TY - JOUR A1 - Qu, R. A1 - Maaß, Robert A1 - Liu, Z. A1 - Tönnies, D. A1 - Tian, L. A1 - Ritchie, R. A1 - Zhang, Z. A1 - Volkert, A. T1 - Flaw-insentive fracture of a micrometer-sized brittle metallic glass N2 - Brittle materials, such as oxide glasses, are usually very sensitive to flaws, giving rise to a macroscopic fracture strength that is much lower than that predicted by theory. The same applies to metallic glasses (MGs), with the important difference that these glasses can exhibit certain plastic strain prior to catas- trophic failure. Here we consider the strongest metallic alloy known, a ternary Co 55 Ta 10 B 35 MG. We show that this macroscopically brittle glass is flaw-insensitive at the micrometer scale. This discovery emerges when testing pre-cracked specimens with self-similar geometries, where the fracture stress does not de- crease with increasing pre-crack size. The fracture toughness of this ultra-strong glassy alloy is further shown to increase with increasing sample size. Both these findings deviate from our classical under- standing of fracture mechanics, and are attributed to a transition from toughness-controlled to strength- controlled fracture below a critical sample size. KW - Metallic glass KW - Fracture toughness KW - Size effect KW - Small-scale PY - 2021 DO - https://doi.org/10.1016/j.actamat.2021.117219 VL - 218 PB - Elsevier Ltd. AN - OPUS4-53097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, C. A1 - Ikeda, Yuki A1 - Maaß, Robert T1 - Strain-dependent shear-band structure in a Zr-based bulk metallic glass N2 - This work presents strong evidence for structural damage accumulation as a function of shear strain admitted by shear bands in a Zr-based bulk metallic glass. Analyzing the shear-band structure of shear- band segments that experienced shear strains covering four orders of magnitude with high-angle annular dark field transmission electron microscopy (HAADF-STEM) reveals strongly scattered data with on overall trend of increasing local volume dilatation with increasing shear strain. Locally, however, a variety of trends is observed, which underlines the strong heterogeneity of structural damage in shear bands in metallic glasses. KW - Transmission electron microscopy KW - Metallic glass KW - Shear bands KW - Shear-band structure KW - Shear strain PY - 2021 DO - https://doi.org/10.1016/j.scriptamat.2020.08.030 VL - 190 SP - 75 EP - 79 PB - Elsevier Ltd. AN - OPUS4-52454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bayerlein, Bernd A1 - Waitelonis, Jörg A1 - Birkholz, Henk A1 - Jung, Matthias A1 - Schilling, Markus A1 - v. Hartrott, Philipp A1 - Bruns, Marian A1 - Schaarschmidt, Jörg A1 - Beilke, Kristian A1 - Mutz, Marcel A1 - Nebel, Vincent A1 - Königer, Veit A1 - Beran, Lisa A1 - Kraus, Tobias A1 - Vyas, Akhilesh A1 - Vogt, Lars A1 - Blum, Moritz A1 - Ell, Basil A1 - Chen, Ya‐Fan A1 - Waurischk, Tina A1 - Thomas, Akhil A1 - Durmaz, Ali Riza A1 - Ben Hassine, Sahar A1 - Fresemann, Carina A1 - Dziwis, Gordian A1 - Beygi Nasrabadi, Hossein A1 - Hanke, Thomas A1 - Telong, Melissa A1 - Pirskawetz, Stephan A1 - Kamal, Mohamed A1 - Bjarsch, Thomas A1 - Pähler, Ursula A1 - Hofmann, Peter A1 - Leemhuis, Mena A1 - Özçep, Özgür L. A1 - Meyer, Lars‐Peter A1 - Skrotzki, Birgit A1 - Neugebauer, Jörg A1 - Wenzel, Wolfgang A1 - Sack, Harald A1 - Eberl, Chris A1 - Portella, Pedro Dolabella A1 - Hickel, Tilmann A1 - Mädler, Lutz A1 - Gumbsch, Peter T1 - Concepts for a Semantically Accessible Materials Data Space: Overview over Specific Implementations in Materials Science N2 - This article describes advancements in the ongoing digital transformation in materials science and engineering. It is driven by domain‐specific successes and the development of specialized digital data spaces. There is an evident and increasing need for standardization across various subdomains to support science data exchange across entities. The MaterialDigital Initiative, funded by the German Federal Ministry of Education and Research, takes on a key role in this context, fostering collaborative efforts to establish a unified materials data space. The implementation of digital workflows and Semantic Web technologies, such as ontologies and knowledge graphs, facilitates the semantic integration of heterogeneous data and tools at multiple scales. Central to this effort is the prototyping of a knowledge graph that employs application ontologies tailored to specific data domains, thereby enhancing semantic interoperability. The collaborative approach of the Initiative's community provides significant support infrastructure for understanding and implementing standardized data structures, enhancing the efficiency of data‐driven processes in materials development and discovery. Insights and methodologies developed via the MaterialDigital Initiative emphasize the transformative potential of ontology‐based approaches in materials science, paving the way toward simplified integration into a unified, consolidated data space of high value. KW - Semantic Interoperability KW - Data Spaces KW - Integration Workflows KW - MaterialDigital PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-622952 DO - https://doi.org/10.1002/adem.202401092 SN - 1527-2648 SP - 1 EP - 25 PB - Wiley-VCH CY - Weinheim AN - OPUS4-62295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chen, Yu A1 - Bo, Zhen-Xing A1 - Zhou, Hong Bo A1 - Sun, Bao-An A1 - Sun, Yong Hao A1 - Maaß, Robert A1 - Wang, Wei Hua T1 - Nanoindentation reveals universal scaling of pop-in plasticity in metallic glasses N2 - Plastic flow of metallic glasses proceeds intermittently in the inhomogeneous deformation regime. Mediated via shear bands, quasi-static straining gives rise to plastic instabilities that are measured as abrupt displacement bursts or pop-ins. The latter is a well-known feature in nanoindentation, where its first occurrence probes the critical and site-specific stress of nano-scale incipient shear deformation. Here we show that the statistical distribution of the stress and magnitude of the first shear instability, as well as its successive higher-order events, universally follow Weibull statistics across ten different metallic glasses. This indicates a fundamentally identical plastic process across glass-forming alloys and progressing deformation that is governed by a weakest-link phenomenon. This finding stands in strong contrast to crystalline alloys, where both defect nucleation and defect-structure evolution control shear instabilities and depend on the deformation history. KW - Metallic glasses KW - Nanoindentation KW - Intermittent flow KW - Pop-ins KW - Weibull distribution PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-624772 DO - https://doi.org/10.1016/j.scriptamat.2025.116549 VL - 259 SP - 1 EP - 5 PB - Elsevier Inc. AN - OPUS4-62477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Riechers, Birte A1 - Das, Amlan A1 - Rashidi, Reza A1 - Dufresne, Eric A1 - Maaß, Robert T1 - Metallic glasses: Elastically stiff yet flowing at any stress N2 - Crystalline solids have a minimum stress needed to displace atoms or to move defects. This stress defines the true elastic limit and is generally a sizeable share of the macroscopic yield stress. Here we demonstrate that a metallic glass, an amorphous solid with a yield stress in the giga-pascal regime, lacks such a true microscopic elastic limit. Leveraging in-situ coherent x-ray scattering, we uncover a strongly accelerated atomic-scale transport upon the application of a stress as small as 0.005 times the yield stress. With increasing stress levels, the distribution of structural relaxation times changes from compressed exponential to simple exponential form, revealing a stress–temperature equivalence in the time-scale domain. These findings strongly promote a microstructurally heterogeneous picture of metallic glasses, in which a part of the amorphous microstructure controls macroscopic yielding whereas another part admits microplastic flow at any stress. KW - Metallic glasses KW - Microstructure PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-624530 DO - https://doi.org/10.1016/j.mattod.2024.11.015 VL - 82 SP - 92 EP - 98 PB - Elsevier B.V. AN - OPUS4-62453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fareed, Adnan A1 - Rosalie, Julian A1 - Kar, Satyakam A1 - Fähler, Sebastian A1 - Maaß, Robert T1 - Small-scale functional fatigue of a Ni-Mn-Ga Heusler alloy N2 - Functional fatigue of shape-memory alloys is a considerable threat to the reliable service of actuation devices. Here, we demonstrate the essentially degradation-free cyclic phase-transformation behavior of Ni-Mn-Ga microcrystals up to one million stress-driven superelastic cycles. Cyclic dissipation amounts to about 1/5 of the bulk counterpart and remains unaffected during cycling, even after the introduction of dislocation structures via plastic straining. Plastic yielding and the transformation stress largely exceed the known bulk values. However, the transformation-stress is found to depend on plastic pre-straining, which suggests that the size-affected transformation stress is sensitive to the initial defect structure and that it can be tuned by a targeted introduction of dislocations. These findings demonstrate the high suitability of Ni-Mn-Ga as a robust shape-memory alloy in small-scale functional device engineering. KW - Superelasticity KW - Shape-memory alloys KW - Functional fatigue KW - Ni-Mn-Ga PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600695 DO - https://doi.org/10.1016/j.actamat.2024.119988 VL - 274 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-60069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Riechers, Birte A1 - Das, Amlan A1 - Dufresne, Eric A1 - Derlet, Peter M. A1 - Maaß, Robert T1 - Intermittent cluster dynamics and temporal fractional diffusion in a bulk metallic glass N2 - Glassy solids evolve towards lower-energy structural states by physical aging. This can be characterized by structural relaxation times, the assessment of which is essential for understanding the glass’ time-dependent property changes. Conducted over short times, a continuous increase of relaxation times with time is seen, suggesting a time-dependent dissipative transport mechanism. By focusing on micro-structural rearrangements at the atomic-scale, we demonstrate the emergence of sub-diffusive anomalous transport and therefore temporal fractional diffusion in a metallic glass, which we track via coherent x-ray scattering conducted over more than 300,000 s. At the longest probed decorrelation times, a transition from classical stretched exponential to a power-law behavior occurs, which in concert with atomistic simulations reveals collective and intermittent atomic motion. Our observations give a physical basis for classical stretched exponential relaxation behavior, uncover a new power-law governed collective transport regime for metallic glasses at long and practically relevant time-scales, and demonstrate a rich and highly non-monotonous aging response in a glassy solid, thereby challenging the common framework of homogeneous aging and atomic scale diffusion. KW - Glassy solids KW - Fractional diffusion KW - Coherent x-ray scattering PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608015 DO - https://doi.org/10.1038/s41467-024-50758-3 VL - 15 IS - 1 SP - 1 EP - 9 PB - Springer Science and Business Media LLC AN - OPUS4-60801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fareed, Adnan A1 - Rosalie, Julian A1 - Kumar, Sourabh A1 - Kar, S. A1 - Hickel, Tilmann A1 - Fähler, S. A1 - Maaß, Robert T1 - Constrained incipient phase transformation in Ni-Mn-Ga films: A small-scale design challenge N2 - Ni-Mn-Ga shape-memory alloys are promising candidates for large strain actuation and magnetocaloric cooling devices. In view of potential small-scale applications, we probe here nanomechanically the stress-induced austenite–martensite transition in single crystalline austenitic thin films as a function of temperature. In 0.5 μm thin films, a marked incipient phase transformation to martensite is observed during nanoindentation, leaving behind pockets of residual martensite after unloading. These nanomechanical instabilities occur irrespective of deformation rate and temperature, are Weibull distributed, and reveal large spatial variations in transformation stress. In contrast, at a larger film thickness of 2 μm fully reversible transformations occur, and mechanical loading remains entirely smooth. Ab-initio simulations demonstrate how an in-plane constraint can considerably increase the martensitic transformation stress, explaining the thickness-dependent nanomechanical behavior. These findings for a shape-memory Heusler alloy give insights into how reduced dimensions and constraints can lead to unexpectedly large transformation stresses that need to be considered in small-scale actuation design. KW - Shape-memory alloys KW - Nanoindentation KW - Incipient plasticity KW - NiMaGa PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581422 DO - https://doi.org/10.1016/j.matdes.2023.112259 VL - 233 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-58142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Zengquan A1 - Riechers, Birte A1 - Derlet, Peter M. A1 - Maaß, Robert T1 - Atomic cluster dynamics causes intermittent aging of metallic glasses N2 - In the past two decades, numerous relaxation or physical aging experiments of metallic glasses have revealed signatures of intermittent atomic-scale processes. Revealed via intensity cross-correlations from coherent scattering using X-ray photon correlation spectroscopy (XPCS), the observed abrupt changes in the time-domain of atomic motion does not fit the picture of gradual slowing down of relaxation times and their origin continues to remain unclear. Using a binary Lennard-Jones model glass subjected to microsecond-long isotherms, we show here that temporally and spatially heterogeneous atomic-cluster activity at different length-scales drive the emergence of highly non-monotonous intensity cross-correlations. The simulated XPCS experiments reveal a variety of time-dependent intensity-cross correlations that, depending on both the structural evolution and the 𝑞-space sampling, give detailed insights into the possible structural origins of intermittent aging measured with XPCS. KW - Metallic glasses KW - Aging KW - Molecular dynamics KW - XPCS PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595415 DO - https://doi.org/10.1016/j.actamat.2024.119730 SN - 1359-6454 VL - 267 SP - 1 EP - 9 PB - Elsevier B.V. CY - Amsterdam, Niederlande AN - OPUS4-59541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fantin, Andrea A1 - Manzoni, Anna Maria A1 - Springer, H. A1 - Darvishi Kamachali, Reza A1 - Maaß, Robert T1 - Local lattice distortions and chemical short-range order in MoNbTaW N2 - Extended X-ray absorption fine structure (EXAFS) conducted on an equiatomic MoNbTaW bcc medium-entropy alloy that was annealed at 2273 K reveals unexpectedly small 1st and 2nd shell element-specific lattice distortions. An experimental size-mismatch parameter, δexp, is determined to be ca. 50% lower than the corresponding calculated value. Around W, short-range order (SRO) preferring 4d elements in the 1st and 2nd shells persists. A Nb-W ordering is found, which is reminiscent of ordering emerging at lower temperatures in the B2(Mo,W;Ta,Nb)- and B32(Nb,W)-phases. With high-temperature ordering preferences in fcc also foreshadowing low-temperature phase, these findings suggest a general feature of high-temperature SRO. KW - High Entropy Alloys KW - Short-range order KW - Lattice distortions KW - EXAFS PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598164 DO - https://doi.org/10.1080/21663831.2024.2326014 SN - 2166-3831 VL - 12 IS - 5 SP - 346 EP - 354 PB - Taylor & Francis AN - OPUS4-59816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rashidi, Reza A1 - Riechers, Birte A1 - Rosalie, Julian A1 - Maaß, Robert T1 - Annealing-dependent elastic microstructure in a Zr-based metallic glass N2 - In this letter, we demonstrate the robust presence of an elastic microstructure in a Zr-based metallic glass (MG) with a characteristic length-scale of the order of 100 nm. This length scale increases systematically towards the MG surface in differently sized casts, whereas thermal relaxation homogenizes both the internal length-scale gradient and the magnitude of the elastic fluctuations. Strongest changes during relaxation arise in the stiffest parts of the elastic microstructure. These findings indicate that the elastic microstructure emerges due to cooling constraints and may therefore be a microstructural manifestation of the internal residual stresses that arise during MG-solidification. KW - Metallic glass KW - Heterogeneity KW - Elastic microstructure KW - Nanoindentation PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-610962 DO - https://doi.org/10.1016/j.scriptamat.2024.116380 VL - 255 SP - 1 EP - 5 PB - Elsevier B.V. CY - Amsterdam, Niederlande AN - OPUS4-61096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, M. A1 - Schubert, Nils A1 - Günster, Jens A1 - Stawarczyk, B. A1 - Zocca, Andrea T1 - Additive manufacturing of glass-ceramic dental restorations by layerwise slurry deposition (LSD-print) N2 - This study is dedicated to the additive manufacturing of a feldspar glass-ceramic for dental applications by LSD-print (layerwise slurry deposition) technology, a variation of binder jetting using water-based ceramic slurries as feedstock. This technology was investigated for the manufacturing of single tooth restoration demonstrators with good aesthetic properties, and to compare the additively manufactured material with a commercial reference. Model restorations with > 99 % relative density were processed with a debinding and firing cycle of 45 min, however the whole process chain accounts for up to 30 hours. Significant differences between LSD-printed and reference materials were found for fracture strength, fracture toughness and Martens parameters. Printing orientation affected shrinkage and fracture strength, but not fracture toughness and Martens parameters. Nevertheless, the results suggest that the LSD-print technology processing the developed slurry is a promising option for manufacturing dental restorations meeting class 1a requirements according to DIN EN ISO 6871:2019–01. KW - Additive Manufacturing KW - 3D-printing KW - LSD-print KW - Dental ceramics KW - Glass-ceramic KW - Debinding KW - Firing KW - Sinter-crystallization PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-624768 DO - https://doi.org/10.1016/j.jeurceramsoc.2025.117235 VL - 45 IS - 7 SP - 1 EP - 13 PB - Elsevier Ltd. AN - OPUS4-62476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karl, D. A1 - Duminy, T. A1 - Lima, P. A1 - Kamutzki, F. A1 - Gili, A. A1 - Zocca, Andrea A1 - Günster, Jens A1 - Gurlo, A. T1 - Clay in situ resource utilization with Mars global simulant slurries for additive manufacturing and traditional shaping of unfired green bodies N2 - The wet processing of regolith simulant for clay in situ resource utilization (ISRU) on Mars is presented. The two raw materials from the Mars global simulant family, one without clay (MGS-1) and one with clay - sodium montmorillonite smectite - (MGS-1C) were milled and mixed to produce a simulant with small particle size and reduced clay content (MGS-1C/8). All three simulants and the pure clay raw material were extensively characterized using XRF, synchrotron XRD, gas adsorption and gas pycnometry methods. In a straightforward processing approach, MGS-1C/8 was mixed with water and different dispersant approaches were investigated, all of which gave stable slurries. Particle size distribution, rheology, ion concentration, pH and electrical conductivity of these slurries were characterized. The slurry systems can easily be adapted to fit all typical ceramic shaping routes and here parts of varying complexity from slip casting, throwing on a potter's wheel and additive manufacturing, including material extrusion (robocasting) and binder jetting (powder bed 3D printing) were produced. The unique properties of the sodium montmorillonite clay, which is readily accessible in conjunction with magnesium sulfate on the Martian surface, acted as a natural nanosized binder and produced high strength green bodies (unfired ceramic body) with compressive strength from 3.3 to 7.5 MPa. The most elaborate additive manufacturing technique layerwise slurry deposition (LSD) produced water-resistant green bodies with a compressive strength of 30.8 ± 2.5 MPa by employing a polymeric binder, which is similar or higher than the strength of standard concrete. The unfired green bodies show sufficient strength to be used for remote Habitat building on Mars using additive manufacturing without humans being present. KW - Mars KW - Smectite KW - Clay ISRU KW - MGS-1 regolith simulant KW - 3D printing KW - Additive manufacturing PY - 2020 DO - https://doi.org/10.1016/j.actaastro.2020.04.064 VL - 174 SP - 241 EP - 253 PB - Elsevier Ltd. AN - OPUS4-50870 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Günster, Jens T1 - Research and carrier in governmental research institute in Japan and Germany N2 - Being invited to Japan in 1996 as a Humboldt/STA was on of the most exciting things in my life. Not that it is on an absolute scale the most exciting thing still, but at that time, just after finalizing my PhD and thinking what is coming next, it was. KW - Networking PY - 2022 DO - https://doi.org/10.11470/oubutsu.91.2_115 SN - 0369-8009 VL - 91 IS - 2 SP - 115 EP - 117 PB - Gakkai CY - Tōkyō AN - OPUS4-54462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baesso, Ilaria A1 - Karl, D. A1 - Spitzer, Andrea A1 - Gurlo, A. A1 - Günster, Jens A1 - Zocca, Andrea T1 - Characterization of powder flow behavior for additive manufacturing N2 - The flow behavior of powders has an essential role in many industrial processes, including powder bed additive manufacturing. The characterization of the flow behavior is challenging, as different methods are available, and their suitability for an application in additive manufacturing is still controversial. In this study, six standardized methods (measurement of bulk density by ISO 60 and by ASTM B329, angle of repose by ISO 4324, discharge time by ISO 6186 and by ASTM B964-16, and Hausner Ratio by ASTM 7481 – 18), the rotating drum method (by GranuDrum) and powder rheometry (Anton Paar powder cell), were applied to five size fractions of a crushed quartz sand powder and compared. A statistical approach is proposed and discussed to correlate the obtained flowability indexes with the packing density of powder beds deposited layer-by-layer, and these correlations are compared between methods. Overall, the measurement of bulk density by ASTM B329 that showed the best correlation with the powder bed density. Advanced methods such as the rotating drum method and powder rheometry did not demonstrate particularly good correlations, however they provided complementary information which can be useful to assess the dynamic behavior of powders. KW - Powder flow KW - Flowability KW - Powder bed additive manufacturing KW - Powder rheology PY - 2021 DO - https://doi.org/10.1016/j.addma.2021.102250 SN - 2214-8604 VL - 47 SP - 1 EP - 14 PB - Elsevier CY - Amsterdam AN - OPUS4-53229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rashidi, Reza A1 - Vaerst, Olivia A1 - Riechers, Birte A1 - Rösner, Harald A1 - Wilde, Gerhard A1 - Maaß, Robert T1 - Atomic-scale strain fluctuations as an origin for elastic microstructures in metallic glasses N2 - Metallic glasses (MGs) exhibit an elastic microstructure that spans from a few to hundreds of nanometers, the origin of which continues to remain poorly understood. Here we employ four-dimensional scanning transmission electron microscopy (4D-STEM) on a Zr65Cu25Al10 (at. %) bulk MG. Mapping local diffraction patterns over representative areas also probed elastically with automated nanoindentation, two comparable correlation length scales have been identified. Specifically, local diffraction patterns are analyzed with respect to their ellipticity, revealing systematic fluctuations between positive and negative volumetric strains. A power spectrum analysis of the strain fluctuations returns a dominant length scale of the order of 100 nm, which is very much compatible with what elastic property mapping indicates. Annealing reduces the magnitude of the statistical strain fluctuations, without strongly affecting the associated fluctuation length scale. These findings demonstrate that atomic-scale strains are very likely the origin of the structurally unexpected large elastic fluctuations obtained in nanoscale contact mechanics experiments. KW - Metallic glass KW - 4D-STEM KW - Strain anisotropy KW - Nanoindentation KW - Elastic microstructure KW - Heterogeneities PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654991 DO - https://doi.org/10.1016/j.actamat.2026.121982 SN - 1359-6454 VL - 308 SP - 1 EP - 8 PB - Elsevier Inc. AN - OPUS4-65499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Müller, Bernd R. A1 - Laquai, René A1 - Kupsch, Andreas A1 - Wieder, Frank A1 - Benemann, Sigrid A1 - Wilbig, Janka A1 - Günster, Jens A1 - Bruno, Giovanni T1 - Microstructural characterization of AP40 apatite-wollastonite glass-ceramic N2 - The microstructure of an apatite-wollastonite (code name AP40) glass-ceramic is analyzed in this study by combining 2D microscopy, phase analysis, X-ray absorption and synchrotron X-ray refraction computed tomography (XCT and SXRCT, respectively). It is shown that this combination provides a useful toolbox to characterize the global microstructure in a wide scale range, from sub-micrometer to millimeter. The material displays a complex microstructure comprising a glassy matrix with embedded fluorapatite and wollastonite small crystals. In this matrix, large (up to 200 μm) spike-shaped structures are distributed. Such microstructural features are oriented around a central sphere, thereby forming a structure resembling a sea urchin. A unique feature of SXRCT, in contrast to XCT, is that internal interfaces are visualized; this allows one to show the 3D distribution of these urchins with exceptionally good contrast. Furthermore, it is revealed that the spike-shaped structures are not single crystals, but rather composed of sub-micrometric crystals, which are identified as fluorapatite and diopside phases by SEM-EDX analysis. KW - Glass-ceramic KW - X-ray refraction KW - Computed tomography KW - Microstructure PY - 2023 DO - https://doi.org/10.1016/j.ceramint.2022.12.130 SN - 0272-8842 VL - 49 IS - 8 SP - 12672 EP - 12679 PB - Elsevier Science CY - Amsterdam AN - OPUS4-57452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lanzino, Maria Carolina A1 - Le, Long-Quan R. V. A1 - Wilbig, Janka A1 - Rheinheimer, Wolfgang A1 - Seidenstuecker, Michael A1 - Günster, Jens A1 - Killinger, Andreas T1 - Thin GB14 coatings on implants using HVSFS N2 - Enhancing osseointegration, the process by which medical implants securely bond to bone, is crucial for improving patient outcomes in orthopedics and dental surgery. Calcium alkali orthophosphates, with their superior bioactivity, resorbability, and chemical resemblance to bone minerals, have emerged as promising candidates for implant coatings. These materials offer improved solubility and lower melting points due to the substitution of calcium with potassium and sodium, along with the addition of magnesium oxide. This study investigates GB14 calcium alkali orthophosphate coatings applied via High Velocity Suspension Flame Spraying (HVSFS), a technique that enables precise control over coating properties. A porosity target of >10% was set to promote bone growth, and we achieved porosities up to 13%, ensuring better cell penetration and stability at the implant-bone interface. Coatings were produced using different gas parameters and distances, with their microstructure and phase composition analyzed using scanning electron microscope (SEM), Vickers hardness testing and X-ray diffraction (XRD). Additionally, roughness and porosity were also assessed. Different coating’s microstructures were achieved by varying stand-off distance and gas parameters. Increasing stand-off distance while reducing gas stoichiometry enabled the production of calcium alkali orthophosphate coatings with fewer cracks, higher porosity and a hardness level comparable to that of state-of-the-art tricalcium phosphate (TCP) coatings. The sample with optimized properties in terms of achieved microstructure and topography was selected for in vitro testing using MG63 osteosarcoma cells to evaluate cell proliferation and adhesion. WST (I) assay, LDH assay, and live/dead staining confirmed the biocompatibility of the coatings, highlighting the potential of HVSFS to enhance osseointegration and outperform conventional methods in implantology. No relevant cytotoxicity could be shown and cells show a good proliferation over time. These results highlight thus the potential of HVSFS to produce thin, bioactive and resorbable coatings to enhance osseointegration. KW - Bio ceramics KW - Spray coating PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-623983 DO - https://doi.org/10.3389/fmats.2024.1522447 SN - 2296-8016 VL - 11 IS - 1522447 SP - 1 EP - 14 PB - Frontiers Media SA AN - OPUS4-62398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sänger, Johanna Christiane A1 - Schwentenwein, Martin A1 - Bermejo, Raúl A1 - Günster, Jens T1 - Hybridizing Lithography-Based Ceramic Additive Manufacturing with Two-Photon-Polymerization N2 - Stereolithography processes such as lithography-based ceramic manufacturing (LCM) are technologies that can produce centimeter-sized structures in a reasonable time frame. However, for some parts specifications, they lack resolution. Two-photon-polymerization (2PP) ensures the highest geometric accuracy in additive manufacturing so far. Nevertheless, building up parts in sizes as large as a few millimeters or even centimeters is a time-consuming process, which makes the production of 2PP printed parts very costly. Regarding feedstock specification, the requirements for 2PP are different to those for LCM, and generally, feedstocks are designed to meet requirements for only one of these manufacturing technologies. In an attempt to fabricate highly precise ceramic components of a rather large size, it is necessary to develop a feedstock that suits both light-based technologies, taking advantage of LCM’s higher productivity and 2PP’s accuracy. Hybridization should bring the desired precision to the region of interest on reasonably large parts without escalating printing time and costs. In this study, specimens gained from a transparent feedstock with yttria stabilized zirconia (YSZ) particles of 5 nm at 70 wt% were presented. The resin was originally designed to suit 2PP, while being also printable with LCM. This work demonstrates how hybrid parts can be sintered into full YSZ ceramics. KW - Additive Manufacturing KW - Transparent ceramic KW - Nano-powder PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584541 DO - https://doi.org/10.3390/app13063974 SN - 2076-3417 VL - 13 IS - 6 SP - 1 EP - 9 PB - MDPI CY - Basel AN - OPUS4-58454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chinellato, Fabio A1 - Wilbig, Janka A1 - Al-Sabbagh, Dominik A1 - Colombo, P. A1 - Günster, Jens T1 - Gas flow assisted powder deposition for enhanced flowability of fine powders: 3D printing of alpha-tricalcium phosphate N2 - The possibility of creating patient-specific individual implants makes Additive Manufacturing technologies of special interest for the medical sector. For substitution of bone defects, powder based Additive Manufacturing by Binder Jetting is a suitable method to produce complex scaffold-like structures made of bioceramics with easily adapted geometries and controlled porosity. The process inherent residual porosity in the printed part, even though desired as it supports bone ingrowth, also leads to limited mechanical strength. Currently, bioceramic scaffolds made by Binder Jetting feature suitable biocompatible and biodegradable properties, while a sufficient mechanical stability is rather challenging. The purpose of this work is to apply the gas flow assisted powder deposition introduced in 2014 by Zocca et al., to the powder bed during printing of bioceramic tablets and scaffolds using α-TCP powder as feedstock. This enables exploiting the advantages of an increased powder bed density, thereby improving the mechanical properties of the printed parts. KW - Additive Manufacturing KW - Binder Jetting KW - Gas flow assisted powder deposition KW - Alpha-tricalcium phosphate KW - Scaffold PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-510138 DO - https://doi.org/10.1016/j.oceram.2020.100003 SN - 2666-5395 VL - 1 SP - 100003 PB - Elsevier Ltd. AN - OPUS4-51013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sänger, Johanna C. A1 - Riechers, Birte A1 - Pauw, Brian Richard A1 - Maaß, Robert A1 - Günster, Jens T1 - Microplastic response of 2PP‐printed ceramics N2 - AbstractTwo‐photon polymerization (2PP) additive manufacturing (AM) utilizes feedstocks of ceramic nanoparticles of a few nanometers in diameter, enabling the fabrication of highly accurate technical ceramic design with structural details as small as 500 nm. The performance of these materials is expected to differ from conventional AM ceramics, as nanoparticles and three‐dimensional printing at high resolution introduce new microstructural aspects. This study applies 2PP‐AM of yttria‐stabilized zirconia to investigate the mechanical response behavior under compressive load, probing the influence of smallest structural units induced by the line packing during the printing process, design of sintered microblocks, and sintering temperature and thereby microstructure. We find a dissipative mechanical response enhanced by sintering at lower temperatures than conventional. The pursued 2PP‐AM approach yields a microstructured material with an increased number of grain boundaries that proposedly play a major role in facilitating energy dissipation within the here printed ceramic material. This microplastic response is further triggered by the filigree structures induced by hollow line packing at the order of the critical defect size of ceramics. Together, these unique aspects made accessible by the 2PP‐AM approach contribute to a heterogeneous nano‐ and microstructure, and hint toward opportunities for tailoring the mechanical response in future ceramic applications. KW - Manufacturing KW - Mechanical properties KW - Microstructure KW - Plasticity KW - Zirconia: yttria stabilized PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605176 DO - https://doi.org/10.1111/jace.19849 SN - 1551-2916 VL - 107 IS - 10 SP - 6636 EP - 6645 PB - Wiley CY - Oxford AN - OPUS4-60517 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ginés-Palomares, Juan-Carlos A1 - Baasch, Julian A1 - Stapperfend, Simon A1 - Facchini, Leonardo A1 - Linke, Stefan A1 - Stoll, Enrico A1 - Günster, Jens T1 - Laser Melting vs. Laser Sintering: Large Area Heat Processing of Lunar South Pole Simulant N2 - A key component of future lunar missions is the concept of In-Situ Resource Utilization (ISRU), which involves the use of local resources to support human missions and reduce dependence on Earth-based supplies. This paper investigates the thermal processing capability of lunar regolith without the addition of binders, with a focus on large-scale applications for the construction of lunar habitats and infrastructure. The study used a simulant of lunar regolith found on the Schrödinger Basin in the South Pole region. This regolith simulant consists of 20 wt% basalt and 80 wt% anorthosite. Experiments were conducted using a high power CO2 laser to sinter and melt the regolith in a 80 mm diameter laser spot to evaluate the effectiveness of direct large area thermal processing. Results indicated that sintering begins at approximately 1,180 °C and reaches full melt at temperatures above 1,360 °C. Sintering experiments with this material revealed the formation of dense samples up to 11 mm thick, while melting experiments successfully produced larger samples by overlapping molten layers and additive manufacturing up to 50 mm thick. The energy efficiency of the sintering and melting processes was compared. The melting process was about 10 times more energy efficient than sintering in terms of material consolidation, demonstrating the promising potential of laser melting technologies of anorthosite-rich regolith for the production of structural elements. KW - Additive Manufacturing KW - Laser melting KW - ISRU KW - Moon KW - Regolith PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-639614 DO - https://doi.org/10.1016/j.amf.2025.200226 SN - 2950-4317 VL - 4 IS - 3 SP - 1 EP - 13 PB - Elsevier Ltd. AN - OPUS4-63961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Avila Calderon, Luis Alexander A1 - Schriever, Sina A1 - Hang, Y. A1 - Olbricht, Jürgen A1 - Portella, P. D. A1 - Skrotzki, Birgit T1 - Creep reference data of single-crystal Ni-based superalloy CMSX-6 N2 - The article presents creep data for the single-crystal, [001]-oriented nickel-based superalloy CMSX-6, tested at a temperature of 980 °C under initial stresses ranging from 140 MPa to 230 MPa. The constant-load creep experiments were performed in accordance with DIN EN ISO 204:2019–4 standard within an ISO 17025 accredited laboratory. A total of 12 datasets are included, each of which includes the percentage creep extension as a function of time. The data series and associated metadata were systematically documented using a data schema specifically developed for creep data of single-crystal Ni-based superalloys. This dataset serves multiple purposes: it can be used to compare with one's own creep test results on similar materials, to verify testing setups (e.g., by replicating tests on the same or comparable materials), to calibrate and validate creep models, and to support alloy development efforts. KW - NFDI MatWerk KW - Referenzdaten KW - Kriechen KW - CMSX-6 KW - Digitalisierung PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654056 DO - https://doi.org/10.1016/j.dib.2025.112436 VL - 65 SP - 1 EP - 11 PB - Elsevier AN - OPUS4-65405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rizzardi, Q. A1 - Derlet, P. M. A1 - Maaß, Robert T1 - Intermittent microplasticity in the presence of a complex microstructure N2 - We demonstrate the gradual shift from scale-free intermittent microplasticity to a scale-dependent behavior via the introduction of a variety of microstructural features within the Al-Cu binary alloy system. As long as the obstacles to dislocation motion remain shearable, the statistics of intermittent microplasticity has fat-tailed contributions. The introduction of incoherent precipitates leads to a complete transition from scale-free powerlaw scaling to an exponential and scale-dependent distribution. These results demonstrate how non-Gaussian interactions survive across different microstructures and further suggest that characteristic microstructural length scales and obstacle pinning-strengths are of secondary importance for the intermittency statistics, as long as dislocations can shear their local environment. KW - Scale-dependent behavior KW - Al-Cu binary alloy system PY - 2022 DO - https://doi.org/10.1103/PhysRevMaterials.6.073602 SN - 2475-9953 VL - 6 IS - 7 SP - 1 EP - 9 PB - American Physical Society AN - OPUS4-55387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wallis, Theophilus A1 - Darvishi Kamachali, Reza T1 - Grain boundary structural variations amplify segregation transition and stabilize co-existing spinodal interfacial phases N2 - Grain boundaries (GBs)’s role in determining the functional and mechanical properties of polycrystalline materials is inscribed in both their structure and chemistry. Upon solute segregation, the structure and composition of a GB can change concurrently. We study the co-evolution of GB’s structure and segregation by enhancing the density-based phase-field model to account for the in-plane structural variations in the GB. Significant mutual coupling is revealed between the GB’s chemical and structural states during Mn segregation in Fe-Mn alloys. We found that the structural degrees of freedom in a GB (the ability of the GB structure to respond to the chemical variation) amplifies Mn segregation transition, even when the GB structure stays unchanged. When the GB structure is not uniform, that is the usual case, the coupling between GB structure and segregation evolution also enables the spinodally formed low- and high-Mn phases (upon segregation transition) to co-exist within the GB region. These findings explain the stabilizing mechanism of pronounced interfacial segregation fluctuations, experimentally evidenced in Fe-Mn GBs, and give new insights on the structural sensitivity of GBs’ segregation phenomena and the mutual chemo-structural interplay. KW - Grain boundary engineering KW - Segregation engineering KW - Grain boundary structure KW - Fe-Mn steels PY - 2022 DO - https://doi.org/10.1016/j.actamat.2022.118446 SN - 1359-6454 VL - 242 PB - Elsevier Ltd. AN - OPUS4-56160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Derlet, P. A1 - Bocquet, H. A1 - Maaß, Robert T1 - Viscosity and transport in a model fragile metallic glass N2 - How thermally activated structural excitations quantitatively mediate transport and microplasticity in a model binary glass at the microsecond timescale is revealed using atomistic simulation. These local excitations, involving a stringlike sequence of atomic displacements, admit a far-field shear-stress signature and underlie the transport of free-volume and bond geometry. Such transport is found to correspond to the Evolution of a disclination network describing the spatial connectivity of topologically distinct bonding environments, demonstrating the important role of geometrical frustration in both glass structure and its underlying dynamics. KW - Metallic glass KW - Viscosity PY - 2021 DO - https://doi.org/10.1103/PhysRevMaterials.5.125601 SN - 2475-9953 VL - 5 SP - 1 EP - 7 PB - American Physical Society CY - College Park, MD AN - OPUS4-54152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maximilian, Thuy A1 - Spyrantis, Alexander A1 - Böhning, Martin A1 - Niebergall, Ute A1 - Maaß, Robert T1 - Spatially resolved roughness exponent in polymer fracture N2 - The fracture surface of slow and continuous crack propagation during environmental stress cracking of a semicrystalline polyethylene exhibits isotropic roughness exponents at the local scale but resolved across the macroscopic fracture surface a clear position dependence is found. The spatially resolved roughness exponent admits values in the range between 0.1 and 0.4, demonstrating nontrivial exponents in the small length-scale regime. Instead, they vary across the fracture surface according to the stress-state distribution, which suggests that the exponents are intimately linked to the locally dominating dissipation processes during craze cracking. KW - Plasticity KW - Fracture KW - Material failure KW - Mechanical deformation PY - 2022 DO - https://doi.org/10.1103/PhysRevMaterials.6.L090601 VL - 6 IS - 9 SP - 1 EP - 7 PB - American Physical Society CY - USA, Maryland AN - OPUS4-55797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shimada, Y. A1 - Ikeda, Yuki A1 - Yoshida, K. A1 - Sato, M. A1 - Chen, J. A1 - Du, Y. A1 - Inoue, K. A1 - Maaß, Robert A1 - Nagai, Y. A1 - Konno, T. T1 - In situ thermal annealing transmission electron microscopy of irradiation induced Fe nanoparticle precipitation in Fe–Si alloy N2 - The typical experimental conditions inside a transmission electron microscope (TEM), such as ultra-high vacuum, high-energy electron irradiation, and surface effects of ultrathin TEM specimens, can be the origin of unexpected microstructural changes compared with that of bulk material during in situ thermal-annealing experiments. In this paper, we report on the microstructural changes of a Fe–15%Si alloy during in situ TEM annealing, where, in its bulk form, it exhibits an ordering transformation from D03 to B2 at 650 °C. Using a heating-pot type double tilt holder with a proportional–integral–differential control system, we observed the precipitation of α-Fe both at the sample surface and inside the sample. Surface precipitates formed via surface diffusion are markedly large, several tens of nm, whereas precipitates inside the specimen, which are surrounded by Fe-poor regions, reach a maximum size of 20 nm. This unexpected microstructural evolution could be attributed to vacancies on Si sites, which are induced due to high-energy electron irradiation before heating, as well as enhanced thermal diffusion of Fe atoms. KW - In situ thermal-annealing experiment KW - Microstructural changes of a Fe Si alloy KW - Microstructural evolution PY - 2022 DO - https://doi.org/10.1063/5.0070471 SN - 0021-8979 VL - 131 IS - 16 SP - 1 EP - 8 PB - AIP Publishing AN - OPUS4-54728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ikeda, Yuki A1 - Nishijima, M. A1 - Kiguchi, T. A1 - Konno, T. T1 - Crystal structure characterization of martensite of Cu–Zn–Al ternary alloy by spherical aberration corrected scanning transmission electron microscopy N2 - The crystal structure of martensite in Cu-27at.%Zn-9.0 at.%Al alloy has been studied by using sphericalaberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and geometrical phase analysis (GPA) to examine possible changes in atomic rearrangements during martensitic transformation of this ternary system. Observation along [100]M zone axis is suitable for examining a chemical order of the martensite, and showed that, despite the non-stoichiometry of the alloy, atomic columns containing Al atoms are imaged and distinguished from the others. On the other hand, observation along [010]M zone axis directly revealed that the parent and martensitic phases possess L21 and 18R (21) structures, respectively. These observations suggested that the martensite retained the local chemical order of the parent phase without shuffling before and after the transformation. GPA revealed that the interface between the two phases was coherent with tilting of the basal plane approximately 6◦ across the boundary, which makes otherwise large inclination small during the martensitic transformation. KW - Shape-memory alloys KW - Martensitic transformation KW - Martensitic structure KW - Electron microscopy, transmission PY - 2021 DO - https://doi.org/10.1016/j.intermet.2021.107286 SN - 0966-9795 VL - 137 PB - Elsevier Ltd. AN - OPUS4-53076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maaß, Robert T1 - The Federal Institute of Materials Research and Testing (BAM) – 150 Years of Enabling Scientific and Technological Breakthrough N2 - BAM! This issue of Advanced Engineering Materials celebrates 150 years of scientific and technical research at the interface between academia, industry and politics. Rooted in 1871 at the birth of the German Empire and at that time located in simple basements and barracks, the institutional development began around mechanical metallurgy of iron and steel and represents today a diverse portfolio of fore-front research that orients itself along tomorrow's societal challenges and long-term research horizons. KW - 150 Years KW - Adolf Martens PY - 2022 DO - https://doi.org/10.1002/adem.202200648 VL - 24 IS - 6 SP - 1 EP - 3 PB - Wiley-VCH GmbH AN - OPUS4-55388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wallis, Theophilus A1 - Ratanaphan, Sutatch A1 - Darvishi Kamachali, Reza T1 - Linking atomistic and phase-field modeling of grain boundaries I: Coarse-graining atomistic structures N2 - The longstanding gap between atomistic and mesoscale simulations partly lies in the absence of a direct, physically grounded connection between atomic structure and mesoscale fields. In this work, we present a robust coarse-graining approach to systematically investigate the connection between phase-field and atomistic simulations of grain boundaries (GBs). The atomistic structures of 408 GBs in BCC-Fe and -Mo were studies to compute and analyze a continuous atomic density field. We discover a fundamental relationship between the GB density---defined as the average atomic density at the GB plane---and the GB excess free volume, an integral property of the boundary. An almost perfect linear correlation between the GB atomic density and GB excess free volume is identified. We also show that the width of BCC GBs, when scaled by the lattice constant, approaches a universal constant value. The relationships among GB density, width, and energy are systematically examined for various GB planes, and the GB energy--density correlations are classified with respect to GB types. It turns out that the atomic planes forming the GB strongly influence both the GB density and excess volume. The current results establish a dependable framework to bridge across scales, enabling density-based phase-field modeling of GBs with atomistic fidelity and enhancing the predictive reliability of mesoscale simulations. KW - Density-based model KW - Grain boundary structure KW - Grain boundary thermodynamic KW - Atomistic simulations PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654872 DO - https://doi.org/10.1016/j.actamat.2025.121786 SN - 1359-6454 VL - 305 SP - 1 EP - 14 PB - Elsevier Inc. AN - OPUS4-65487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wallis, Theophilus A1 - Darvishi Kamachali, Reza T1 - Linking atomistic and phase-field modeling of grain boundaries II: Incorporating atomistic potentials into free energy functional N2 - The density-based phase-field model for grain boundary (GB) thermodynamics and kinetics has offered a broad range of applications in alloy and microstructure design. Originally, this model is based on a potential energy terms that is connected to the cohesive energy of a given substance. A more rigorous approach, however, is a full consideration of an interatomic potential over the possible range of distance and therefore density. In Manuscript I of this series, we developed and thoroughly analyzed the coarse-graining of atomistic GB structures. In this work (Manuscript II), we complete the coupling between atomic and mesoscale modeling of GBs by incorporating the full interatomic potentials into the density-based free energy functional. Using GB energies calculated from atomistic simulations, the coarse-graining approach and the atomistic-integrated density-based Gibbs free energy, we effectively evaluate the density gradient energy coefficient. We found that coupling the density-based model with atomistic potentials reveal physically-sound trends in the GB equilibrium properties. A universal equation was derived to describe the potential energy contribution to the GB energy and the gradient energy coefficient for BCC-Fe and -Mo GBs, similar to the universal equation for GB excess free volume presented in Manuscript I. The proposed approach provides a mesoscale density-based model rooted in atomic-scale characteristics for reliable predictions of GB properties. KW - Density-based model KW - Phase-field KW - Grain boundary structure KW - Grain boundary thermodynamics PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654904 DO - https://doi.org/10.1016/j.actamat.2025.121787 SN - 1359-6454 VL - 305 SP - 1 EP - 17 PB - Elsevier AN - OPUS4-65490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Das, A. A1 - Dufresne, E.M. A1 - Maaß, Robert T1 - Structural dynamics and rejuvenation during cryogenic cycling in a Zr-based metallic glass N2 - Subjecting metallic glasses repeatedly to liquid nitrogen temperature has become a popular method to homogeneously rejuvenate the material. Here we reveal the atomic-scale structural dynamics using in- situ x-ray photon correlation spectroscopy (XPCS) during and after cryogenic cycling of a Zr-based metallic glass in two structural states (plate and ribbon). Heterogeneous structural dynamics is observed at 300 K that changes to monotonic aging at 78 K. It is found that cryogenic cycling homogenizes the relaxation time distribution. This effect is much more pronounced in the ribbon, which is the only structural state that rejuvenates upon cycling. We furthermore reveal how fast atomic-scale dynamics is correlated with longtime structural relaxation times irrespective of the structural state, and that the ribbon exhibits unexpected additional fast atomic-scale relaxation in comparison to the plate material. A structural picture emerges that points towards heterogeneities in the fictive temperature as a requirement for cryogenic energy storage. KW - Structural dynamics KW - Metallic glass KW - Relaxation KW - Rejuvenation KW - Cryogenic cycling PY - 2020 DO - https://doi.org/10.1016/j.actamat.2020.06.063 SN - 1359-6454 VL - 196 SP - 723 EP - 732 PB - Elsevier Ltd. AN - OPUS4-51311 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abboud, M. A1 - Motallebzadeh, A. A1 - Duygulu, O. A1 - Maaß, Robert A1 - Özerinc, S. T1 - Microstructure and nanomechanical behavior of sputtered CuNb thin films N2 - We report on the mechanical properties of Cu–Nb alloys produced by combinatorial magnetron sputtering. Depending on the composition, the microstructure is either fully amorphous (~30–65 at.% Cu), a dispersion of Cu crystallites in an amorphous matrix (~70 at.%), or a dominant crystalline phase with separated nanoscale amorphous zones (~80 at.% Cu). Nanomechanical probing of the different microstructures reveals that the hardness of the fully amorphous alloy is much higher than a rule of mixture would predict. We further demonstrate a remarkable tunability of the resistance to plastic flow, ranging from ca. 9 GPa in the amorphous regime to ca. 2 GPa in the fully crystalline regime. We rationalize these findings based on fundamental structural considerations, thereby highlighting the vast structure-property design space that this otherwise immiscible binary alloy provides. KW - Deposition microstructure KW - Metallic glasses KW - Thin films KW - Mechanical properties KW - Nanocrystalline structure PY - 2021 DO - https://doi.org/10.1016/j.intermet.2021.107249 SN - 0966-9795 VL - 136 SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-52777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rizzardi, Q. A1 - Derlet, P. M. A1 - Maaß, Robert T1 - Microstructural signatures of dislocation avalanches in a high-entropy alloy N2 - Here, we trace in situ the slip-line formation and morphological signature of dislocation avalanches in a highentropy alloy with the aim of revealing their microstructural degree of localization. Correlating the intermittent microplastic events with their corresponding slip-line patterns allows defining two main event types, one of which is linked to the formation of new slip lines, whereas the other one involves reactivation of already existing slip lines. The formation of new slip lines reveals statistically larger and faster avalanches. The opposite tendency is seen for avalanches involving reactivation of already existing slip lines. The combination of both these types of events represents the highest degree of spatial avalanche delocalization that spans the entire sample, forming a group of events that determine the truncation length scale of the truncated power-law scaling. These observations link the statistics of dislocation avalanches to a microstructural observable. KW - High-entropy alloy KW - Dislocation avalanches PY - 2021 DO - https://doi.org/10.1103/PhysRevMaterials.5.043604 SN - 2475-9953 VL - 5 IS - 4 SP - 3604 PB - American Physical Society CY - College Park, MD AN - OPUS4-52458 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Honrao, S. J. A1 - Rizzardi, Q. A1 - Maaß, Robert A1 - Trinkle, D. R. A1 - Hennig, R. G. T1 - Split-vacancy defect complexes of oxygen in hcp and fcc cobalt N2 - One of the most ubiquitous and important defects in solids is oxygen. Knowledge about the solubility and diffusivity of oxygen in materials is crucial to understand a number of important technological processes, such as oxidation, corrosion, and heterogeneous catalysis. Density-functional theory calculations of the thermodynamics and kinetics of oxygen in cobalt show that oxygen diffusing into the two close-packed phases, namely α (hcp) and β (fcc), strongly interacts with vacancies.We observe the formation of oxygen split-vacancy centers (V-Oi-V) in both phases, and we show that this defect complex exhibits a similar migration energy barrier to the vacancy and oxygen interstitials. In contrast to the vacancy and oxygen interstitials, the oxygen split-vacancy centers exhibit an anisotropic strain field that couples to applied stress, making it possible to observe them through an internal friction experiment on quenched cobalt. KW - Split-vacancy defect complexes PY - 2020 DO - https://doi.org/10.1103/PhysRevMaterials.4.103608 VL - 4 IS - 10 SP - 103608-1 EP - 103608-9 PB - American Physical Society AN - OPUS4-51582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ikeda, Yuki A1 - Mancias, J. A1 - Gan, B. A1 - Maaß, Robert T1 - Evidence of room-temperature shear-deformation in a Cu-Al intermetallic N2 - Lamellar eutectics are known to evidence plastic shear in otherwise brittle intermetallics, if the lamella spacing is small enough. Here we pursue this idea of confined plasticity in intermetallics further and demonstrate room-temperature shear-deformation in a two-phase CuAl 2 -CuAl intermetallic nano- composite. The presence of a phase with a 3-fold symmetry is also revealed after deformation. Simula- tion of transmission electron microscopy images shows this to be monoclinic CuAl. These observations are made in the deformation zone underneath locations of nanoindents, of which the force-displacement curves exhibit an unusual response of continuously increasing pop-in sizes with load. KW - Nanoindentation KW - Intermetallic KW - Nano-composite KW - Shear bands KW - Plasticity PY - 2021 DO - https://doi.org/10.1016/j.scriptamat.2020.08.033 VL - 190 SP - 126 EP - 130 PB - Elsevier Ltd. AN - OPUS4-52455 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Holzer, Marco A1 - Waurischk, Tina A1 - George, Janine A1 - Maaß, Robert A1 - Müller, Ralf T1 - Silicate glass fracture surface energy calculated from crystal structure and bond-energy data N2 - We present a novel method to predict the fracture surface energy, γ, of isochemically crystallizing silicate glasses using readily available crystallographic structure data of their crystalline counterpart and tabled diatomic chemical bond energies, D0. The method assumes that γ equals the fracture surface energy of the most likely cleavage plane of the crystal. Calculated values were in excellent agreement with those calculated from glass density, network connectivity and D0 data in earlier work. This finding demonstrates a remarkable equivalence between crystal cleavage planes and glass fracture surfaces. KW - Glass KW - Fracture surface energy KW - Toughness KW - Modeling KW - Mechanical properties PY - 2023 DO - https://doi.org/10.1016/j.jnoncrysol.2023.122679 SN - 0022-3093 VL - 622 SP - 1 EP - 6 PB - Elsevier B.V. AN - OPUS4-58767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Derlet, P. M. A1 - Maaß, Robert T1 - Optimally rejuvenated model binary glasses N2 - Using the creation relaxation algorithm developed for the atomistic modeling of the high-dose irradiation limit of crystalline systems, we explore the limits of the structural rejuvenation of a highly excited model binary glass. This high-energy athermal amorphous structure exhibits a direct transition to homogeneous plastic flow and a microstructure that is largely insensitive to this flow, being characterized by a porous system-spanning network of minimally frustrated structural motifs. The observed homogeneous plasticity is mediated by the same string-like structural excitations, which mediate structural relaxation and microplasticity at finite temperature in more relaxed structures. This highly rejuvenated structural asymptote is not far from the structural state of regions, which have experienced athermal shear localization in more relaxed samples, suggesting an optimally rejuvenated glassy structure will always be limited by that produced by shear localization. KW - Metallic glasses KW - Creation-relaxation algorithm KW - Shear PY - 2022 DO - https://doi.org/10.1103/PhysRevMaterials.6.125604 VL - 6 IS - 12 SP - 1 EP - 13 PB - American Physical Society AN - OPUS4-56741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kar, S. A1 - Ikeda, Yuki A1 - Lünser, K. A1 - Woodcock, Th. G. A1 - Nielsch, K. A1 - Reith, H. A1 - Maaß, Robert A1 - Fähler, S. T1 - Growth Twins and Premartensite Microstructure in Epitaxial Ni-Mn-Ga Films N2 - Magnetic shape memory alloys have been examined intensively due to their multifunctionality and multitude of physical phenomena. For both areas, epitaxial films are promising since the absence of grain boundaries is beneficial for applications in microsystems and they also allow to understand the influence of a reduced dimension on the physical effects. Despite many efforts on epitaxial films, two particular aspects remain open. First, it is not clear how to keep epitaxial growth up to high film thickness, which is required for most microsystems. Second, it is unknown how the microstructure of premartensite, a precursor state during the martensitic transformation, manifests in films and differs from that in bulk. Here, we focus on micrometer-thick austenitic Ni-Mn-Ga films and explain two distinct microstructural features by combining high-resolution electron microscopy and X-ray diffraction methods. First, we identify pyramid-shaped defects, which originate from {1 1 1} growth twinning and cause the breakdown of epitaxial growth. We show that a sufficiently thick Cr buffer layer prevents this breakdown and allows epitaxial growth up to a thickness of at least 4 μm. Second, premartensite exhibits a hierarchical microstructure in epitaxial films. The reduced dimension of films results in variant selection and regions with distinct premartensite variants, unlike its microstructure in bulk. KW - Alloy KW - Epitaxial films KW - Hierarchical microstructure Premartensite KW - Twinning KW - Magnetic shape memory PY - 2023 DO - https://doi.org/10.1016/j.actamat.2023.118902 SN - 1359-6454 VL - 252 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-57301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Riechers, Birte A1 - Ott, C. A1 - Das, S. M. A1 - Liebscher, C. A1 - Samwer, K. A1 - Derlet, P. M. A1 - Maaß, Robert T1 - On the elastic microstructure of bulk metallic glasses N2 - Metallic glasses (MGs) are known to be structurally heterogeneous at the nanometer (nm) scale. In addition, elastic property mapping has indicated the presence of at least an order-of-magnitude larger length scales, of which the origin continues to remain unknown. Here we demonstrate the existence of an elastic decorrelation length of the order of 100 nm in a Zr-based bulk MG using spatially resolved elastic property mapping via nanoindentation. Since compositional modulations sufficiently large to account for this elastic microstructure were not resolved by analytical scanning-transmission electron microscopy, chemical phase separation such as spinodal decomposition cannot explain their occurrence as previously suggested. Instead, we argue that the revealed long-range elastic modulations stem from structural variations affecting the local density. These emerge during solidification and are strongly influenced by the cooling constraints imposed on bulk MGs during the casting process. KW - Metallic glasses KW - Nanoindentation KW - Elastic microstructure PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573504 DO - https://doi.org/10.1016/j.matdes.2023.111929 SN - 0264-1275 VL - 229 SP - 1 EP - 8 PB - Elsevier Ltd. CY - Amsterdam, Niederlande AN - OPUS4-57350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Darvishi Kamachali, Reza A1 - Wallis, Theophilus A1 - Ikeda, Yuki A1 - Saikia, U. A1 - Ahmadian, A. A1 - Liebscher, C. A1 - Hickel, Tilmann A1 - Maaß, Robert T1 - Giant segregation transition as origin of liquid metal embrittlement in the Fe-Zn system N2 - A giant Zn segregation transition is revealed using CALPHAD-integrated density-based modeling of segregation into Fe grain boundaries (GBs). The results show that above a threshold of only a few atomic percent Zn in the alloy, a substantial amount of up to 60 at.% Zn can segregate to the GB. We found that the amount of segregation abruptly increases with decreasing temperature, while the Zn content in the alloy required for triggering the segregation transition decreases. Direct evidence of the Zn segregation transition is obtained using high-resolution scanning transmission electron microscopy. Base on the model, we trace the origin of the segregation transition back to the low cohesive energy of Zn and a miscibility gap in Fe-Zn GB, arising from the magnetic ordering effect, which is confirmed by ab-initio calculations. We also show that the massive Zn segregation resulting from the segregation transition greatly assists with liquid wetting and reduces the work of separation along the GB. The current predictions suggest that control over Zn segregation, by both alloy design and optimizing the galvanization and welding processes, may offer preventive strategies against liquid metal embrittlement. KW - CALPHAD KW - Microstructure Design KW - Grain boundary engineering KW - Steels KW - Density-based Model KW - Segregation Engineering PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584292 DO - https://doi.org/10.1016/j.scriptamat.2023.115758 SN - 1359-6462 SN - 1872-8456 VL - 238 SP - 1 EP - 5 PB - Elsevier CY - Amsterdam AN - OPUS4-58429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kar, Satyakam A1 - Ikeda, Yuki A1 - Nielsch, Kornelius A1 - Reith, Heiko A1 - Maaß, Robert A1 - Fähler, Sebastian T1 - Multiferroic Microstructure Created from Invariant Line Constraint N2 - Ferroic materials enable a multitude of emerging applications, and optimum functional properties are achieved when ferromagnetic and ferroelectric properties are coupled to a first‐order ferroelastic transition. In bulk materials, this first‐order transition involves an invariant habit plane, connecting coexisting phases: austenite and martensite. Theory predicts that this plane should converge to a line in thin films, but experimental evidence is missing. Here, the martensitic and magnetic microstructure of a freestanding epitaxial magnetic shape memory film is analyzed. It is shown that the martensite microstructure is determined by an invariant line constraint using lattice parameters of both phases as the only input. This line constraint explains most of the observable features, which differ fundamentally from bulk and constrained films. Furthermore, this finite‐size effect creates a remarkable checkerboard magnetic domain pattern through multiferroic coupling. The findings highlight the decisive role of finite‐size effects in multiferroics. KW - Epitaxial films KW - Finite-size effects KW - Multiferroics KW - Martensite KW - Magnetic shape memory alloys PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-637910 DO - https://doi.org/10.1002/adfm.202416638 SN - 1616-301X VL - 35 IS - 10 SP - 1 EP - 11 PB - Wiley AN - OPUS4-63791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maaß, Robert A1 - Derlet, P. T1 - Micro-plasticity in a fragile model binary glass N2 - Atomistic deformation simulations in the nominally elastic regime are performed for a model binary glass with strain rates as low as 10 4 /s (corresponding to 0.01 shear strain per 1 μs). A strain rate dependent elastic softening due to a micro-plasticity is observed, which is mediated by thermally-activated localized structural transformations (LSEs). A closer inspection of the atomic-scale structure indicates the material response is distinctly different for two types of local atomic environments. A system spanning iscosahe- drally coordinated substructure responds purely elastically, whereas the remaining substructure admits both elastic and microplastic evolution. This leads to a heterogeneous internal stress distribution which, upon unloading, results in negative creep and complete residual-strain recovery. A detailed structural analysis in terms of local stress, atomic displacement, and SU(2) local bonding topology shows such mi- croscopic processes can result in large changes in local stress and are more likely to occur in geomet- rically frustrated regions characterized by higher free volume and softer elastic stiffness. The thermally- activated LSE activity also mediates structural relaxation, and in this way should be distinguished from stress-driven shear transformation activity which only rejuvenates glass structure. The frequency of LSE activity, and therefore the amount of micro-plasticity, is found to be related to the degree to which the glassy state is relaxed. These insights shed atomistic light onto the structural origins that may govern re- cent experimental observations of significant structural evolution in response to elastic loading protocols. KW - Molecular dynamics KW - Bulk metallic glasses KW - Plasticity KW - Residual strains PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523782 DO - https://doi.org/10.1016/j.actamat.2021.116771 VL - 209 SP - 116771 PB - Elsevier Ltd. AN - OPUS4-52378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ikeda, Yuki A1 - Yuan, R. A1 - Chakraborty, A. A1 - Ghassemi-Armaki, H. A1 - Zuo, J. M. A1 - Maaß, Robert T1 - Early stages of liquid-metal embrittlement in an advanced high-strength steel N2 - Grain-boundary degradation via liquid-metal embrittlement (LME) is a prominent and long-standing failure process in next generation advanced high-strength steels. Here we reveal, well ahead of the crack tip, the presences of nano-scale grains of intermetallic phases in Zn-infiltrated but uncracked grain boundaries with scanning- and 4D transmission electron microscopy. Instead of the often-reported Znrich Fe-Zn intermetallics, the nano-scale phase in the uncracked infiltrated grain boundaries is identified as the G-phase, and its presence reveals the local enhancement of strain heterogeneities in the grain boundary network. Based on these observations, we argue that intermetallic phase formation is not occurring after cracking and subsequent liquid Zn infiltration but is instead one of the primary nanoscopic drivers for grain-boundary weakening and crack initiation. These findings shift the focus of LME from micro- and meso-scale crack investigations to the very early stages immediately following Zn diffusion, after which secondary phase nucleation and growth emerge as the root-cause for failure. KW - Advanced high strength steels KW - Liquid metal embrittlement KW - Transmission electron microscopy KW - 4-Dimensional scanning transmission KW - electron microscopy PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539716 DO - https://doi.org/10.1016/j.mtadv.2021.100196 SN - 2590-0498 VL - 13 IS - 196 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-53971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maaß, Robert T1 - Beyond Serrated Flow in Bulk Metallic Glasses: What Comes Next? N2 - This manuscript is based on an oral contribution to the TMS 2020 annual meeting and is dedicated to Prof. Peter Liaw, who for decades has shown great interest in serrated plastic flow. Here we will focus on the case of bulk metallic glasses, and begin with briefly summarizing some aspects of serrated and non-serrated inhomogeneous flow—a phenomenon that has perplexed materials scientists for decades. Four directions of research are identified that emerged out of the desire to fundamentally understand the intermittent inhomogeneous flow response. These research directions gear away from the phenomenological stress–strain behavior but put the underlying shear defect into focus. Unsolved problems and future research topics are discussed. KW - Non-serrated inhomogeneous flow PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513106 DO - https://doi.org/10.1007/s11661-020-05985-w SN - 1073-5623 SP - 1 EP - 11 PB - Springer Nature AN - OPUS4-51310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ávila Calderón, Luis A1 - Shakeel, Y. A1 - Gedsun, A. A1 - Forti, M. A1 - Hunke, S. A1 - Han, Ying A1 - Hammerschmidt, T. A1 - Aversa, R. A1 - Olbricht, Jürgen A1 - Chmielowski, M. A1 - Stotzka, R. A1 - Bitzek, E. A1 - Hickel, Tilmann A1 - Skrotzki, Birgit T1 - Management of reference data in materials science and engineering exemplified for creep data of a single-crystalline Ni-based superalloy N2 - The identification of process-structure-property relationships of materials inevitably requires the combination of research data from different measurements. Therefore, the concepts related to FAIR (findable, accessible, interoperable, reusable) data handling, increasingly reported in literature, are particularly important in the materials science and engineering domain. However, they have not yet been integrated into a single, overarching methodological framework, particularly for reference data. Here, we introduce such a framework. Our concept covers data generation, documentation, handling, storage, sharing, data search and discovery, retrieval, and usage. Furthermore, we prototypically implement it using a real dataset with creep data of a single-crystal CMSX-6 Ni-based superalloy. The presented implementation is traceable and permanently accessible through open repositories. The individual elements considered in the framework ensure the functionality and usability of the data and, thus, the adherence to the FAIR principles. In conjunction with this, we present a definition for reference data of materials. Our definition underlines particularly the importance of a comprehensive documentation, e.g., on material provenance, data processing procedures, and the software and hardware used, including software-specific input parameters, as these details enable data users or independent parties to assess the quality of the datasets and to reuse and reproduce the results. Reference data that is managed according to the proposed framework can be used to advance knowledge in the materials science and engineering domain, e.g., by identifying new process-structure-property relations. KW - Referenzdaten KW - NFDI-MatWerk KW - Data schema KW - Research Data Management KW - Reference Data PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-625047 DO - https://doi.org/10.1016/j.actamat.2025.120735 VL - 286 SP - 1 EP - 15 PB - Elsevier Inc. AN - OPUS4-62504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zaiser, Erika A1 - Fareed, Adnan A1 - Manzoni, Anna Maria A1 - Paulisch-Rinke, Melanie C. A1 - Hsu, Wei-Che A1 - Yeh, An-Chou A1 - Murakami, Hideyuki A1 - Vogel, Florian A1 - Maaß, Robert T1 - Pinning-dominated strengthening in high-entropy superalloys N2 - Hierarchical microstructural design of high-entropy superalloys offers novel strengthening pathways beyond classical superalloys. Here we assess the strength of isolated γ’ precipitates with and without an additional internal γ nanophase. The results show that nano-precipitation within the γ’ phase leads to a marked statistical reduction of the dislocation-nucleation limited yield strength. In concert with disorder-driven chemical weakening of the γ’ phase, these findings indicate that bulk strengthening due to hierarchical microstructural design in high entropy superalloys must primarily be pinning dominated. KW - High-entropy alloys KW - Superalloys KW - Dislocation nucleation KW - Plasticity PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-637590 DO - https://doi.org/10.1016/j.scriptamat.2025.116874 SN - 1359-6462 VL - 268 SP - 1 EP - 6 PB - Elsevier Inc. AN - OPUS4-63759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ikeda, Yuki A1 - Han, Seungchang A1 - Wallis, Theophilus A1 - Darvishi Kamachali, Reza A1 - Maaß, Robert T1 - On the preference of liquid-metal embrittlement along high-angle grain-boundaries in galvanized steels N2 - Focusing on the early stages of liquid-metal embrittlement (LME) of Zinc (Zn) coated advanced high-strength steels, we show that the Zn infiltration path prior to grain-boundary decohesion and therefore cracking distinctly follows high-angle grain boundaries (HAGBs). This selective transport prior to LME-induced microcracking rationalizes the experimentally observed post-mortem cracking along martensitic HAGBs. We discuss the selective Zn transport and GB-weakening in terms of an misorientation-angle dependent atomic density and diffusivity, and its effect on GB-segregation. KW - Liquid-metal embrittlement KW - Advanced high-strength steels KW - Grain boundaries PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-631103 DO - https://doi.org/10.1016/j.scriptamat.2025.116723 SN - 1359-6462 VL - 265 SP - 1 EP - 5 PB - Elsevier Inc. AN - OPUS4-63110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Aristia, Gabriela A1 - Bäßler, Ralph A1 - Nofz, Marianne A1 - Sojref, Regine A1 - Kohl, Anka T1 - Short-term exposure tests of ɣ-Al2O3 Sol-gel coating on X20Cr13 in artificial geothermal waters with different pH N2 - The suitability of an Al2O3 coating for corrosion protection on X20Cr13 was evaluated in various artificial geothermal brines, focusing on the influence of different pH (4, 6 and 8) and their chemical compositions on the coating properties. All experiments were performed in the laboratory using autoclaves at 150 ◦C and 1 MPa in deaerated condition for 1 and 7 days. Results showed that the pH of geothermal waters is the most detrimental factor in the transformation of ɣ-Al2O3 and its protective abilities. Delaminations were found in the Coating exposed to geothermal brines with pH 4. FTIR spectra indicated a transformation of ɣ-Al2O3 to boehmite AlOOH after exposure to pH 4 and 6, and bayerite Al(OH)3 was formed after exposure to pH 8. Different Crystal structures of the hydrated Al2O3 also contribute to the stability of the coatings, observed by the SEM- EDX of the surface and cross-section of coatings. This study indicated that ɣ-Al2O3 sol-gel coating presents a promising aspect of corrosion protection in geothermal environment with a neutral pH. KW - Al2O3 KW - Corrosion KW - Coating KW - Martensitic steel PY - 2021 DO - https://doi.org/10.1016/j.geothermics.2021.102193 SN - 0375-6505 VL - 96 SP - 102193 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-52931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -