerization is successfully employed for the fabrication of macroporous polymer-derived silicon oxycarbide with highly aligned porosity. It is demonstrated that the free radical initiated thiol-ene click reaction effectively cross-linked the vinyl-containing liquid polysiloxanes into infusible thermosets even at low temperatures. Furthermore, mixed solution- and suspension-based freeze casting is employed by adding silica nanopowders. SiOC/SiO2 foams with almost perfect cylindrical shapes are obtained, demonstrating that the presence of nano-SiO2 does not restrict the complete photoinduced cross-linking. The post-pyrolysis HF acid treatments of produced SiOC monoliths yields hierarchical porosities, with SiOC/SiO2 nanocomposites after etching demonstrating the highest specific surface area of 494 m2/g and pore sizes across the macro-, meso- and micropores ranges. The newly developed approach gives a versatile solution for the fabrication of bulk polymer-derived ceramics with controlled porosity. KW - Freeze casting KW - Preceramic polymer KW - Hierarchical porosities KW - Thiol-ene click chemistry KW - Frozen state photopolymerization PY - 2019 DO - https://doi.org/10.1016/j.jeurceramsoc.2019.09.038 SN - 0955-2219 VL - 40 IS - 2 SP - 315 EP - 323 PB - Elsevier AN - OPUS4-49172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Lüchtenborg, Jörg A1 - Mühler, T. A1 - Wilbig, Janka A1 - Mohr, Gunther A1 - Villatte, T. A1 - Léonard, Fabien A1 - Nolze, Gert A1 - Sparenberg, M. A1 - Melcher, J. A1 - Hilgenberg, Kai A1 - Günster, Jens T1 - Enabling the 3D Printing of Metal Components in μ-Gravity N2 - As humanity contemplates manned missions to Mars, strategies need to be developed for the design and operation of hospitable environments to safely work in space for years. The supply of spare parts for repair and replacement of lost equipment will be one key need, but in-space manufacturing remains the only option for a timely supply. With high flexibility in design and the ability to manufacture ready-to-use components directly from a computeraided model, additive manufacturing (AM) technologies appear extremely attractive. For the manufacturing of metal parts, laser-beam melting is the most widely used AM process. However, the handling of metal powders in the absence of gravity is one prerequisite for its successful application in space. A gas flow throughout the powder bed is successfully applied to compensate for missing gravitational forces in microgravity experiments. This so-called gas-flow-assisted powder deposition is based on a porous Building platform acting as a filter for the fixation of metal particles in a gas flow driven by a pressure difference maintained by a vacuum pump. KW - Additive manufacturing KW - µ-gravity KW - Laser beam melting KW - Parabolic flight KW - 3D printing PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-492190 DO - https://doi.org/10.1002/admt.201900506 SP - 1900506 PB - WILEY-VCH Verlag GmbH AN - OPUS4-49219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hlavacek, Petr A1 - Gluth, Gregor A1 - Lüchtenborg, Jörg A1 - Sturm, Patrick A1 - Mühler, T. A1 - Kühne, Hans-Carsten A1 - Günster, Jens T1 - A Novel Approach to Additive Manufacturing of Alkali-activated Materials: Laser-induced Slip Casting (LIS) of Lithium Aluminate/Silica Slurries N2 - Additive manufacturing of alkali-activated materials currently attracts a lot of attention, because of the possibility to produce customized high-performance elements for a range of applications, potentially being more resource-efficient than conventionally produced parts. Here, we describe a new additive manufacturing process for alkali-activated materials that is based on selective laser-heating of lithium aluminate/microsilica slurries. The new process-material combination allows to manufacture elements with complex geometries at high building rates and high accuracy. The process is versatile and transferrable to structures of sizes differing by orders of magnitude. The mechanical strength of the obtained materials was in the range of values reported for conventional metakaolin-based geopolymers, and superior to what has been hitherto reported for alkali-activated materials produced by additive manufacturing. This mechanical performance was obtained despite the fact that the degree of reaction of the lithium aluminate and the microsilica was low, suggesting that significant reactions took place only at the surface of the microsilica particles. KW - Laser-induced slip casting KW - Alkali-activated materials KW - Additive manufacturing PY - 2019 DO - https://doi.org/10.29272/cmt.2018.0011 SN - 2612-4882 VL - 1 IS - 2 SP - 138 EP - 144 PB - Techna Group AN - OPUS4-49142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hilgenberg, Kai A1 - Daum, Werner A1 - Maierhofer, Christiane A1 - Altenburg, Simon A1 - Bruno, Giovanni A1 - Heckel, Thomas A1 - Skrotzki, Birgit A1 - Zerbst, Uwe A1 - Kranzmann, Axel A1 - Bettge, Dirk A1 - Sommer, Konstantin A1 - Seeger, Stefan A1 - Nitsche, Michael A1 - Günster, Jens A1 - Evans, Alexander T1 - Additive manufacturing at the BAM: We focus on Safety N2 - In Germany, the Federal Institute for Materials Research and Testing (BAM) is addressing challenges in the implementation of additive manufacturing on the industrial landscape for safety-critical applications. KW - Process development KW - Additive Manufacturing KW - In-situ Process Monitoring KW - Non-destructive Materials KW - Characterisation KW - Safety KW - Fatigue KW - Environment KW - Standardisation PY - 2019 UR - https://static.asminternational.org/amp/201910/22/ SN - 0882-7958 VL - 177 IS - 7 SP - 22 EP - 26 PB - ASM International CY - Materials Park, OH, USA AN - OPUS4-49780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bayerlein, Bernd A1 - Hanke, T. A1 - Muth, Thilo A1 - Riedel, Jens A1 - Schilling, Markus A1 - Schweizer, C. A1 - Skrotzki, Birgit A1 - Todor, A. A1 - Moreno Torres, Benjami A1 - Unger, Jörg F. A1 - Völker, Christoph A1 - Olbricht, Jürgen T1 - A Perspective on Digital Knowledge Representation in Materials Science and Engineering N2 - The amount of data generated worldwide is constantly increasing. These data come from a wide variety of sources and systems, are processed differently, have a multitude of formats, and are stored in an untraceable and unstructured manner, predominantly in natural language in data silos. This problem can be equally applied to the heterogeneous research data from materials science and engineering. In this domain, ways and solutions are increasingly being generated to smartly link material data together with their contextual information in a uniform and well-structured manner on platforms, thus making them discoverable, retrievable, and reusable for research and industry. Ontologies play a key role in this context. They enable the sustainable representation of expert knowledge and the semantically structured filling of databases with computer-processable data triples. In this perspective article, we present the project initiative Materials-open-Laboratory (Mat-o-Lab) that aims to provide a collaborative environment for domain experts to digitize their research results and processes and make them fit for data-driven materials research and development. The overarching challenge is to generate connection points to further link data from other domains to harness the promised potential of big materials data and harvest new knowledge. KW - Data infrastructures KW - Digital representations KW - Digital workflows KW - Knowledge graphs KW - Materials informatics KW - Ontologies KW - Vocabulary providers PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546729 DO - https://doi.org/10.1002/adem.202101176 SN - 1438-1656 SP - 1 EP - 14 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-54672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - Comprehensive study of deuterium-induced effects in in austenitic stainless steel AISI 304L N2 - The damaging impact of hydrogen on the austenitic stainless steel AISI 304 L was analysed. To this aim, samples were charged electrochemically with the hydrogen isotope deuterium (2H, D) and examined with time-of-flight secondary ion mass spectrometry (ToF-SIMS) and electron backscatter diffraction (EBSD). The fusion of the obtained chemical and structural information revealed local enrichment of deuterium in austenite, transformation into martensite, crack formation and severe roughening of the specimen surface. The results indicated that martensite was not only formed during charging but also during Desorption and ToF-SIMS examinations. Furthermore, cross-sections of deuterium-charged samples revealed that in preferred deformation bands a g/ε/a 0 evolution is taking place. By means of microscopic analyses and carrier gas hot extraction (CGHE), it was found that the use of NaAsO2 as recombination poison decreased the uptake of hydrogen significantly and resulted in severe precipitation on the specimen surfaces. This is in contrast to the popular presumption that NaAsO2 enhances the uptake of hydrogen (and deuterium) during electrochemical charging by hampering its recombination from Atoms to molecules. KW - AISI 304L KW - Hydrogen KW - ToF-SIMS KW - Deuterium KW - Martensite PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-477540 DO - https://doi.org/10.1016/j.ijhydene.2019.03.058 SN - 0360-3199 SN - 1879-3487 VL - 44 IS - 23 SP - 12228 EP - 12238 PB - Elsevier Ltd. AN - OPUS4-47754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kindrachuk, Vitaliy A1 - Titscher, Thomas A1 - Unger, Jörg F. T1 - A Fourier transformation-based method for gradient-enhanced modeling of fatigue N2 - A key limitation of the most constitutive models that reproduce a Degradation of quasi-brittle materials is that they generally do not address issues related to fatigue. One reason is the huge computational costs to resolve each load cycle on the structural level. The goal of this paper is the development of a temporal Integration scheme, which significantly increases the computational efficiency of the finite element method in comparison to conventional temporal integrations. The essential constituent of the fatigue model is an implicit gradient-enhanced formulation of the damage rate. The evolution of the field variables is computed as amultiscale Fourier series in time.On a microchronological scale attributed to single cycles, the initial boundary value problem is approximated by linear BVPs with respect to the Fourier coefficients. Using the adaptive cycle jump concept, the obtained damage rates are transferred to a coarsermacrochronological scale associated with the duration of material deterioration. The performance of the developedmethod is hence improved due to an efficient numerical treatment of the microchronological problem in combination with the cycle jump technique on the macrochronological scale. Validation examples demonstrate the convergence of the obtained solutions to the reference simulations while significantly reducing the computational costs. KW - Accelerated temporal integration KW - Fourier series KW - Gradient-enhanced fatigue model PY - 2018 DO - https://doi.org/10.1002/nme.5740 SN - 1097-0207 SN - 0029-5981 VL - 114 IS - 2 SP - 196 EP - 214 PB - Wiley AN - OPUS4-44008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -