TY - JOUR A1 - Bakir, Nasim A1 - Artinov, Antoni A1 - Gumenyuk, Andrey A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical simulation on the origin of solidification cracking in laser welded thick-walled structures N2 - One of the main factors affecting the use of lasers in the industry for welding thick structures is the process accompanying solidification cracks. These cracks mostly occurring along the welding direction in the welding center, and strongly affect the safety of the welded components. In the present study, to obtain a better understanding of the relation between the weld pool geometry, the stress distribution and the solidification cracking, a three-dimensional computational fluid dynamic (CFD) model was combined with a thermo-mechanical model. The CFD model was employed to analyze the flow of the molten metal in the weld pool during the laser beam welding process. The weld pool geometry estimated from the CFD model was used as a heat source in the thermal model to calculate the temperature field and the stress development and distributions. The CFD results showed a bulging region in the middle depth of the weld and two narrowing areas separating the bulging region from the top and bottom surface. The thermo-mechanical simulations showed a concentration of tension stresses, transversally and vertically, directly after the solidification during cooling in the region of the solidification cracking. T2 - 27TH INTERNATIONAL CONFERENCE ON METALLURGY AND MATERIALS - METAL 2018 CY - Brno, Czech Republic DA - 23.05.2018 KW - Laser beam welding KW - Weld pool KW - Full penetration KW - Finite element method (FEM) KW - CFD model KW - Numerical simulation KW - Solidification cracking PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-450595 DO - https://doi.org/10.3390/met8060406 SN - 2075-4701 VL - 8 IS - 6 SP - 406, 1 EP - 15 PB - MDPI CY - Basel, Switzerland AN - OPUS4-45059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Investigation of solidification cracking susceptibility during laser beam welding using an in-situ observation technique N2 - In recent years, laser beam welding has found wide applications in many industrial fields. Solidification cracks are one of the most frequently encountered welding defects that hinder obtaining a safe weld joint. Decades of research have shown that one of the main causes of such cracks are the strain and the strain rate. Obtaining meaningful measurements of these strains has always been a major challenge for scientists, because of the specific environment of the measurement range and the many obstacles, as well as the high temperature and the plasma plume. In this study, a special experimental setup with a high-speed camera was employed to measure the strain during the welding process. The hot cracking susceptibility was investigated for 1.4301 stainless steel, and the critical strain required for solidification crack formation was locally and globally determined. KW - Solidification cracking KW - Laser welding KW - Optical measurement KW - In situ strain KW - Critical strain KW - Strain rate PY - 2018 DO - https://doi.org/10.1080/13621718.2017.1367550 SN - 1362-1718 SN - 1743-2936 VL - 23 IS - 3 SP - 234 EP - 240 PB - Taylor and Francis AN - OPUS4-43992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Graf, B. A1 - Marko, A. A1 - Petrat, T. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - 3D laser metal deposition: process steps for additive manufacturing N2 - Laser metal deposition (LMD) is an established technology for two-dimensional surface coatings. It offers high deposition rates, high material flexibility, and the possibility to deposit material on existing components. Due to these features, LMD has been increasingly applied for additive manufacturing of 3D structures in recent years. Compared to previous coating applications, additive manufacturing of 3D structures leads to new challenges regarding LMD process knowledge. In this paper, the process steps for LMD as additive manufacturing technology are described. The experiments are conducted using titanium alloy Ti-6Al-4Vand Inconel 718. Only the LMD nozzle is used to create a shielding gas atmosphere. This ensures the high geometric flexibility needed for additive manufacturing, although issues with the restricted size and quality of the shielding gas atmosphere arise. In the first step, the influence of process parameters on the geometric dimensions of single weld beads is analyzed based on design of experiments. In the second step, a 3D build-up strategy for cylindrical specimen with high dimensional accuracy is described. Process parameters, travel paths, and cooling periods between layers are adjusted. Tensile tests show that mechanical properties in the as-deposited condition are close to wrought material. As practical example, the fir-tree root profile of a turbine blade is manufactured. The feasibility of LMD as additive technology is evaluated based on this component. KW - Laser metal deposition KW - Build-up strategy KW - Deposition rate KW - Additive manufacturing PY - 2018 DO - https://doi.org/10.1007/s40194-018-0590-x SN - 0043-2288 SN - 1878-6669 VL - 62 IS - 4 SP - 877 EP - 883 PB - Springer Berlin Heidelberg CY - Heidelberg AN - OPUS4-44868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Petrat, T. A1 - Winterkorn, René A1 - Graf, B. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Build-up strategies for temperature control using laser metal deposition for additive manufacturing N2 - The track geometry created with laser metal deposition (LMD) is influenced by various parameters. In this case, the laser power has an influence on the width of the track because of an increasing energy input. A larger melt pool is caused by a rising temperature. In the case of a longer welding process, there is also a rise in temperature, resulting in a change of the track geometry. This paper deals with the temperature profiles of different zigzag strategies and spiral strategies for additive manufacturing. A two-color pyrometer is used for temperature measurement on the component surface near the melt pool. Thermocouples measure the temperatures in deeper regions of a component. The welds are located in the center and in the edge area on a test part to investigate the temperature evolution under different boundary conditions. The experiments are carried out on substrates made from mild steel 1.0038 and with the filler material 316L. The investigations show an influence on the temperature evolution by the travel path strategy as well as the position on the part. This shows the necessity for the development and selection of build-up strategies for different part geometries in additive manufacturing by LMD. KW - Laser welding KW - Clad steels KW - Temperature distribution KW - Heat flow KW - Laser surfacing PY - 2018 DO - https://doi.org/10.1007/s40194-018-0604-8 SN - 0043-2288 SN - 1878-6669 VL - 62 IS - 5 SP - 1073 EP - 1081 PB - Springer AN - OPUS4-45773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Üstündağ, Ö. A1 - Fritzsche, André A1 - Avilov, V. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Hybrid laser-arc welding of thick-walled ferromagnetic steels with electromagnetic weld pool support N2 - The hybrid laser-arc welding (HLAW) process provides many advantages over laser welding and arc welding alone, such as high welding speed, gap bridgeability, and deep penetration. The developments in hybrid laser-arc welding technology using modern high-power lasers allow single-pass welding of thick materials. This technology can be used for the heavy metal industries such as shipbuilding, power plant fabrication, and line-pipe manufacturing. The obvious problem for single-pass welding is the growth of the hydrostatic pressure with increasing thickness of materials leading to drop-out of molten metal. This phenomenon is aggravated at slow welding velocities because of increasing weld seam width followed by a decrease of Laplace pressure compensating the hydrostatic pressure. Therefore, weld pool support is necessary by welding of thick materials with slow welding velocities. The innovative electromagnetic weld pool support system is contactless and has been used successfully for laser beam welding of aluminum alloys and austenitic and ferromagnetic steels. The support system is based on generating Lorentz forces within the weld pool. These are produced by an oscillating magnetic field orientated perpendicular to the welding direction. The electromagnetic weld pool support facilitates a decrease in the welding speed without a sagging and drop-out of the melt thus eliminating the limitations of weldable material thickness. KW - Hybrid laser-arc welding KW - Thick-walled steel KW - Electromagnetic weld pool support KW - Ferromagnetic steels KW - High-power laser beam PY - 2018 DO - https://doi.org/10.1007/s40194-018-0597-3 SN - 1878-6669 VL - 62 IS - 4 SP - 767 EP - 774 PB - Springer AN - OPUS4-46825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Batahgy, A.M. A1 - Gumenyuk, Andrey A1 - Gook, S. A1 - Rethmeier, Michael T1 - Comparison between GTA and laser beam welding of 9%Ni steel for critical cryogenic applications N2 - IncomparisonwithGTAweldedjoints,highertensilestrengthcomparabletothatofthebasemetalwasobtained for laser beam welded joints due to fine martensitic microstructure. Impact fracture toughness values with much lower mismatching were obtained for laser beam welded joints due to similarity in the microstructures of its weld metal and HAZ. In this case, the lower impact fracture toughness obtained (1.37J/mm2) was much higher than that of the GTA welded joints (0.78J/mm2), which was very close to the specified minimum value (≥0.75J/mm2). In contrast to other research works, the overall tensile and impact properties are influenced not only by the fusion zone microstructure but also by the size of its hardened area as well as the degree of its mechanical mismatching, as a function of the welding process. A better combination of tensile strength and impact toughness of the concerned steel welded joints is assured by autogenous laser beam welding process. KW - Impact absorbed energy KW - 9%Ni steel KW - GTAW KW - Laser beam welding KW - Fusion zone size KW - Microstructure Tensile strength PY - 2018 DO - https://doi.org/10.1016/j.jmatprotec.2018.05.023 SN - 0924-0136 IS - 261 SP - 193 EP - 201 PB - Elsevier AN - OPUS4-45776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Numerical simulation of solidification crack formation during laser beam welding of austenitic stainless steels under external load N2 - Solidification cracking phenomena taking place under controlled tensile weldability (CTW) test conditions have already been investigated both experimentally and numerically via FEA in order to get a better understanding of the mechanisms of hot crack formation during laser beam welding of austenitic steel grades. This paper develops a threedimensional finite element model employing the contact element technique to simulate the formation and propagation of solidification cracks during laser full penetration welding of fully austenitic stainless steel 1.4376. During the experimental procedure, the resulting strain and displacement directed to the laser beam in the close vicinity of the weld pool was measured at the surface of the workpiece using a digital image correlation (DIC) technique with an external diode laser as an illuminating source. Local strain fields, global loads and crack lengths predicted by the model are in good agreement with those observed in experiments. KW - Solidification cracking KW - Finite element analysis KW - Imaging KW - Laser welding KW - Austenitic stainless steels PY - 2016 DO - https://doi.org/10.1007/s40194-016-0357-1 SN - 0043-2288 SN - 1878-6669 VL - 60 IS - 5 SP - 1001 EP - 1008 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-37287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Petrat, T. A1 - Graf, B. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael ED - Schmidt, M. ED - Vollertsen, F. ED - Arnold, C. B. T1 - Laser metal deposition as repair technology for a gas turbine burner made of Inconel 718 N2 - Maintenance, repair and overhaul of components are of increasing interest for parts of high complexity and expensive manufacturing costs. In this paper a production process for laser metal deposition is presented, and used to repair a gas turbine burner of Inconel 718. Different parameters for defined track geometries were determined to attain a near net shape deposition with consistent build-up rate for changing wall thicknesses over the manufacturing process. Spot diameter, powder feed rate, welding velocity and laser power were changed as main parameters for a different track size. An optimal overlap rate for a constant layer height was used to calculate the best track size for a fitting layer width similar to the part dimension. Deviations in width and height over the whole build-up process were detected and customized build-up strategies for the 3D sequences were designed. The results show the possibility of a near net shape repair by using different track geometries with laser metal deposition. T2 - LANE - 9 International Conference on Photonic Technologies CY - Fürth, Germany DA - 19.09.2016 KW - Laser metal deposition KW - Inconel 718 KW - Additive manufacturing KW - Maintenance KW - Repair and overhaul PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-376723 UR - http://ac.els-cdn.com/S1875389216301857/1-s2.0-S1875389216301857-main.pdf?_tid=ed1d75de-84a2-11e6-af94-00000aab0f6c&acdnat=1474974777_4917d753cb3d316c4b000ba0760778b5 DO - https://doi.org/10.1016/j.phpro.2016.08.078 SN - 1875-3892 VL - 83 SP - 761 EP - 768 PB - Elservier AN - OPUS4-37672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Welding with high-power lasers: trends and developments N2 - High-power laser beam welding became new stimuli within the last 10 years due to the availability of a new generation of high brightness multi kilowatt solid state lasers. In the welding research new approaches have been developed to establish reliable and praxis oriented welding processes meeting the demands of modern industrial applications during this time. The paper focuses on some of the current scientific and technological aspects in this research field like hybrid laser arc welding, simulation techniques, utilization of electromagnetic fields or reduced pressure environment for laser beam welding processes, which contributed to the further development of this technology or will play a crucial role in its further industrial implementation. T2 - 9th International Conference on Photonic Technologies - LANE 2016 CY - Fürth, Germany DA - 19.09.2016 KW - High-power Laserbeam Welding KW - Electromagnetic Force KW - Vacuum KW - Simulation PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-377280 DO - https://doi.org/10.1016/j.phpro.2016.08.003 VL - 83 SP - 15 EP - 25 PB - Elsevier B.V. CY - Berlin, Germany AN - OPUS4-37728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Avilov, Vjaceslav A1 - Fritzsche, André A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Full penetration laser beam welding of thick duplex steel plates with electromagnetic weld pool support N2 - Full penetration high power bead-on-plate laser beam welding tests of up to 20 mm thick 2205 duplex steel plates were performed in PA position. A contactless inductive electromagnetic (EM) weld pool support system was used to prevent gravity drop-out of the melt. Welding experiments with 15 mm thick plates were carried out using IPG fiber laser YLR 20000 and Yb:YAG thin disk laser TruDisk 16002. The laser power needed to achieve a full penetration was found to be 10.9 and 8.56 kW for welding velocity of 1.0 and 0.5 m min−1, respectively. Reference welds without weld pool support demonstrate excessive root sag. The optimal value of the alternating current(AC) power needed to completely compensate the sagging on the root side was found to be ≈1.6 kW for both values of the welding velocity. The same EM weld pool support system was used in welding tests with 20 mm thick plates. The laser beam power (TRUMPF Yb:YAG thin disk laser TruDisk 16002) needed to reach a full penetration for 0.5 m min−1 was found to be 13.9 kW. Full penetration welding without EM weld pool support is not possible—the surface tension cannot stop the gravity drop-out of the melt. The AC power needed to completely compensate the gravity was found to be 2 kW. KW - Electromagnetic weld pool control KW - Duplex stainless steel KW - Laser beam welding KW - Full penetration welding PY - 2016 DO - https://doi.org/10.2351/1.4944103 SN - 1042-346X SN - 1938-1387 VL - 28 IS - 2 SP - 022420-1 EP - 022420-7 PB - American institute of physics CY - Woodbury, NY, USA AN - OPUS4-35668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Numerical assessment and experimental verification of the influence of the Hartmann effect in laser beam welding processes by steady magnetic fields N2 - Controlling the dynamics in the weld pool is a highly demanding challenge in deep-penetration laser beam welding with modern high power laser systems in the multi kilowatt range. An approach to insert braking forces in the melt which is successfully used in large-scaled industrial applications like casting is the so-called Hartmann effect due to externally applied magnetic fields. Therefore, this study deals with its adaptation to a laser beam welding process of much smaller geometric and time scale. In this paper, the contactless mitigation of fluid dynamic processes in the melt by steady magnetic fields was investigated by numerical simulation for partial penetration welding of aluminium. Three-dimensional heat transfer, fluid dynamics including phase transition and electromagnetic field partial differential equations were solved based on temperature-dependent material properties up to evaporation temperature for two different penetration depths of the laser beam. The Marangoni convection in the surface region of the weld pool and the natural convection due to the gravitational forces were identified as main driving forces in the weld pool. Furthermore, the latent heat of solide-liquid phase transition was taken into account and the solidification was modelled by the Carman-Kozeny equation for porous medium morphology. The results show that a characteristic change of the flow pattern in the melt can be achieved by the applied steady magnetic fields depending on the ratio of magnetic induced and viscous drag. Consequently, the weld bead geometry was significantly influenced by the developing Lorentz forces. Welding experiments with a 16 kW disc laser with an applied magnetic flux density of around 500 mT support the numerical results by showing a dissipating effect on the weld pool dynamics. KW - Electromagnetic weld pool control KW - Hartmann effect KW - Laser beam weliding KW - Lorentz force KW - Marangoni flow KW - Natural convection KW - Aluminium PY - 2016 DO - https://doi.org/10.1016/j.ijthermalsci.2015.10.030 SN - 1290-0729 VL - 101 SP - 24 EP - 34 PB - Elsevier CY - Paris AN - OPUS4-35034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritzsche, André A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - High power laser beam welding of thick-walled ferromagnetic steels with electromagnetic weld pool support N2 - The paper describes an experimental investigation of high power laser beam welding with an electromagnetic weld pool support for up to 20 mm thick plates made of duplex steel (AISI 2205) and mild steel (S235JR). The results of the welding tests show a successful application of this technology at ferromagnetic metals. Irregular sagging was suppressed successfully. An ac-power of less than 2 kW at oscillation frequencies between 800 Hz and 1.7 kHz is necessary for a full compasation of the hydrostatic pressure. Thus, it was demonstrated that the electromagnetic weld pool support is not only limited to non-ferromagnetic metals like austenitic steels. For future studies with duplex steel, the use of filler material has to take into account with regard to the balance of the mixed austenitic and ferritic phases. KW - Laser beam welding KW - Thick-walled steel KW - Ferromagnetic steel KW - Weld pool support PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-377593 DO - https://doi.org/10.1016/j.phpro.2016.08.038 SN - 1875-3892 VL - 83 SP - 362 EP - 372 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-37759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gebhardt, M.O. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Numerical analysis of hot cracking in laser-hybrid welded tubes N2 - In welding experiments conducted on heavy wall pipes, the penetration mode (full or partial penetration) occurred to be a significant factor influencing appearance of solidification cracks. To explain the observed phenomena and support further optimization of manufacturing processes, a computational model was developed, which used a sophisticated strategy to model the material. High stresses emerged in the models in regions which showed cracking during experiments. In partial penetration welding, they were caused by the prevention of weld shrinkage due to the cold and strong material below the joint. Another identified factor having an influence on high stress localization is bulging of the weld. PY - 2013 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-302961 DO - https://doi.org/10.1155/2013/520786 SN - 1687-8442 SN - 1687-8434 IS - Article ID 520786 SP - 1 EP - 8 PB - Hindawi Publishing Corporation CY - New York, NY, USA AN - OPUS4-30296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -