TY - CONF A1 - Brandt, Guido T1 - Wear behaviour of zirconia in hot steam N2 - Self-mated magnesia stabilized zirconia (Mg-PSZ) ceramic sliding couples have been investigated at 100 N load (P0max= 1324 MPa) in oscillating sliding conditions in different humidity conditions in air and in hot steam. Temperatures have been varied up to 400 °C and pressures up to 6 bars. The results show that the wear behavior of MgO-ZrO2 under high Hertzian contact pressures is strongly dependent on temperature and is similar for both dry oscillating and oscillating in hot steam. However, although the evolution in wear rates on temperature is similar and the wear rates of MgO-ZrO2 plunged above 300 °C in hot steam and air by nearly three orders of magnitude, SEM micrographs revealed in hot steam at 400 °C smooth wear tracks. In contrast, hot steam enhanced the tribochemistry of self-mated alumina couples and reduced wear rates. Hot steam decreased the coefficients of friction of MgO-ZrO2 with increasing temperature, but not the wear rates. T2 - 22nd International Conference on Wear of Materials CY - Miami, Florida, USA DA - 14.04.2019 KW - Hot steam KW - Zirconia KW - Friction KW - Wear KW - Tribofilm KW - Raman spectroscopy PY - 2019 AN - OPUS4-47872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Pentzien, Simone A1 - Krüger, Jörg T1 - X-Ray Emission during Laser Processing with Ultrashort Laser Pulses N2 - Ultrashort laser pulse micromachining features a high precision. By increasing the repetition rate of the applied laser to several 100 kHz, laser processing becomes quick and cost-effective and make this method attractive for industrial applications. Upon exceeding a critical laser intensity, hard X-ray radiation is generated as a side effect. Even if the emitted X-ray dose per pulse is low, the accumulated X-ray dose becomes significant for high-repetition-rate laser systems so that radiation safety must be considered. T2 - 5th UKP-Workshop: Ultrafast Laser Technology CY - Aachen, Germany DA - 10.04.2019 KW - Laser-induced X-ray emission KW - Radiation protection KW - Ultrashort laser material interaction PY - 2019 AN - OPUS4-47788 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Höhm, S. A1 - Derrien, Thibault J.-Y. A1 - Krüger, Jörg T1 - Laser-induced periodic surface nanostructures N2 - This presentation reviews the current state in the field of Laser-induced Periodic Surface Structures (LIPSS). These surface nanostructures are a universal phenomenon and can be generated on almost any material by irradiation with intense linearly polarized radiation. LIPSS are formed in a “self-ordered” way and are often accompanying material processing applications. They can be produced in a single-step process and enable surface functionalization through the adaption of optical, mechanical and chemical surface properties. Their structural sizes typically range from several micrometers down to less than 100 nanometers and show a clear correlation with the polarization direction of the laser radiation. Various types of surface structures are classified, relevant control parameters are identified, and their material specific formation mechanisms are analyzed for different types of inorganic solids, i.e., metals, semiconductors, and dielectrics, through time-resolved optical experiments and theoretical simulations. Finally, technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed. T2 - International Symposium “Fundamentals of Laser Assisted Micro- and Nanotechnologies” (FLAMN-19) CY - St. Petersburg, Russia DA - 30.06.2019 KW - Laser-induced periodic surface structures, LIPSS KW - Femtosecond laser KW - Surface functionalization KW - Ultrafast scattering PY - 2019 AN - OPUS4-48420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Florian, Camilo A1 - Kirner, Sabrina V. A1 - Krüger, Jörg T1 - Femtosecond laser-induced periodic surface structures: from light localization to applications N2 - This presentation reviews the current state in the field of Laser-induced Periodic Surface Structures (LIPSS). These surface nanostructures are a universal phenomenon and can be generated on almost any material by irradiation with intense linearly polarized laser radiation. LIPSS are formed in a “self-ordered” way and are often accompanying material processing applications. They can be produced following a single-step process and enable surface functionalization through the adaption of optical, mechanical and chemical surface properties. Their structural sizes typically range from several micrometers down to less than 100 nanometers exhibiting a clear correlation with the polarization direction of the laser radiation. Various types of surface structures are classified, relevant control parameters are identified, and their material specific formation mechanisms are analyzed for different types of inorganic solids, i.e., metals, semiconductors, and dielectrics, through time-resolved optical experiments and theoretical simulations. Finally, technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed. T2 - International Conference on Advanced Laser Technologies (ALT'19) CY - Prague, Czech Republic DA - 15.09.2019 KW - Laser-induced periodic surface structures, LIPSS KW - Femtosecond laser KW - Surface functionalization KW - Electromagnetic scattering PY - 2019 AN - OPUS4-49098 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Laser-induced periodic surface structures: from nanoscaled light localization to applications N2 - In this contribution the current state in the field of Laser-Induced Periodic Surface Structures (LIPSS) is reviewed. This includes the mechanisms of formation and current applications, particularly the colorization of technical surfaces, the control of surface wetting properties, the tailoring of surface colonization by bacterial biofilms, and the improvement of the tribological performance of nanostructured metal surfaces. T2 - PHOTONICA 2019 - The Seventh International School and Conference on Photonics CY - Belgrade, Serbia DA - 26.08.2019 KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser KW - Surface functionalization PY - 2019 UR - http://www.photonica.ac.rs/docs/PHOTONICA2019-Book_of_abstracts.pdf AN - OPUS4-48836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Florian, Camilo A1 - Krüger, Jörg T1 - Quo vadis LIPSS? – Recent developments in theoretical modelling and technical applications N2 - This presentation reviews current and expected developments in the field of laser-induced periodic surface structures (LIPSS, ripples). These surface nanostructures are a universal phenomenon and can be generated on almost any material by irradiation with intense linearly polarized radiation. LIPSS are formed in a “self-ordered” way and are often accompanying laser material processing applications. The structures can be produced in a single-step process and enable surface functionalization through the adaption of optical, mechanical and chemical surface properties. Their spatial periods typically range from several micrometers down to less than 100 nanometers, exhibiting a clear correlation with the polarization direction of the laser radiation used. Various types of LIPSS have been classified, relevant control parameters were identified, and material specific formation mechanisms are analyzed for different types of inorganic solids, i.e., metals, semiconductors, and dielectrics, through time-resolved optical experiments and theoretical simulations. Special attention will be paid to a comparison of the currently available formation theories for LIPSS with a discussion of their respective strengths and weaknesses. Currrently explored applications featuring surface functionalization in the fields of optics, surface wetting, medicine, and tribology will be discussed. T2 - 9th International LIPSS Workshop CY - Ljubljana, Slovenia DA - 26.09.2019 KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - Femtosecond laser ablation KW - Modelling KW - Applications PY - 2019 AN - OPUS4-49708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Florian, Camilo A1 - Kirner, Sabrina V. A1 - Krüger, Jörg T1 - Quo vadis LIPSS? – Applications of Laser-Induced Periodic Surface Structures N2 - Laser-induced periodic surface structures (LIPSS, ripples) are a universal phenomenon that can be observed on almost any material after the irradiation by linearly polarized laser beams, particularly when using ultrashort laser pulses with durations in the femtosecond to picosecond range. During the past years significantly increasing industrial and research activities have been reported in the field of LIPSS, since their generation in a single-step process provides a simple way of nanostructuring and surface functionalization towards the control of optical, mechanical, biological, or chemical surface properties. In this contribution the mechanisms of formation and current trends and applications of LIPSS are reviewed, including the colorization of technical surfaces, the control of surface wetting properties, the mimicry of the natural texture of animals, the tailoring of surface colonization by bacterial biofilms, the advancement of leadless medical pacemakers, and the improvement of the tribological performance of nanostructured metal surfaces. T2 - 11. Mittweidaer Lasertagung CY - Mittweida, Germany DA - 13.11.2019 KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - Applications PY - 2019 AN - OPUS4-49655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - A survey of surface functionalization through laser-induced periodic surface structures N2 - Laser-induced periodic surface structures (LIPSS, ripples) are a universal phenomenon that can be observed on almost any material after the irradiation by linearly polarized laser beams, particularly when using ultrashort laser pulses with durations in the femtosecond to picosecond range. During the past few years significantly increasing research activities have been reported in the field of LIPSS, since their generation in a single-step process provides a simple way of nanostructuring and surface functionalization towards the control of optical, mechanical, biological, or chemical surface properties. In this contribution the mechanisms of formation and current applications of LIPSS are reviewed, including the colorization of technical surfaces, the control of surface wetting properties, the mimicry of the natural texture of animal integuments, the tailoring of surface colonization by bacterial biofilms, the advancement of medical pacemakers, and the improvement of the tribological performance of nanostructured metal surfaces. T2 - Seminar, ALPhANOV - Centre Technologique Optique et Lasers CY - Talence, France DA - 07.06.2019 KW - Laser-induced periodic surface structures, LIPSS KW - Surface functionalization KW - Applications KW - Femtosecond laser PY - 2019 AN - OPUS4-48199 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Laser-induced periodic surface structures N2 - This presentation reviews the current state in the field of Laser-induced Periodic Surface Structures (LIPSS). These surface nanostructures are a universal phenomenon and can be generated on almost any material by irradiation with intense linearly polarized laser radiation. LIPSS are formed in a “self-ordered” way and are often accompanying material processing applications. They can be produced following a single-step process and enable surface functionalization through the adaption of optical, mechanical and chemical surface properties. Their structural sizes typically range from several micrometers down to less than 100 nanometers exhibiting a clear correlation with the polarization direction of the laser radiation. Various types of surface structures are classified, relevant control parameters are identified, and their material specific formation mechanisms are analyzed for different types of inorganic solids, i.e., metals, semiconductors, and dielectrics, through time-resolved optical experiments and theoretical simulations. Finally, technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed. T2 - Seminar CY - Laser-Laboratorium Göttingen e.V., Germany DA - 18.11.2019 KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - Electromagnetic radiation KW - Applications KW - Femtosecond laser ablation PY - 2019 AN - OPUS4-49689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Wirth, Thomas A1 - Florian, Camilo A1 - Sturm, Heinz A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Chemical effects during the formation of femtosecond laser-induced periodic surface structures N2 - The processing of laser-induced periodic surface structures (LIPSS, ripples) on metals and semiconductors in ambient air is usually accompanied by superficial oxidation effects – a fact that is widely neglected in the current literature. In this contribution, chemical, structural, and mechanical alterations in the formation of femtosecond LIPSS are characterized by a variety of surface analytical techniques, including energy dispersive X-ray analyses (EDX), X-ray photoelectron spectroscopy (XPS), micro Raman spectroscopy (µ-RS), and depth-profiling Auger electron microscopy (AEM). Alternative routes of electrochemical and thermal oxidation allow to qualify the relevance of superficial oxidation effects on the tribological performance in oil lubricated reciprocating sliding tribological tests (RSTT). It is revealed that the fs-laser processing of near-wavelength sized LIPSS on metals leads to the formation of a few hundreds of nanometers thick graded oxide layers, consisting mainly of amorphous oxides. Regardless of reduced hardness and limited thickness, this nanostructured surface layer efficiently prevents a direct metal-to-metal contact in the RSTT and may also act as an anchor layer for specific wear-reducing additives contained in the used engine oil. T2 - EMRS Spring Meeting 2019, Symposium V “Laser interactions with materials: from fundamentals to applications" CY - Nice, France DA - 27.05.2019 KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser KW - Oxidation KW - Tribology PY - 2019 AN - OPUS4-48127 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernard, D. A1 - Léonard, Fabien A1 - Plougonven, E. A1 - Bruno, Giovanni T1 - On the use of autocorrelation functions, permeability tensors, and computed tomography to characterize the anisotropy of Diesel particulate filter materials N2 - 3D images such as those produces by X-ray tomography can provide a wealth of information on the internal structure of materials, but quantification of specific geometrical or topological characteristics linked to some bulk physical property is far from being straightforward. This study focuses on methods to quantify the differences in physical properties as a function of direction, i.e. their anisotropy, and how it can be linked to measures of anisotropy of the internal structure of the material. The auto-correlation function gives a similarity measure in the volume as a function of distance and direction. This is a cross-correlation of the image with itself fast to compute and relatively insensitive to noise. It is why we focus on this method to compare with the physical property of our DPF material. Diesel Particulate Filter (DPF) materials are porous ceramics that; a) can be used at very high temperatures; b) have very good thermal shock resistance; c) are inert; d) can be manufactured with tailored porosity. Their usual way of production consists of the extrusion of a slurry into the desired filter shape, with successive ceramming at high temperature. This process causes anisotropy at both microscopic and macroscopic levels. T2 - ICTMS 2019 CY - Cairns, Australia DA - 22.07.2019 KW - Structure-property relationship KW - Anisotropy estimate KW - Porous ceramics KW - Autocorrelation PY - 2019 AN - OPUS4-49226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bellon, Carsten A1 - Burger, Karin A1 - Gollwitzer, Christian T1 - Virtual CT acquisition and reconstruction of complex and noisy scanning trajectories in aRTist N2 - In modern CT imaging, simulation has become an important tool to minimize cost- and time-intensive measurements. It is increasingly used to optimize techniques for complex applications, to support the preparation of written procedures, and for educational purposes. We extended the CT simulation software ‘aRTist’ with a module to set-up arbitrary trajectories including disturbing influences during the scan. Moreover, such geometric deviations can be compensated by the internal reconstruction tool. T2 - 9th Conference on Industrial Computed Tomography (iCT) CY - Padua, Italy DA - 13.02.2019 KW - Simulation KW - Arbitrary trajectories KW - Projection matrix KW - Filtered back projection PY - 2019 AN - OPUS4-47476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hielscher-Hofinger, Stefan A1 - Lange, Thorid A1 - Stockmann, Jörg M. A1 - Weise, Matthias A1 - Rietz, U. A1 - Lerche, D. T1 - Centrifugal force meets materials testing – analytical centrifuge as multipurpose tool for tensile and compressive stress testing N2 - Up until several years ago, tensile and compressive tests have been exclusively carried out as single-sample tests within a tensile, hardness or universal testing machine. The availability of centrifuge technology changed this situation in 2013 in several ways because centrifugal force is used as testing force within a rotational reference frame. Firstly, multiple-sample strength testing became feasible for both tensile load condi-tions, e.g. determination of composite, bonding or adhesive strength, and compressive load conditions, e.g. hardness, compressibility and compactibility. Secondly, there is no need for a two-sided sample clamping and double-cardanic suspensions as samples are simply inserted using a one-sided sample support. Thirdly, shear forces can be avoided by means of guiding sleeves which steer test stamps acting as mass bodies for either tensile or compressive testing. Fourthly, up to eight samples can be tested under identical conditions within a very short period of time, typically within 15 minutes including sample loading and unloading. Hence, either a reliable statistics (of identical samples) or a ranking (of different samples) can be derived from one test run. The bench-top test system is described in detail and demonstrated that centrifugal force acts as testing force in an appropriate way because Euler and Coriolis force do not affect the testing results. Examples for both tensile strength testing, i.e. bonding strength of adhesives-bonded joints and adhesive strength of coatings, and compres-sive strength testing, i.e. Vickers-, Brinell- and ball indentation hardness and deter-mination of spring constants, are presented, discussed and compared with conven-tional tests within tensile, hardness or universal testing machines. At present, a maximum testing force of 6.5 kN can be realized which results at test stamp diameters of 5 mm, 7 mm, and 10 mm in tensile or compressive stress values of 80 MPa, 160 MPa, and 320 MPa. For tensile strength, this is already beyond bonding strength of cold- and warm-curing adhesives. Moreover, centrifuge technology is compliant to standards such as EN 15870, EN ISO 4624, EN ISO 6506/6507 and VDI/VDE 2616. Programmable test cycles allow both short-term stress and log-term fatigue tests. Based on a variety of examples of surface and bonding technology, applications in both fields R&D and QC are presented. Meanwhile, centrifuge technology is also accredited according to DIN EN ISO/IEC 17025. T2 - Intermationa Conference Dispersion Analysis & Materials Testing CY - Berlin, Germany DA - 22.05.2019 KW - Centrifugal Force KW - Compressive Stress KW - Tensile Stress PY - 2019 AN - OPUS4-48310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakir, Nasim A1 - Biltgen, J. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Influence of Partial Penetration Laser Hybrid Welding Parameters on the Solidification Cracking for Thick-Walled Structures N2 - In this study, the influence of the welding speed and the arc power on the solidification crack formation for partial penetration laser hybrid welded Thick-Walled plates were investigated. Experimentally, a linear correlation between the welding velocity and the crack number was observed. That is by reducing the welding velocity the crack number was reduced. The reduced welding velocity showed a strong impact on stress, as the model demonstrated a very lower stress amount in comparison to the reference case. The reduction of the welding speed could be a helpful technique to reduce the hot cracking. The wire feed speed showed a very slight influence on the crack formation. That can be returned to the large distance between the critical region for cracking and the arc region. T2 - Lasers in Manufacturing Conference 2019 CY - Munich, Germany DA - 24.06.2019 KW - Solidification cracking KW - Partial penetration laser hybrid welding KW - Numerical simulation PY - 2019 AN - OPUS4-48731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakir, Nasim A1 - Üstündag, Ö. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Experimental and Numerical Study on the Influence of the Laser Hybrid Parameters in Partial Penetration Welding on the Solidification Cracking in the Weld Root N2 - In this study, the influence of the welding speed, the arc power and the laser focal position on the solidification crack formation for partial penetration laser hybrid welded thick-walled plates were investigated. Experimentally, a direct correlation between the welding speed and the crack number was observed. That is by reducing the welding velocity the crack number was decreased. The focal position shows also a significant influence on the crack number. Since by focusing the laser on the specimen surface, the crack number has been significantly diminished. The wire feed speed showed a very slight influence on the crack formation. That is due to the large distance between the critical region for cracking and the arc region. The numerical model shows a high-stress concentration in the weld root for both components (vertical and transversal). Numerically, the reduced welding speed showed a strong impact on stress, as the model demonstrated a lower stress amount by decreasing the welding speed. The solidification cracking in the weld root is a result of interaction between metallurgical and geometrical and thermomechanical factors. T2 - The 72nd IIW Annual Assembly and International Conference 2019 CY - Bratislava, Slovakia DA - 07.07.2019 KW - Laser hybrid welding KW - Solidification cracking KW - Thick-walled steels KW - Partial penetration KW - High-power laser beam PY - 2019 AN - OPUS4-48736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baensch, Franziska A1 - Brunner, A. J. T1 - Towards predictor development for assessing structural integrity of components made from wood materials using Acoustic Emission monitoring and signal analysis N2 - Against the background of sustainable resource management and efficiency, wood-based materials are currently experiencing a revival and, among others, plywood, Laminated Veneer Lumber and glued laminated timber are becoming increasingly more important in the building sector. Even though these materials are so-called engineered products, the element wood is naturally grown with intrinsic variability in mechanical properties and requires professional handling on-site. Otherwise, load-bearing structures made of wood materials may entail certain risks. Critical situations can, in principle, be avoided by implementing a structural health monitoring system into components or structures made from wood material. The aim is to indicate accumulation of mechanical damage and to eliminate or at least significantly reduce the risk of unexpected failure. Toward this purpose, the failure behavior of several layered wood materials under quasi-static tension was investigated in laboratory-scale experiments by means of acoustic emission (AE) measurement. Based on spectral analysis and pattern recognition, two classes of AE signals are identified for each investigated lay-up that are characterized by either low or high frequency contents in the respective power spectra. AE activity and intensity of both signal classes are analyzed, striving for predictors appropriate for AE monitoring concepts. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures CY - Potsdam, Germany DA - 27.08.2019 KW - Wood materials KW - Acoustic Emission KW - Structural integrity PY - 2019 AN - OPUS4-48802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Backes, Sebastian A1 - Cappella, Brunero T1 - Force distance curves (FDC) & contact resionance (CR) measurement modes for mechanical property measurements N2 - At the Stakeholder meeting of the EMPIR project “Multifunctional ultrafast microprobes for on-the-machine measurements”, details about two measurement modes were presented. Force distance curves and contact resonance measurements are compared. The basic principles are explained and exemplary measurements concerning mechanical properties of polymers are shown. T2 - 19th International Conference and Exhibition (European Society for Precision Engineering and Nanotechnology/EUSPEN) CY - Bilbao, Spain DA - 03.06.2019 KW - Force distance curve KW - Contact resonance KW - Lubricants KW - Photoresist PY - 2019 AN - OPUS4-49905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Artinov, Antoni A1 - Karkhin, V. A1 - Bakir, Nasim A1 - Meng, Xiangmeng A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Lamé curves approximation for the assessment of the 3-D temperature distribution in keyhole mode welding processes N2 - A novel approach for the reconstruction of an equivalent volumetric heat source from a known weld pool shape is proposed. It is based on previously obtained weld pool geometries from a steady-state thermo-fluid dynamics simulation. Hereby the weld pool dimensions are obtained under consideration of the most crucial physical phenomena, such as phase transformations, thermo-capillary convection, natural convection and temperature-dependent material properties. The algorithm provides a time and calibration efficient way for the reproduction of the weld pool shape by local Lamé curves. By adjusting their parameters, the identification of the finite elements located within the weld pool is enabled. The heat input due to the equivalent heat source is assured by replacing the detected nodes’ temperature by the melting temperature. The model offers variable parameters making it flexible and adaptable for a wide range of workpiece thicknesses and materials and allows for the investigation of transient thermal effects, e.g. the cooling stage of the workpiece. The calculation times remain acceptably short especially when compared to a fully coupled process simulation. The computational results are in good agreement with performed complete-penetration laser beam welding experiments. T2 - International Congress on Applications of Lasers & Electro-Optics (ICALEO 2019) CY - Orlando, FL, USA DA - 07.10.2019 KW - Weld pool shape approximation KW - Keyhole mode laser beam welding KW - Numerical simulation KW - Superelliptic Lamé curves PY - 2019 AN - OPUS4-49309 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avila, Luis A1 - Rehmer, Birgit A1 - Skrotzki, Birgit A1 - Graf, B. A1 - Rethmeier, Michael A1 - Ulbricht, Alexander T1 - Low cycle fatigue behavior and failure mechanisms of additively manufactured Ti-6Al-4V N2 - Despite of the significant advances in AM process optimization there is still a lack of experimental results and understanding regarding the mechanical behavior and microstructural evolution of AMparts, especially in loading conditions typical for safety-relevant applications e.g. in the aerospace or power engineering. Within the scope of the presented investigations, a characterization of the fatigue behavior of additively manufactured Ti-6Al-4V in the low cycle fatigue regime was carried out in the range of 0.3 to 1.0 % strain amplitude at room temperature, 250°C and 400°C. The Ti-6Al-4V specimens are machined out of lean cylindrical rods, which were fabricated using powder laser metal deposition (LMD) with an improved build-up strategy. The improved strategy incorporates variable track overlap ratios to achieve a constant growth in the shell and core area. The low-cycle-fatigue behavior is described based on cyclic deformation curves and strain-based fatigue life curves. The lifetimes are fitted based on the Manson-Coffin-Basquin relationship. A characterization of the microstructure and the Lack-of-Fusion (LoF)-defect-structure in the as-built state is performed using optical light microscopy and high-resolution computed tomography (CT) respectively. The failure mechanism under loading is described in terms of LoF-defects-evolution and crack growth mechanism based on an interrupted LCF test with selected test parameters. After failure, scanning electron microscopy, digital and optical light microscopy and CT are used to describe the failure mechanisms both in the longitudinal direction and in the cross section of the specimens. The fatigue lives obtained are comparable with results from previous related studies and are shorter than those of traditionally manufactured (wrought) Ti-6Al-4V. In this study new experimental data and understanding of the mechanical behavior under application-relevant loading conditions (high temperature, cyclic plasticity) is gained. Furthermore, a better understanding of the role of LoFdefects and AM-typical microstructural features on the failure mechanism of LMD Ti-6Al-4V is achieved. T2 - First European Conference on Structural Integrity of Additively Manufactured Materials (ESIAM19) CY - Trondheim, Norway DA - 09.09.2019 KW - High Temperature Testing KW - Titanium KW - Ti-6Al-4V KW - Additive Manufacturing KW - Computed Tomography KW - Microstructure KW - Tensile Properties KW - Low Cycle Fatigue PY - 2019 AN - OPUS4-49492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Schröder, Volkmar T1 - The influence of strong ignition sources on the explosion and decomposition limits of gases N2 - Explosion and decomposition limits of flammable and chemically unstable gases were determined experimentally in a dosed autoclave with varying ignition energy up to 1000 J. The ignition source was a lightning arc caused by an exploding wire igniter as described in EN 1839 B .. In case of methane only the upper explosion limit was influenced significantly by the ignition energy, whereas the lower explosion limit was constant. In case of R32 however. it was the lower explosion limit that was influenced significantly by the ignition energy and not the upper explosion limit. A particularly strong dependency from the ignition energy was found for the decomposition limits of the chemically unstable gases in nitrogen. T2 - 16th International Symposium on Loss Prevention and Safety Promotion in the Process Industries CY - Delft, The Netherlands DA - 16.06.2019 KW - Explosionsgrenzen KW - Zündenergie KW - Chemisch instabile Gase KW - Kältemittel KW - Zündquellen PY - 2019 AN - OPUS4-48993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -