TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Frenzel, Florian A1 - Grauel, Bettina A1 - Nirmalananthan-Budau, Nithiya A1 - Pauli, Jutta A1 - Hoffmann, Katrin T1 - Photoluminescence at BAM – Photoluminescence at BAM – Photophysical Studies, Quantum Yield Measurements, Multiplexing Strategies, and Standards N2 - Photoluminescence applications in the life and material sciences require bright molecular and nanocrystalline emitters, stimuli-responsive optical probes, signal enhancement, multiplexing, and barcoding strategies and traceable methods to quantify the signal-relevant optical properties of luminescent materials at the ensemble and single molecule/particle level. In this context, current research at Division Biophotonics of BAM is presented ranging from dye and nanocrystal photophysics, absolute measurements of photoluminescence quantum yields in the UV/vis/NIR/SWIR, lifetime multiplexing, and the development of different types of fluorescence standards for validating optical-spectroscopic measurements. T2 - Institutskolloquium IPHT CY - Jena, Germany DA - 22.10.2019 KW - Surface group analysis KW - NIR KW - SWIR KW - Quantum dot KW - Lanthanide KW - Cleavable probe KW - Lifetime KW - Multiplexing KW - Sensor KW - Assay PY - 2019 AN - OPUS4-49360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute ED - Otto, S. ED - Scholz, Norman ED - Behnke, Thomas ED - Heinze, K. T1 - Thermo-Chromium: A Contactless Optical Molecular Thermometer JF - Chemistry - A European Journal N2 - The unparalleled excited-state potential-energy landscape of the chromium(III)-based dye [1]3+ ([Cr(ddpd)2]3+; ddpd=N,N’-dimethyl-N,N’-dipyridin-2-ylpyridin-2,6-diamine) enables a strong dual emission in the near infrared region. The temperature dependence of this dual emission allows the use of [1]3+ as an unprecedented molecular ratiometric thermometer in the 210–373 K temperature range in organic and in aqueous media. Incorporation of [1]3+ in biocompatible nanocarriers, such as 100 nm-sized polystyrene nanoparticles and solutol micelles, provides nanodimensional thermometers operating under physiological conditions. KW - Temperature KW - Sensor KW - Dual emission KW - Fluorescence KW - Cr complex KW - Nano KW - Particle KW - Micelle KW - Probe KW - Environment PY - 2017 DO - https://doi.org/10.1002/chem.201701726 SN - 0947-6539 VL - 23 IS - 50 SP - 12131 EP - 12135 PB - Wiley-VCH AN - OPUS4-42539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Nirmalananthan-Budau, Nithiya A1 - Tavernaro, Isabella A1 - Kläber, Christoph A1 - Kunst, Alexandra T1 - Design, characterization, and application of fluorescent sensor particles N2 - pH and oxygen are amongst the most important and frequently measured analytes in the life and material sciences, indicating, e.g., diseases and corrosion processes. This includes the optical monitoring of pH in living cells for studying cellular internalization pathways, such as phagocytosis, endocytosis, and receptor ligand internalization with the aid of molecular and nanoscale fluorescent sensors. Nanoparticle (NP)-based sensors, that are labeled or stained with a multitude of sensor dyes, have several advantages as compare to conventional molecular probes like enhanced brightness, i.e., amplified signals, ease of designing ratiometric systems by combining analyte sensitive and inert reference dyes, and increased photostability. Moreover, this can enable the use of hydrophobic dyes in aqueous environments. Versatile templates and carriers for the fabrication of nanosensors by the staining and/or labelling with different fluorophores and sensor molecules or surface functionalized NP like silica (SiO2-NP) and polystyrene (PS-NP) particles provide. Here we present the design of a versatile platform of color emissive nanosensors and stimuli-responsive microparticles for the measurement of pH, oxygen, and other targets utilizing both types of matrices and sets of spectrally distinguishable sensor and reference dyes and their characterization and demonstrate the applicability of representative sensor particle for cellular studies. T2 - Vortrag bei dem Projekttreffen MicraGen CY - Copenhagen, Denmark DA - 18.08.2022 KW - Dye KW - Luminescence KW - Quantitative spectroscopy KW - Photophysics KW - Quality assurance KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Standard KW - Integrating sphere spectroscopy KW - Sensor KW - pH KW - Oxygen KW - Microfluidics KW - Cancer KW - Cell KW - Life sciences PY - 2022 AN - OPUS4-57049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Andresen, Elina A1 - Schäferling, M. T1 - Surface modifications for photon-upconversion-based energy-transfer nanoprobes JF - Langmuir N2 - An emerging class of inorganic optical reporters are nearinfrared (NIR) excitable lanthanide-based upconversion nanoparticles (UCNPs) with multicolor emission and long luminescence lifetimes in the range of several hundred microseconds. For the design of chemical sensors and optical probes that reveal analyte-specific changes in their spectroscopic properties, these nanomaterials must be combined with sensitive indicator dyes that change their absorption and/or fluorescence properties selectively upon interaction with their target analyte, utilizing either resonance energy transfer (RET) processes or reabsorption-related inner filter effects. The rational development of UCNP-based nanoprobes for chemical sensing and imaging in a biological environment requires reliable methods for the Surface functionalization of UCNPs, the analysis and quantification of Surface groups, a high colloidal stability of UCNPs in aqueous media as well as the chemically stable attachment of the indicator molecules, and suitable instrumentation for the spectroscopic characterization of the energy-transfer systems and the derived nanosensors. These topics are highlighted in the following feature article, and examples of functionalized core−shell nanoprobes for the sensing of different biologically relevant analytes in aqueous environments will be presented. Special emphasis is placed on the intracellular sensing of pH. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - FRET KW - Surface chemistry PY - 2019 DO - https://doi.org/10.1021/acs.langmuir.9b00238 SN - 0743-7463 VL - 35 IS - 15 SP - 5093 EP - 5113 PB - ACS AN - OPUS4-47975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Brunet, G. A1 - Marin, R. A1 - Monk, Melissa-Jane A1 - Galico, D. A. A1 - Sigoli, F. A. A1 - Suturina, E. A. A1 - Hemmer, E. A1 - Murugesu, M. T1 - Exploring the dual functionality of an Ytterbium complex for luminescence thermometry and slow magnetic relaxation† JF - Chemical Science N2 - We present a comprehensive investigation of the magnetic and optical properties of an ytterbium complex, which combines two desirable and practical features into a single molecular system. Based upon YbIII Ions that promote near-infrared optical activity and a chemical backbone that is ideal for an in-depth understanding of the magnetic behaviour, we have designed a multifunctional opto-magnetic species that operates as a luminescent thermometer and as a single-molecule magnet (SMM). Our magnetic investigations, in conjunction with ab initio calculations, reveal one of the highest energy barriers reported for an YbIII-based complex. Moreover, we correlate this anisotropic barrier with the Emission spectrum of the compound, wherein we provide a complete assignment of the energetic profile of the complex. Such studies lay the foundation for the design of exciting multi-faceted materials that are able to retain information at the single-molecule level and possess built-in thermal self-monitoring capabilities. KW - Magnetic KW - Fluorescence KW - NIR KW - Temperature KW - Dual sensing KW - Sensor KW - Yb(III) complex KW - Lanthanide KW - Quantum yield KW - Quality assurance PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486659 DO - https://doi.org/10.1039/c9sc00343f VL - 10 IS - 28 SP - 6799 EP - 6808 PB - Royal Society of Chemistry AN - OPUS4-48665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Meermann, Björn A1 - Koch, Matthias A1 - Weller, Michael G. T1 - Editorial: Analytical methods and applications in materials and life sciences JF - Analytical and bioanalytical chemistry N2 - Current trends in materials and life sciences are flanked by the need to push detection limits to single molecules or single cells, enable the characterization of increasingly complex matrices or sophisticated nanostructures, speed up the time of analysis, reduce instrument complexity and costs, and improve the reliability of data. This requires suitable analytical tools such as spectroscopic, separation and imaging techniques, mass spectrometry, and hyphenated techniques as well as sensors and their adaptation to application-specific challenges in the environmental, food, consumer product, health sector, nanotechnology, and bioanalysis. Increasing concerns about health threatening known or emerging pollutants in drinking water, consumer products, and food and about the safety of nanomaterials led to a new awareness of the importance of analytical sciences. Another important driver in this direction is the increasing demand by legislation, particularly in view of the 17 sustainable development goals by the United Nations addressing clean energy, industry, and innovation, sustainable cities, clean water, and responsible consumption and production. In this respect, also the development of analytical methods that enable the characterization of material flows in production processes and support recycling concepts of precious raw materials becomes more and more relevant. In the future, this will provide the basis for greener production in the chemical industry utilizing recycled or sustainable starting materials. This makes analytical chemistry an essential player in terms of the circular economy helping to increase the sustainability of production processes. In the life sciences sector, products based on proteins, such as therapeutic and diagnostic antibodies, increase in importance. These increasingly biotechnologically produced functional biomolecules pose a high level of complexity of matrix and structural features that can be met only by highly advanced methods for separation, characterization, and detection. In addition, metrological traceability and target definition are still significant challenges for the future, particularly in the life sciences. However, innovative reference materials as required for the health and food sector and the characterization of advanced materials can only be developed when suitable analytical protocols are available. The so-called reproducibility crisis in sciences underlines the importance of improved measures of quality control for all kinds of measurements and material characterization. This calls for thorough method validation concepts, suitable reference materials, and regular interlaboratory comparisons of measurements as well as better training of scientists in analytical sciences. The important contribution of analytical sciences to these developments is highlighted by a broad collection of research papers, trend articles, and critical reviews from these different application fields. Special emphasis is dedicated to often-overlooked quality assurance and reference materials. T2 - 150 years BAM: Science with impact CY - Berlin, Germany DA - 01.01.2021 KW - Analysis KW - Life sciences KW - Analytical sciences KW - Quality assurance KW - Reference material KW - Fluorescence KW - Nanoparticle KW - Sensor KW - Material sciences KW - Pollutant KW - Environment KW - Method KW - Limit of detection KW - 150th anniversary KW - ABC KW - BAM KW - Collection KW - Editorial KW - Special issue KW - Bundesanstalt für Materialforschung und -prüfung KW - Jahrestag PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550720 DO - https://doi.org/10.1007/s00216-022-04082-8 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - Topical collection: Analytical methods and applications in the materials and life sciences SP - 4267 EP - 4268 PB - Springer CY - Berlin AN - OPUS4-55072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Wang, Cui A1 - You, Y. A1 - Förster, C. A1 - Schubert, H. A1 - Heinze, K. A1 - Seitz, M. T1 - NIR-NIR-Aufkonvertierung in molekularen Chrom-Ytterbium-Salzen JF - Angewandte Chemie - International Edition N2 - Photonen-Aufkonvertierung in hetero-oligonuklearen, Metallkomplex-Architekturen mit organischen Liganden ist ein interessantes, aber bisher selten beobachtetes Phänomen, trotz des großen Potentials sowohl aus Sicht der Grundlagenforschung als auch aus der Anwendungsperspektive. Nun wurde ein neues photonisches Material aus molekularen Chrom(III)- und Ytterbium(III)-Komplexionen entwickelt. Dieses zeigt im Festkörper bei Raumtemperatur abhängig von der Anregungsleistungsdichte nach Anregung des 2F7/2! 2F5/2-3berganges des Ytterbiums bei ca. 980 nm eine kooperative Sensibilisierung der Chrom(III)-zentrierten 2E/2T1-Phosphoreszenz bei ca. 775 nm. Der Aufkonvertierungsprozess ist unempfindlich gegenüber Luftsauerstoff und kann in Gegenwart von Wassermolekülen im Kristallgitter beobachtet werden. KW - Crystal KW - Sensor KW - NIR KW - Yb(III) complex KW - Cr(III) KW - Upconversion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517217 DO - https://doi.org/10.1002/ange.202007200 VL - 132 IS - 42 SP - 18804 EP - 18808 PB - Angewandte Chemie AN - OPUS4-51721 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rietsch, P. A1 - Sobottka, S. A1 - Hoffmann, K. A1 - Popov, A. A. A1 - Hildebrandt, P. A1 - Sarkar, B. A1 - Resch-Genger, Ute A1 - Eigler, S. T1 - Between Aromatic and Quinoid Structure: A Symmetrical UV to Vis/NIR Benzothiadiazole Redox Switch JF - Chemistry - A European Journal N2 - Reversibly switching the light absorption of organic molecules by redox processes is of interest for applications in sensors, light harvesting, smart materials, and medical diagnostics. This work presents a symmetrical benzothiadiazole (BTD) derivative with a high fluorescence quantum yield in solution and in the crystalline state and shows by spectroelectrochemical analysis that reversible switching of UV absorption in the neutral state, to broadband Vis/NIR absorption in the 1st oxidized state, to sharp band Vis absorption in the 2nd oxidized state, is possible. For the one-electron oxidized species, formation of a delocalized radical is confirmed by electron paramagnetic resonance spectroelectrochemistry. Furthermore, our results reveal an increasing quinoidal distortion upon the 1st and 2nd oxidation, which can be used as the leitmotif for the development of BTD based redox switches. KW - Dye KW - Electrochemistry KW - Switch KW - Redox KW - Sensor KW - Photophysics KW - Quantum yield KW - photoluminescence PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517222 DO - https://doi.org/10.1002/chem.202004009 VL - 26 IS - 72 SP - 17361 EP - 17365 PB - Wiley-VCH GmbH AN - OPUS4-51722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Srivastava, Priyanka A1 - Tavernaro, Isabella A1 - Genger, C. A1 - Welker, P. A1 - Huebner, Oskar A1 - Resch-Genger, Ute T1 - Multicolor Polystyrene Nanosensors for the Monitoring of Acidic, Neutral, and Basic pH Values and Cellular Uptake Studies JF - Analytical Chemistry N2 - A first tricolor fluorescent pH nanosensor is presented, which was rationally designed from biocompatible carboxylated polystyrene nanoparticles and two analyte-responsive molecular fluorophores. Its fabrication involved particle staining with a blue-red-emissive dyad, consisting of a rhodamine moiety responsive to acidic pH values and a pH-inert quinoline fluorophore, followed by the covalent attachment of a fluorescein dye to the particle surface that signals neutral and basic pH values with a green fluorescence. These sensor particles change their fluorescence from blue to red and green, depending on the pH and excitation wavelength, and enable ratiometric pH measurements in the pH range of 3.0−9.0. The localization of the different sensor dyes in the particle core and at the particle surface was confirmed with fluorescence microscopy utilizing analogously prepared polystyrene microparticles. To show the application potential of these polystyrene-based multicolor sensor particles, fluorescence microscopy studies with a human A549 cell line were performed, which revealed the cellular uptake of the pH nanosensor and the differently colored emissions in different cell organelles, that is, compartments of the endosomal-lysosomal pathway. Our results demonstrate the underexplored potential of biocompatible polystyrene particles for multicolor and multianalyte sensing and bioimaging utilizing hydrophobic and/or hydrophilic stimuli-responsive luminophores. KW - Microparticle KW - Fluorescence KW - Sensor KW - pH KW - Quantum yield KW - Multiplexing KW - Imaging KW - Cell KW - Quality assurance KW - Nano KW - Polymer KW - Bioimaging KW - Particle KW - Application PY - 2022 DO - https://doi.org/10.1021/acs.analchem.2c00944 VL - 94 IS - 27 SP - 9656 EP - 9664 PB - ACS AN - OPUS4-55365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tan, M. A1 - Monks, Melissa-Jane A1 - Huang, D. A1 - Meng, Y. A1 - Chen, X. A1 - Zhou, Y A1 - Lom, S.-F. A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Chen, G. T1 - Efficient sub-15 nm cubic-phase core/Shell upconversion nanoparticles as reporters for ensemble and single particle studies† JF - Royal Society of Chemistry N2 - Single particle imaging of upconversion nanoparticles (UCNPs) has typically been realized using hexagonal (β) phase lanthanide-doped sodium yttrium fluoride (NaYF4) materials, the upconversion luminescence (UCL) of which saturates at power densities (P) of several hundred W cm−2 under 980 nm nearinfrared (NIR) excitation. Cubic (α) phase UCNPs have been mostly neglected because of their commonly observed lower UCL efficiency at comparable P in ensemble level studies. Here, we describe a set of sub-15 nm ytterbium-enriched α-NaYbF4:Er3+@CaF2 core/shell UCNPs doped with varying Er3+ concentrations (5–25%), studied over a wide P range of ∼8–105 W cm−2, which emit intense UCL even at a low P of 10 W cm−2 and also saturate at relatively low P. The highest upconversion quantum yield (ΦUC) and the highest particle brightness were obtained for an Er3+ dopant concentration of 12%, reaching the highest ΦUC of 0.77% at a saturation power density (Psat) of 110 W cm−2. These 12%Er3+-doped core/shell UCNPs were also the brightest UCNPs among this series under microscopic conditions at high P of ∼102–105 W cm−2 as demonstrated by imaging studies at the single particle level. Our results underline the potential applicability of the described sub-15 nm cubic-phase core/shell UCNPs for ensemble- and single particle- level bioimaging. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Surface chemistry KW - Single particle KW - Brightness PY - 2020 DO - https://doi.org/10.1039/d0nr02172e VL - 12 IS - 19 SP - 10592 EP - 10599 PB - Nanoscale AN - OPUS4-50908 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -