TY - JOUR A1 - Artinov, Antoni A1 - Karkhin, V. A1 - Khomich, P. A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Assessment of thermal cycles by combining thermo-fluid dynamics and heat conduction in keyhole mode welding processes N2 - A numerical framework for simulation of the steady-state thermal behaviour in keyhole mode welding has been developed. It is based on the equivalent heat source concept and consists of two parts: computational thermo-fluid dynamics and heat conduction. The solution of the thermo-fluid dynamics problem by the finite element method for a bounded domain results in a weld pool interface geometry being the input data for a subsequent heat conduction problem solved for a workpiece by a proposed boundary element method. The main physical phenomena, such as keyhole shape, thermo-capillary and natural convection and temperature-dependent material properties are taken into consideration. The developed technique is applied to complete-penetration keyhole laser beam welding of a 15 mm thick low-alloyed steel plate at a welding speed of 33 mm/s and a laser power of 18 kW. The fluid flow of the molten metal has a strong influence on the weld pool geometry. The thermo-capillary convection is responsible for an increase of the weld pool size near the plate surfaces and a bulge formation near the plate middle plane. The numerical and experimental molten pools, cross-sectional weld dimensions and thermal cycles of the heat affected zone are in close agreement. KW - Welding process simulation KW - Thermo-fluid dynamics KW - Heat conduction KW - High power laser beam welding KW - Finite element method KW - Boundary element method PY - 2019 DO - https://doi.org/10.1016/j.ijthermalsci.2019.105981 SN - 1290-0729 VL - 145 SP - 105981, 1 EP - 10 PB - Elsevier Ltd. CY - Amsterdam [u.a.] AN - OPUS4-48652 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Artinov, Antoni A1 - Rethmeier, Michael T1 - Experimental and numerical assessment of weld pool behavior and final microstructure in wire feed laser beam welding with electromagnetic stirring N2 - Advantages such as element homogenization and grain refinement can be realized by introducing electromagnetic stirring into laser beam welding. However, the involved weld pool behavior and its direct role on determining the final microstructure have not been revealed quantitatively. In this paper, a 3D transient heat transfer and fluid flow model coupled with element transport and magnetic induction is developed for wire feed laser beam welding with electromagnetic stirring. The magnetohydrodynamics, temperature profile, velocity field, keyhole evolution and element distribution are calculated and analyzed. The model is well tested against the experimental results. It is suggested that a significant electromagnetic stirring can be produced in the weld pool by the induced Lorentz force under suitable electromagnetic parameters, and it shows important influences on the thermal fluid flow and the solidification parameter. The forward and downward flow along the longitudinal plane of the weld pool is enhanced, which can bring the additional filler wire material to the root of the weld pool. The integrated thermal and mechanical impacts of electromagnetic stirring on grain refinement which is confirmed experimentally by electron backscatter diffraction analysis are decoupled using the calculated solidification parameters and a criterion of dendrite fragmentation. KW - Magnetohydrodynamics KW - Weld pool behavior KW - Grain structure KW - Laser beam welding KW - Numerical simulation PY - 2019 DO - https://doi.org/10.1016/j.jmapro.2019.07.021 SN - 1526-6125 VL - 45 SP - 408 EP - 418 PB - Elsevier AN - OPUS4-48611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frei, J. A1 - Alexandrov, B. A1 - Rethmeier, Michael T1 - Low heat input gas metal arc welding for dissimilar metal weld overlays part III: hydrogen-assisted cracking susceptibility N2 - Dissimilar metal weld overlays of nickel-base alloys on low-alloy steel components are commonly used in the oil and gas, petrochemical, and power generation industries to provide corrosion and oxidation resistance in a wide range of service Environments and temperatures. Traditionally, dissimilar weld overlays are produced using cold or hot wire gas tungsten arc welding. This study aims to identify and evaluate potential advantages of low heat input gas metal arc welding processes over the conventional gas tungsten arc welding in the production of such overlays. Parts I and II of this publication series described characteristics of the heat-affected zone and the transition zone region of alloy 625 on grade 22 steel overlays. These results indicate a good resistance against hydrogen-assisted cracking, which is being verified within this third part of the publication series. To determine the hydrogen-assisted cracking susceptibility, welded samples are tested using the delayed hydrogen-assisted cracking test. Fractography is performed using scanning electron microscopy along with energy dispersive spectroscopy. The results confirm the suitability and efficiency of low heat input gas metal arc welding for dissimilar weld overlays. Variation of the postweld heat treatment procedure bears potential for improvement in this respect. KW - Low heat input GMA welding KW - Dissimilar metal weld overlays KW - Coarse-grained heat-affected zone KW - Grain size KW - Microstructure KW - Fusion zone KW - Nickel alloys PY - 2019 DO - https://doi.org/10.1007/s40194-018-0674-7 VL - 63 IS - 3 SP - 591 EP - 598 PB - Springer AN - OPUS4-48096 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Uhlmann, E. A1 - Düchting, J. A1 - Petrat, T. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Heat treatment of SLM-LMD hybrid components N2 - Additive manufacturing is no longer just used for the production of prototypes but already found its way into the industrial production. However, the fabrication of massive metallic parts with high geometrical complexity is still too time-consuming to be economically viable. The combination of the powder bed-based selective laser melting process (SLM), known for its geometrical freedom and accuracy, and the nozzle-based laser metal deposition process (LMD), known for its high build-up rates, has great potential to reduce the process duration. For the industrial application of the SLM-LMD hybrid process chain it is necessary to investigate the interaction of the processes and its effect on the material properties to guarantee part quality and prevent component failure. Therefore, hybrid components are manufactured and examined before and after the heat treatment regarding the microstructure and the hardness in the SLM-LMD transition zone. The experiments are conducted using the nickel-based alloy Inconel 718. T2 - LiM 2019 CY - München, Germany DA - 23.06.2019 KW - Additive Manufacturing KW - Selective Laser Melting KW - Hybrid components KW - Inconel 718 KW - Laser Metal Deposition PY - 2019 SP - 1 EP - 9 AN - OPUS4-48410 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Petrat, T. A1 - Brunner-Schwer, C. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Microstructure of Inconel 718 parts with constant mass energy input manufactured with direct energy deposition N2 - The laser-based direct energy deposition (DED) as a technology for additive manufacturing allows the production of near net shape components. Industrial applications require a stable process to ensure reproducible quality. Instabilities in the manufacturing process can lead to faulty components which do not meet the required properties. The DED process is adjusted by various parameters such as laser power, velocity, powder mass flow and spot diameter, which interact with each other. A frequently used comparative parameter in welding is the energy per unit length and is calculated from the laser power and the velocity in laser welding. The powder per unit length comparative parameter in the DED process has also be taken into account, because this filler material absorbs energy in addition to the base material. This paper deals with the influence of mass energy as a comparative parameter for determining the properties of additively manufactured parts. The same energy per unit length of 60 J/mm as well as the same powder per unit length of 7.2 mg/mm can be adjusted with different parameter sets. The energy per unit length and the powder per unit length determine the mass energy. The laser power is varied within the experiments between 400 W and 900 W. Energy per unit length and powder per unit length are kept constant by adjusting velocity and powder mass flow. Using the example of Inconel 718, experiments are carried out with the determined parameter sets. In a first step, individual tracks are produced and analyzed by means of micro section. The geometry of the tracks shows differences in height and width. In addition, the increasing laser power leads to a higher dilution of the base material. To determine the suitability of the parameters for additive manufacturing use, the individual tracks are used to build up parts with a square base area of 20x20 mm². An investigation by Archimedean principle shows a higher porosity with lower laser power. By further analysis of the micro sections, it can be seen that at low laser power, connection errors occur between the tracks. The results show that laser power, velocity and powder mass flow have to be considered in particular, because a constant mass energy can lead to different geometric as well as microscopic properties. KW - Direct energy deposition KW - Porosity KW - Inconel 718 KW - Additive manufacturing KW - Laser metal deposition PY - 2019 SN - 2351-9789 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-50007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rethmeier, Michael A1 - Gook, S. A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey T1 - Vermeidung von Schweißimperfektionen im Überlappbereich bei laserstrahlhybrid-geschweißten Rundnähten N2 - Schwerpunkte: Strategie zur Vermeidung von Schweißimperfektionen im Überlappbereich beilaserhybridgeschweißten Rundnähten für 9.5 mm dicke Rohre. Anpassung der Laserleistung in Kombination mit der Defokussierung des Laserstrahls sowie einer Endkraterfüllung am Ende der Schweißnaht führte zu einer besseren Nahtausbildung. Herausrampung der Energie des Schweißprozesses, sodass ein Übergang von Durchschweißung zu einer Einschweißung mit gewünschter kelchförmiger Nahtgeometrie stattfand. Einstellung eines Wärmestaus durch Defokussierung und Verschiebung des Laserstrahls führt zu einem gut ausgebildeten Überlappbereich ohne Poren, Risse. Schweißungen an Rohrabschnitten mit einer max. Wandstärke von 15 mm, bei gegebenenfalls weiteren Parameteranpassungen. T2 - DVS Congress 2019 CY - Rostock, Germany DA - 16.09.2019 KW - Rundnähte KW - Laserhybridschweißen KW - Endkrater PY - 2019 AN - OPUS4-49895 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böhne, Chr. A1 - Meschut, G. A1 - Biegler, M. A1 - Frei, J. A1 - Rethmeier, Michael T1 - Prevention of liquid metal embrittlement cracks N2 - Advanced high strength steels are usually coated by a zinc layer for an increased resistance against corrosion. During the resistance spot welding of zinc coated steel grades, liquid metal embrittlement (LME)mayoccur. As a result, cracking inside and around the spot weld indentation is observable. The extent of LME cracks is influenced by a variety of different factors. In this study, the impact of the used electrode geometry is investigated over a stepwise varied weld time. A spot welding finite element simulation is used to analyse and explain the observed effects. Results show significant differences especially for highly increased weld times. Based on identical overall dimensions, electrode geometries with a larger working plane allow for longer weld times, while still preventing LME within the investigated material and maintaining accessibility. KW - Liquid metal embrittlement KW - Crack KW - Advanced high strength steels KW - Resistance spot welding KW - Electrode geometry PY - 2019 DO - https://doi.org/10.1080/13621718.2019.1693731 VL - 25 IS - 4 SP - 303 EP - 310 PB - Taylor & Francis AN - OPUS4-49833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - A theoretical study of influence o f electromagnetic stirring on transport phenomena in wire feed laser beam welding N2 - The additional element from the filler wire in the laser beam welding is usually distributed inhomogeneously in the final weld due to the high solidification rate of weld pool. It has been found that the electromagnetic stirring produced by an external oscillating magnetic field can enhance the material mixing in the weld pool to achieve a more uniform element distribution. However, the magnetic field has a highly non-linear and multi-coupled interaction with the weld pool behavior, which makes the quantitative explanation of the physical mechanism difficult. In this study, the effect of electromagnetic stirring on the transport phenomena in the wire feed laser beam welding is investigated by a numerical modelling. A 3D transient multi-physical model considering the magnetohydrodynamics, heat transfer, fluid flow, keyhole dynamics and element transport is developed. The multiple reflections and the Fresnel absorption of the laser on the keyhole wall are calculated using the ray tracing method. The numerical results show that a Lorentz force produced by the oscillating magnetic field and its induced eddy current gives significant influence on the transport phenomena in the molten pool. The forward and downward flow is enhanced by the electromagnetic stirring, which homogenizes the distribution of the additional elements from a nickel-based filler wire in a steel weld pool. The numerical results show a good agreement with the high-speed images of the molten pool, the fusion line from the optical micrograph and the element distribution from the energy dispersive X-ray spectroscopy. This work provides a physical base for the electromagnetic-controlled laser beam welding and some guidance for the selection of electromagnetic parameters. T2 - ICALEO 2019 - 38th International congress on applications of lasers & electro-optics CY - Orlando, FL, USA DA - 07.10.2019 KW - Magnetohydrodynamics KW - Molten pool dynamics KW - Element transport KW - Laser beam welding PY - 2019 SN - 978-1-940168-1-42 SP - Paper # Macro 403 AN - OPUS4-49664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gook, S. A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Avoidance of end crater imperfections at high-power laser beam welding of closed circumferential welds N2 - The present work deals with the development of a strategy for the prevention of end crater defects in high-power laser welding of thick-walled circumferential welds. A series of experiments were performed to understand the influence of the welding Parameters on the formation of end crater defects such as pores, cracks, root excess weld metal and shrinkage cavities in the overlap area. An abrupt switch-off of the laser power while closing the circumferential weld leads to a formation of a hole which passes through the whole welded material thickness. A laser power ramp-down causes solidification cracks which are initiated on the transition from full-penetration mode to partial penetration. Defocusing the laser beam led to promising results in terms of avoiding end crater defects. Cracks and pores in the overlap area could be effectively avoided by using defocusing techniques. A strategy for avoiding of end crater imperfections was tested on flat specimens of steel grade S355J2 with a wall thickness of between 8 mm and 10 mm and then transferred on the 10 mm thick pipe sections made of high-strength pipeline steel API5L-X100Q. KW - Laser beam welding KW - Circumferential weld KW - End crater PY - 2019 DO - https://doi.org/10.1007/s40194-019-00841-x SP - 1 PB - Springer AN - OPUS4-50270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Bakir, Nasim A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Na, S.-J. A1 - Rethmeier, Michael T1 - On the search for the origin of the bulge effect in high power laser beam welding N2 - The shape of the weld pool in laser beam welding plays a major role to understand the dynamics of the melt and its solidification behavior. The aim of the present work was its experimental and numerical investigation. To visualize the geometry of the melt pool in the longitudinal section a butt joint configuration of 15 mm thick structural steel and transparent quartz glass was used. The weld pool shape was recorded by means of a high-speed video camera and two thermal imaging MWIR and VIS cameras. The observations show that the dimensions of the weld pool vary depending on the depth. The regions close to the surface form a teardrop shaped weld pool. A bulge-region and its temporal evolution were observed approximately in the middle of the depth of the weld pool. Additionally, a transient numerical simulation was performed until reaching a steady state to obtain the weld pool shape and to understand the formation mechanism of the observed bulging phenomena. A fixed keyhole with an experimentally obtained shape was used to represent the full-penetration laser beam welding process. The model considers the local temperature field, the effects of phase transition, thermo-capillary convection, natural convection and temperature-dependent material properties up to evaporation temperature. It was found that the Marangoni convection and the movement of the laser heat source are the dominant factors for the formation of the bulging-region. Good correlation between the numerically calculated and the experimentally observed weld bead shapes and the time-temperature curves on the upper and bottom surface were found. T2 - International Congress on Applications of Lasers & Electro-Optics (ICALEO®) CY - Orlando, USA DA - 14.10.2018 KW - Bulging effect KW - High power laser beam welding KW - Numerical modelling KW - Solidification cracking PY - 2019 SP - 1 EP - 8 AN - OPUS4-47139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Äquivalente Wärmequellenmodellierung beim Hochleistungslaserstrahlschweißen dicker Bleche N2 - Der vorgestellte Modellierungsprozess dient zur Abschätzung einer geeigneten äquivalenten Wärmequelle und Berechnung des thermischen Verhaltens beim Laserstrahlschweißen. Die Methode Kombiniert die Vorteile von gägngigen Simulationsverfahren und reduziert die berücksichtigte Anzahl an physikalischen Aspekten und Kalibrierungsparameter. Durch die modellierten physikalischen Phänomene konnten die Informationen über die Strömung im Schmelzbad und dessen Einfluss auf die resultierende lokale Temperaturverteilung und folglich auf das transiente Temperaturfeld gewonnen werden. Dadurch wurde die Simulatioszeit(inkl. Kalibrierungsaufwand) auf weniger als einen Tag Rechenzeit verringert. T2 - 38. Assistentenseminar Füge- und Schweißtechnik CY - Rabenau, Germany DA - 06.10.2017 KW - Äquivalente Wärmequelle KW - Bewegtes Gitter KW - Hochleistungslaserstrahlschweißen KW - Prozesssimulation KW - Knotenweise Zwangsbedingungen PY - 2019 SN - 978-3-96144-028-3 VL - 342 SP - 66 EP - 76 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-47699 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frei, J. A1 - Biegler, M. A1 - Rethmeier, Michael A1 - Böhne, Ch. A1 - Meschut, G. T1 - Investigation of liquid metal embrittlement of dual phase steel joints by electro-thermomechanical spot-welding simulation N2 - A 3D electro-thermomechanical model is established in order to investigate liquid metal embrittlement. After calibration to a dual phase steel of the 1000 MPa tensile strength class, it is used to analyse the thermo-mechanical system of an experimental procedure to enforce liquid metal embrittlement during resistance spot welding. In this procedure, a tensile stress level is applied to zinc coated advanced high strength steel samples during welding. Thereby, liquid metal embrittlement formation is enforced, depending on the applied stress level and the selected material. The model is suitable to determine and visualise the corresponding underlying stresses and strains responsible for the occurrence of liquid metal embrittlement. Simulated local stresses and strains show good conformity with experimentally observed surface crack locations. KW - RSW KW - LME KW - Advanced high strength steel KW - Zinc coated steel KW - Testing method KW - Dual phase steel KW - Cracking KW - Electro-thermomechnical model PY - 2019 DO - https://doi.org/10.1080/13621718.2019.1582203 SN - 1362-1718 SN - 1743-2936 VL - 24 IS - 7 SP - 624 EP - 633 PB - Taylor & Francis AN - OPUS4-47747 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bakir, Nasim A1 - Pavlov, V. A1 - Zavjalov, S. A1 - Volvenko, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Development of a novel optical measurement technique to investigate the hot cracking susceptibility during laser beam welding N2 - Using a novel optical measurement technique together with the optical flow algorithm, a two-dimensional deformation analysis during welding was conducted. The presented technique is the first to provide a measurement of the full strain field locally in the immediate vicinity of the solidification front. Additionally, the described procedure of the optical measurement allows the real material-dependent values of critical strain and strain rate characterizing the transition to hot cracking during laser welding processes to be determined. Furthermore, the above-mentioned technique is independet on the welding process, which means, it can be also used for arc welding processes. Dependency between the external strain rate and the critical local strain and strain rate has been observed. That is to say, the critical local strain and strain rate is increased with an increase of the strain rate.Moreover, this technique allows automatic identification of the cases that can be critical for the solidification crack formation by monitoring the state of strain on the crack-sensitive region within the mushy zone. KW - Optical measurment technique KW - Hot crack KW - Critical strain KW - Laser beam welding PY - 2019 DO - https://doi.org/10.1007/s40194-018-0665-8 SN - 0043-2288 VL - 63 IS - 2 SP - 435 EP - 441 PB - Springer Berlin Heidelberg CY - Berlin AN - OPUS4-47761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Bakir, Nasim A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Na, S.-J. A1 - Rethmeier, Michael T1 - On the search for the origin of the bulge effect in high power laser beam welding N2 - The shape of the weld pool in laser beam welding plays a major role to understand the dynamics of the melt and its solidification behavior. The aim of the present work was its experimental and numerical investigation. To visualize the geometry of the melt pool in the longitudinal section a butt joint configuration of 15 mm thick structural steel and transparent quartz glass was used. The weld pool shape was recorded by means of a high-speed video camera and two thermal imaging MWIR and VIS cameras. The observations show that the dimensions of the weld pool vary depending on the depth. The regions close to the surface form a teardrop shaped weld pool. A bulge-region and its temporal evolution were observed approximately in the middle of the depth of the weld pool. Additionally, a transient numerical simulation was performed until reaching a steady state to obtain the weld pool shape and to understand the formation mechanism of the observed bulging phenomena. A fixed keyhole with an experimentally obtained shape was used to represent the full-penetration laser beam welding process. The model considers the local temperature field, the effects of phase transition, thermo-capillary convection, natural convection and temperature-dependent material properties up to evaporation temperature. It was found that the Marangoni convection and the movement of the laser heat source are the dominant factors for the formation of the bulging-region. Good correlation between the numerically calculated and the experimentally observed weld bead shapes and the time-temperature curves on the upper and bottom surface were found. KW - Bulging effect KW - High power laser beam welding KW - Process simulation KW - Solidification KW - Hot cracking PY - 2019 DO - https://doi.org/10.2351/1.5096133 SN - 1042-346X SN - 1938-1387 VL - 31 IS - 2 SP - 022413-1 EP - 022413-7 PB - AIP Publishing AN - OPUS4-47848 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gumenyuk, Andrey A1 - Üstündag, Ö. A1 - Gook, S. A1 - Rethmeier, Michael T1 - Laserhybridschweißen von dickwandigen Stählen mit elektromagnetischer Schmelzbadunterstützung N2 - Die steigenden Anforderungen in Hinsicht auf Sicherheitsfaktoren von gefügten Bauteilen führen zu einer Zunahme der zu schweißenden Bauteildicken. Das Laserstrahl-Lichtbogen-Hybridschweißverfahren – verbreitet im industriellen Einsatz vor allem im Schiffs- und Windkraftanlagenbau – ermöglicht das einlagige Fügen von dickwandigen Strukturen. Eine Herausforderung stellt das Schweißen von dickwandigen Bauteilen mit reduzierter Geschwindigkeit in Wannenlage (PA-Position) da. Sie ist aufgrund des erhöhten hydrostatischen Druckes und die daraus resultierenden Tropfenbildung an der Wurzelseite bedingt realisierbar. Die im Rahmen dieser Studie eingesetzte elektromagnetische Schmelzbadunterstützung wirkt dem gravitationsbedingten Austropfen der Schmelze entgegen und kompensiert den hydrostatischen Druck. Dabei werden unterhalb der Schweißzone mit Hilfe eines extern angelegten oszillierenden Magnetfeldes Wirbelströme im Werkstück induziert, die eine nach oben gerichtete Lorentzkraft erzeugt. Die Lorentzkraft wirkt dem hydrostatischen Druck entgegen und stellt einen sicheren Schweißprozess ohne Tropfenbildung dar. Mit dem Hybridschweißverfahren mithilfe der elektromagnetischen Schmelzbadunterstützung gelingt es mit einem 20-kW Faserlaser bis zu 30 mm dicke Bleche in einer Lage zu schweißen. Bei 25 mm dicken einlagig geschweißten Platten aus S355 konnte ein Spalt bis 1 mm und ein Kantenversatz bis zu 2 mm sicher überbrückt werden. Die Reduzierung der Schweißgeschwindigkeit hat eine Verringerung der notwendigen Laserleistung zur Folge und begünstigt außerdem die mechanisch-technologischen Eigenschaften, infolge der reduzierten Abkühlgeschwindigkeit. Durch die geringe Martensitbildung führt dies zu einer Verbesserung der Kerbschlagzähigkeit. T2 - 19. Tagung in Hamburg - DVS CY - Hamburg, Germany DA - 24.04.2019 KW - Laser-Hybridschweißen KW - Elektromagnetische Schmelzbadunterstützung KW - Schweißen von kaltzähen Stählen PY - 2019 SP - 34 EP - 46 PB - DVS AN - OPUS4-47918 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Rethmeier, Michael A1 - Biegler, M. T1 - Qualifizierung der Schweißstruktursimulation für die wirtschaftliche Bearbeitung additiver fertigungstechnischer Fragestellungen am Beispiel des Laserpulverauftragschweißens N2 - Additive Fertigungsverfahren, speziell das selektive Laserschmelzen sowie das Laserpulverauftragsschweißen, ermöglichen eine enorme Steigerung der Flexibilität und erlauben Kleinserienteile mit hoher Genauigkeit und geringen Kosten herzustellen. Für den erfolgreichen wirtschaftlichen Einsatz dieser neuartigen Fertigungsverfahren spielt die Einhaltung des First-time-right-Prinzips eine entscheidende Rolle: Bauteile sollten bereits im ersten Versuch allen Anforderungen genügen. Aufgrund der jungen Geschichte dieses Fertigungszweigs und der damit einhergehenden fehlenden Erfahrungen und Richtlinien ist diese elementare Forderung heute nur in wenigen Fällen realisierbar. Die geforderten Qualitätsstandards können aktuell nur über experimentelle Iterationsschleifen eingehalten werden, sodass das große Potential einer flexiblen und schnellen Fertigung in erheblichem Maß reduziert wird. Die Komplexität der gefertigten Bauteile und die des Prozesses an sich lassen eine erfahrungsbasierte Vorhersage der Verzüge und Eigenspannungen kaum zu. Zudem werden auch in Zukunft Richtlinien und Normen nicht das komplette Anwendungsspektrum abbilden können. Die eigenspannungsbedingten Verzüge spielen demnach eine bedeutende Rolle und stellen zusammen mit dem Erreichen der Maßhaltigkeit eine entscheidende technologische Herausforderung beim Einsatz additiver Fertigungsverfahren dar. Die numerische Simulation ermöglicht die Vorhersage von Bauteilverzügen und –spannungen und kann durch virtuelle Abprüfung von Herstellstrategien die Anzahl von Experimente reduzieren. Bisherige numerische Betrachtungen von zusatzwerkstoffbasierten Verfahren, zu denen unter anderem das Laserpulverauftragschweißen (LPA) gehört, beschränkten sich primär auf akademische Beispiele mit geringer Komplexität. Für die Simulation von konkreten Anwendungsfällen auf Bauteilebene liegen bisher keine validierten, numerischen Methoden und Ansätze vor, die eine wirtschaftliche Anwendung der Schweißsimulation ermöglichen. Dieses Projekt wird Simulationsmodelle zur numerischen Betrachtung komplexer additiv gefertigter Bauteile entwickeln. Dafür wird der Prozess in vereinfachten Simulationen nachgebildet und anhand von Experimenten validiert. Anschließend werden Methoden zur automatisierten Pfadgenerierung für komplexe Bauteile erprobt und in der Simulation implementiert. Schließlich werden zur Reduktion der Rechenzeit verschiedene Methoden zur Vereinfachung evaluiert und verglichen. Das Ziel ist die Steigerung der Verlässlichkeit in der Simulation, um prädiktive Aussagen über die Qualität additiv gefertigter Bauteile zu ermöglichen. KW - Schweißstruktursimulation KW - LPA KW - Additive Manufacturing PY - 2019 SN - 978-3-96780-042-5 SP - 1 EP - 106 PB - Forschungsvereinigung Stahlanwendungen AN - OPUS4-57321 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fritzsche, André A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - Influence of welding parameters on electromagnetic supported degassing of die-casted and wrought aluminum N2 - The paper describes a systematic investigation of the EM influenced laser beam welding of the aluminum die casting alloy AlSi12(Fe) in comparison to a reference material, a wrought aluminum alloy AlMg3. By using of a face centred CCD test plan, the influencing variables laser power, welding velocity and magnetic flux density are varied with regard to their influence on the remaining porosity. The global pore fraction of the weld seams was analyzed by X-ray images with ImageJ. This enabled a qualitatively very good regression model to be derived for the respective material, which identifies the dominant influencing variables. The results prove, statistically verified, for the investigated parameter range, that - the magnetic flux density is the main cause for the porosity reduction, - the porosity rises with increasing laser power the porosity in the weld seams rises, - the influence of the welding velocity is negligible, - the pore quantity in wrought alloy is more strongly minimized by the magnetic flux density than in die casting, - the porosity decreases due to the EM influence by approx. 70 % compared to the unaffected welds. This effect is emphasized by the contour line charts, which illustrate the relationship between laser power and magnetic flux density. With the exception of the quadratic influence of B at the wrought alloy, the statistical correlation shows a linear development of the respective influence variables for both aluminum alloys. In order to investigate these deviations, further simulations with a focus on weld pool geometry and weld pool flow are to be performed. In addition, the welding results can be classified in accordance with DIN EN ISO 13919-2 in the highest evaluation group B for AlMg3 and in evaluation group C for AlSi12(Fe) by applying a magnetic flux density of 350 mT. The analysis of the CT images at constant laser power and welding velocity allows a direct comparison both between the two alloys and also as a function of the magnetic flux density with regard to the number and size of pores. An increase in the magnetic flux density leads to a significant decrease in the number and volume of pores, which can be seen more clearly in wrought alloy than in die casting. Very acceptable results can be achieved for both materials and different welding parameters. This successfully demonstrates the desired process robustness and functionality of the EM system for practical applications. For subsequent investigations of overlap joints, the lowest possible laser power and a high magnetic flux density are recommended. T2 - 38th International Congress on Applications of Lasers & Electro-Optics CY - Orlando, FL, USA DA - 07.10.2019 KW - AISI D2 KW - Laser implantation KW - Surface texturing KW - TiB2 PY - 2019 SN - 978-1-940168-1-42 SP - Paper Macro 1202 AN - OPUS4-50009 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - Laserimplantation von TiB2-Partikeln in X153CrMoV12 Kaltarbeitsstahl und Ihr Einfluss auf die Materialeigenschaften N2 - Die Laserimplantation erlaubt die Herstellung verschleißbeständiger, erhabener Mikrostrukturen (Implants) auf Stahloberflächen durch ein diskontinuierliches Dispergieren von keramischen Partikeln mittels gepulster Laserstrahlung. Durch die flexible Anordnung separierter Implants zu komplexen Mustern erlaubt das Verfahren eine gezielte Oberflächenstrukturierung zur Beeinflussung des Reibungs- und Verschleißverhaltens. Insbesondere erwies sich Titandiborid (TiB2) als Implantationsmaterial für geeig-net, da eine Manipulation der Implantgeometrie in einem breiten Bereich vorgenommen werden konnte, ohne dass Materialdefekte wie Risse oder Poren auftraten. Ziel der Untersuchungen war es, den Einfluss implantierter TiB2-Partikel auf die Materialeigenschaften von X153CrMoV12 zu ermitteln. Hierfür wurden im Rahmen der Arbeit die Laserparameter (Pulsleistung und -dauer) in einem breiten Parameterfeld variiert und vergleichende Untersuchungen an TiB2 implan-tierten Zonen sowie an punktuell umschmelzstrukturierten Zonen durchgeführt. Die Ergebnisse zeigen, dass eine reine Umschmelzstrukturierung zu einer deutlichen Reduktion der Oberflächenhärte aufgrund erhöhter Restaustenitgehalte (γR) führt. Im Gegensatz dazu führt das Laserimplantieren von TiB2-Partikeln zu einer deutlichen Härtesteigerung in den kuppel- oder ringförmigen Implants. Härtewerte von bis zu 1800 HV1 resultieren aus dispergierten TiB2-Primärpartikeln sowie in-situ ausgeschiedenen Se-kundärphasen, durch die der Restaustenitanteil zudem deutlich reduziert wird. T2 - 39. Assistentenseminar Füge- und Schweißtechnik CY - Eupen, Belgium DA - 12.09.2018 KW - Laserimplantation KW - TiB2 KW - AISI D2 KW - Laserdispergieren PY - 2019 SN - 978-3-96144-070-2 VL - Band 356 SP - 51 EP - 59 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-48751 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fritzsche, André A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - Elektromagnetische Porenreduktion beim Laserstrahlschweißen von Aluminium-Druckgusslegierungen N2 - Innerhalb der vorliegenden Untersuchung wurde ein elektromagnetisches Schmelzbadbeeinflussungssys-tem zur Reduktion des Porenanteils beim Laserstrahlschweißen von Aluminium-Druckguss verwendet. Hierbei wird der Unterschied der elektrischen Leitfähigkeiten zwischen Gas- bzw. Lufteinschlüssen und geschmolzenem Aluminium gezielt genutzt, um die im Schmelzbad eingeschlossenen Poren während des Laserstrahlprozesses zur Oberfläche zu verdrängen. Die dafür erforderlichen Lorentzkräfte werden durch ein oszillierendes Magnetfeld erzeugt. Bei den Laserstrahlschweißversuchen handelt es sich um Ein-schweißungen in Wannenlage (PA-Position) von 6 mm dickem Aluminium-Druckguss AC-AlSi9MnMg. Über einen zuvor optimierten Laserschweißprozess wurde durch zusätzlichen Einsatz eines elektromag-netischen Feldes dessen Wirkung hinsichtlich des Porengehaltes und der Oberflächenrauheit untersucht. Die Auswertung der Schweißnähte erfolgte anhand von Querschliffaufnahmen, Röntgenbildern sowie Computer-Tomographie (CT) Aufnahmen. In Abhängigkeit von der verwendeten magnetischen Fluss-dichte konnte eine Reduktion des Porenanteils von bis zu 75 % erzielt werden, wobei vor allem großvolu-mige Poren erfolgreich aus dem Schmelzbad entfernt werden konnten. Zudem konnte eine Reduktion der Oberflächenrauigkeit von ebenfalls bis zu 75 % erreicht werden. T2 - Assistentenseminar 2017 der Wissenschaftlichen Gesellschaft Fügetechnik e.V. im DVS CY - Rabenau bei Dresden, Sachsen, Germany DA - 06.09.2017 KW - Laserstrahlschweißen KW - Aluminium-Druckguss KW - Auftriebskräfte KW - Elektromagnetische Porenreduktion PY - 2019 SN - 978-3-96144-028-3 VL - 342 SP - 103 EP - 110 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-47622 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - Anwendung der Laserimplantation zur Strukturierung verschleißgefährdeter Werkzeuge N2 - In einer Vielzahl technischer Anwendungen spielt die Aufrechterhaltung eines definierten Reibungs- und Verschleißverhaltens zwischen bewegten Oberflächen für die Sicherheit und Funktionalität eine ent-scheidende Rolle. Die Oberflächentechnik versucht durch geeignete Verfahren die Randschichten zu ertüchtigen, um Reibung und Verschleiß zu kontrollieren. Eine Verbesserung der Materialeigenschaften kann durch flächige Beschichtungen erreicht werden. Zusätzlich ermöglichen Oberflächenstrukturierun-gen breite Möglichkeiten zur Beeinflussung des Schmierungszustandes bzw. der Kontaktbedingungen. Neben Negativstrukturen bieten ebenfalls erhabene Mikrostrukturen großes Potenzial zur Beeinflussung des tribologischen Verhaltens. Ihr Einsatz ist aber aufgrund der besonderen Verschleißproblematik er-habener Strukturen momentan limitiert, so dass in der Regel zusätzliche verschleißreduzierende Be-schichtungen notwendig werden. In diesem Beitrag wurde das Verfahren der Laserimplantation angewandt, mit dem erhabene und sepa-rierte Oberflächenstrukturen hoher Verschleißfestigkeit in einem Fertigungsschritt erzeugbar sind. Das Verfahren basiert auf einem lokalisierten Dispergieren von Hartstoffpartikeln. Hierfür wurde erstmalig ein gepulster Faserlaser mit hoher Strahlqualität zur Erzeugung punkt- und linienförmiger Mikrostrukturen angewandt. Versuche wurden auf dem Kaltarbeitsstahl X153CrMoV12 unter Anwendung von Titandibo-rid als Hartstoff durchgeführt. Anhand von Härtemessungen konnte gezeigt werden, dass sowohl punkt- als auch linienförmige Strukturen mit Härten über 1000 HV1 und einer feinkörnigen Mikrostruktur mit feinverteilten Hartstoffpartikeln herstellbar sind. Des Weiteren war es möglich, die Implantgeometrien, welche an Querschliffen und durch Weißlichtinterferometeraufnahmen erfasst wurden, durch die Puls-leistung und Pulsdauer zu steuern. T2 - 38. Assistentenseminar Füge- und Schweißtechnik CY - Rabenau, Germany DA - 06.10.2017 KW - Laserimplantation PY - 2019 UR - https://www.dvs-media.eu/de/neuerscheinungen/3646/38.-assistentenseminar-fuegetechnik SN - 978-3-96144-028-3 VL - 342 SP - 24 EP - 34 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-47637 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -