TY - CONF A1 - Crasselt, Claudia A1 - Schmidt, Wolfram A1 - Sturm, Heinz T1 - Influence of rheology modifying admixtures on early hydration of cementitious suspensions N2 - The presence of polycarboxylate ether (PCE) based superplasticizers (SPs) has enormous influence on the early hydration of cement. C3A as the most reactive phase of Portland cement plays a significant role in early hydration reactions and affects the rheological performance. Therefore, this paper presents experimental results about the influence of delayed addition of PCEs on the Hydration of cement and C3A-gypsum pastes investigated by isothermal heat flow calorimetry. Complementary in-situ XRD was carried out on C3A pastes to analyze hydration and phase changes related to the addition of PCE. Cement pastes with a delayed addition of PCE showed less Retardation compared to simultaneous addition. The alteration caused by PCE is much more pronounced for C3A-gypsum mixes. With a delayed addition of SP, the hydration of C3A is less retarded or even accelerated. It is obvious that there is less retardation the later the addition of SP. Furthermore, the PCE alter the hydration of C3A when added delayed and exhibit changes in kinetics and hydration rates. XRD results showed that more C3A is dissolved in the presence of PCE. Also, the gypsum depletion occurs earlier in the presence of PCE and even faster with delayed addition. Without PCE AFm starts to form just after the gypsum depletion. However, in the presence of PCE AFm already starts to form at the beginning of the hydration. Due to the faster gypsum depletion in the presence of PCE, also the transformation from ettringite into AFm begins earlier, but takes longer as without SP. T2 - 15th International Congress on the Chemistry of Cement CY - Prague, Czech Republic DA - 16.09.2019 KW - Cement KW - C3A KW - Early hydration KW - Polycarboxylate ether (PCE) KW - Delayed addition PY - 2019 SP - 1 EP - 8 AN - OPUS4-49104 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neamtu, Mariana A1 - Nadejde, C. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Ababei, G. A1 - Panne, Ulrich T1 - Photocatalysis of γ-cyclodextrin-functionalised Fe3O4 nanoparticles for degrading Bisphenol A in polluted waters N2 - The efficiency, relatively low cost and eco-friendly nature of hydrogen peroxide-assisted photocatalysis treatment procedures are significant advantages over conventional techniques for wastewater remediation. Herein, we evaluate the behaviour of g-cyclodextrin (g-CD) immobilised on either bare or chitosan (CS)–functionalised Fe3O4 nanoparticles, for photodegrading Bisphenol A (BPA) in ultrapure water and in real wastewater samples. The BPA removal efficiencies with Fe3O4/g-CD and Fe3O4/CS/g-CD were compared with those of Fe3O4/b-CD, and were monitored under UVA irradiation at near-neutral pH. The addition of H2O2 at low concentrations (15 mmol L-1) significantly increased BPA photodegradation in the presence of each nanocomposite. The highest catalytic activity was shown by both Fe3O4/g-CD and Fe3O4/CS/g-CD nanocomposites (,60 and 27%BPA removal in ultrapure water and real wastewater effluent, respectively). Our findings reveal the superior performance of g-CD-functionalised Fe3O4 relative to that of Fe3O4/b-CD. The use of CD-based nanocomposites as photocatalytic materials could be an attractive option in the pre- or post-treatment stage of wastewaters by advanced oxidation processes before or after biological treatment. KW - Photooxidation KW - Sonochemical synthesis KW - Wastewater PY - 2019 DO - https://doi.org/10.1071/EN18181 SN - 1448-2517 VL - 16 IS - 2 SP - 125 EP - 136 PB - CSIRO Publishing CY - Clayton South AN - OPUS4-48316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin T1 - Temperature in micromagnetism: Cell size and scaling effects of the stochastic Landau-Lifshitz equation N2 - The movement of the macroscopic magnetic moment in ferromagnetic systems can be described by the Landau-Lifshitz (LL) or Landau-Lifshitz-Gilbert (LLG) equation. These equations are strictly valid only at absolute zero temperature. To include temperature effects a stochastic version of the LL or LLG equation for a spin density of one per unit cell can be used instead. To apply the stochastic LL to micromagnetic simulations, where the spin density per unit cell is generally higher, a conversion regarding simulation cell size and temperature has to be established. Based on energetic considerations, a conversion for ferromagnetic bulk and thin film systems is proposed. The conversion is tested in micromagnetic simulations which are performed with the Object Oriented Micromagnetic Framework (OOMMF). The Curie temperatures of bulk Nickel, Cobalt and Iron systems as well as Nickel thin-film systems with thicknesses between 6.3 mono layer (ML) and 31ML are determined from micromagnetic simulations. The results show a good agreement with experimentally determined Curie temperatures of bulk and thin film systems when temperature scaling is performed according to the presented model. KW - Micromagnetism KW - LLG KW - LL equation KW - Landau Lifshitz equation KW - Landau Lifshitz Gilbert equation KW - Stochastic Landau Lifshitz equation KW - Stochastic Landau Lifshitz Gilbert equation KW - Curie temperature KW - Magnetic Nanoparticles KW - Thin film systems KW - Temeprature scaling KW - Phase transition KW - Magnet coupling KW - Ferromagnetism KW - Superparamagnetism KW - Paramagnetism KW - Ni KW - Co KW - Fe KW - Steel KW - Nickel KW - Cobalt KW - Iron KW - Temperature effects KW - Cell size KW - Damping factor KW - Gamma KW - Alpha KW - Spin KW - Magnetic moment KW - Magnetic interacion KW - Magnetization dynamics KW - Domain wall KW - Exchange length KW - temeprature dependent exchange length KW - Bloch wall KW - Neel wall KW - Exchange interaction KW - Magnetic anisotropy KW - Simulation KW - OOMMF KW - Object oriented micromagnetic framework PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-484610 DO - https://doi.org/10.1088/2399-6528/ab31e6 VL - 3 IS - 7 SP - 075009-1 EP - 075009-8 PB - IOPscience CY - England AN - OPUS4-48461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Platz, D. A1 - Sturm, Heinz T1 - Insights into Nano-Scale Physical and Mechanical Properties of Epoxy/Boehmite Nanocomposite Using Different AFM Modes N2 - Understanding the interaction between nanoparticles and the matrix and the properties of interphase is crucial to predict the macroscopic properties of a nanocomposite system. Here, we investigate the interaction between boehmite nanoparticles (BNPs) and epoxy using different atomic force microscopy (AFM) approaches. We demonstrate benefits of using multifrequency intermodulation AFM (ImAFM) to obtain information about conservative, dissipative and van der Waals tip-surface forces and probing local properties of nanoparticles, matrix and the interphase. We utilize scanning kelvin probe microscopy (SKPM) to probe surface potential as a tool to visualize material contrast with a physical parameter, which is independent from the mechanics of the surface. Combining the information from ImAFM stiffness and SKPM surface potential results in a precise characterization of interfacial region, demonstrating that the interphase is softer than epoxy and boehmite nanoparticles. Further, we investigated the effect of boehmite nanoparticles on the bulk properties of epoxy matrix. ImAFM stiffness maps revealed the significant stiffening effect of boehmite nanoparticles on anhydride-cured epoxy matrix. The energy Dissipation of epoxy Matrix locally measured by ImAFM shows a considerable increase compared to that of neat epoxy. These measurements suggest a substantial alteration of epoxy structure induced by the presence of boehmite. KW - Nanomechanics KW - Intermodulation-AFM KW - Interphase KW - Boehmite KW - Epoxy PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-476040 DO - https://doi.org/10.3390/polym11020235 SN - 2073-4360 VL - 11 IS - 2 SP - 235, 1 EP - 19 PB - MDPI AN - OPUS4-47604 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Szymoniak, Paulina A1 - Hodoroaba, Vasile-Dan A1 - Sturm, Heinz T1 - The effect of boehmite nanoparticles (gamma‐AlOOH) on nanomechanical and thermomechanical properties correlated to crosslinking density of epoxy N2 - We show that complex physical and chemical interactions between boehmite nanoparticles and epoxy drastically affect matrix properties, which in the future will provide tuning of material properties for further optimization in applications from automotive to aerospace. We utilize intermodulation atomic force microscopy (ImAFM) for probing local stiffness of both particles and polymer matrix. Stiff particles are expected to increase total stiffness of nanocomposites and the stiffness of polymer should remain unchanged. However, ImAFM revealed that stiffness of matrix in epoxy/boehmite nanocomposite is significantly higher than unfilled epoxy. The stiffening effect of the boehmite on epoxy also depends on the particle concentration. To understand the mechanism behind property alteration induced by boehmite nanoparticles, network architecture is investigated using dynamic mechanical thermal analysis (DMTA). It was revealed that although with 15 wt% boehmite nanoparticles the modulus at glassy state increases, crosslinking density of epoxy for this composition is drastically low. KW - Crosslinking density KW - Epoxy KW - Intermodulation KW - Atomic force microscopy KW - Nanomechanical properties KW - Boehmite nanoparticles PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-476050 DO - https://doi.org/10.1016/j.polymer.2018.12.054 SN - 0032-3861 SN - 1873-2291 VL - 164 SP - 174 EP - 182 PB - Elsevier AN - OPUS4-47605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waniek, Tassilo A1 - Ghasem Zadeh Khorasani, Media A1 - Braun, Ulrike A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - New Focus On Boehmite-Reinforced Nanocomposites Molecular Approach With Advanced FTIR-Techniques N2 - By FTIR-study it was possible to proof a chemical reaction between boehmite and the hardener of anhydride cured epoxy resins. Future studies can assume that the chemical environment of the resin system is changed in the surrounding of boehmite nanoparticles. This highly affects especially localized properties. T2 - 6th International Conference on Multifunctional, Hybrid and Nanomaterials CY - Sitges, Spain DA - 11.03.2019 KW - Nanocomposite KW - Boehmite KW - FTIR KW - DRIFTS KW - Epoxy PY - 2019 AN - OPUS4-47785 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scholz, Philipp A1 - Panne, Ulrich A1 - Wachtendorf, Volker A1 - Weidner, Steffen T1 - Degradation of polyurethanes in various environments – Effects on molecular mass and crosslinking N2 - The increasing application of polyurethanes (PU) in safety relevant sectors (fire protection, insulation, medicine technique) requires detailed knowledge of the stability and reliability of these materials. Different climate factors are supposed to induce diverse and overlapping degradation reactions. The knowledge of these degradation mechanisms is necessary for an estimation of the period of application depending on usage of the material. An essential property of a polymeric system is represented by the molecular weight. Since a change of the molecular weight is a measure for the chemical stability of a polymer, size-exclusion chromatography (SEC) was used to monitor changes of the molecular weight of thermoplastic polyether- and polyester urethane (TPU) exposed to thermal, hydrolytic and photo-oxidative (UV) degradation conditions for several days. Thermal treatments were performed at elevated temperatures (100 - 200 °C) under oxidative (air) as well as non-oxidative (nitrogen) conditions to evaluate the specific influence of oxygen on the degradation. At higher temperatures (≥ 175 °C) a fast decrease of the molecular masses of both PU accompanied by a high degree of crosslinking was found. At lower temperatures (≤ 150 °C) the polymers remained widely unaffected by thermal degradation within the investigated degradation interval of up to two weeks, which was already known from FTIR spectroscopy[1]. In contrast to that, UV treatment at 25 °C at less than 10 % rel. humidity (RH) resulted in a fast crosslinking, whereas the molecular masses of both PU decreased slower than during the thermal treatments. The depth of penetration of the UV radiation was determined using 3D printed PU samples with different thicknesses. Hydrolysis based degradation effects were less significant. Only slight molecular mass changes were detected at temperatures ≤ 80 °C within a time span of 14 days, while no crosslinking could be measured. Considering the degradation results at the investigated exposure parameters, it could be shown that ester-based PU in general exhibits a significant higher stability compared to ether-based materials. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2019 KW - Polyurethane KW - Thermal degradation KW - UV degradation KW - Molecular masses KW - Crosslinking PY - 2019 AN - OPUS4-47957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weber, Kathrin A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Stephan-Scherb, Christiane T1 - A µ‐XANES study of the combined oxidation/sulfidation of Fe–Cr model alloys N2 - The precise analysis of cation diffusion profiles through corrosion scales is an important aspect to evaluate corrosion phenomena under multicomponent chemical load, as during high‐temperature corrosion under deposits and salts. The present study shows a comprehensive analysis of cation diffusion profiles by electron microprobe analysis and microbeam X‐ray absorption near edge structure (µ‐XANES) spectroscopy in mixed oxide/sulfide scales grown on Fe–Cr model alloys after exposing them to 0.5% SO2. The results presented here correspond to depth‐dependent phase identification of oxides and sulfides in the corrosion scales by µ‐XANES and the description of oxidation‐state‐dependent diffusion profiles. Scales grown on low‐ and high‐alloyed materials show both a well‐pronounced diffusion profile with a high concentration of Fe3+ at the gas and a high concentration of Fe2+ at the alloy interface. The distribution of the cations within a close‐packed oxide lattice is strongly influencing the lattice diffusion phenomena due to their different oxidation states and therefore different crystal‐field preference energies. This issue is discussed based on the results obtained by µ‐XANES analysis. KW - X-ray absorption spectroscopy KW - Oxidation KW - Sulfidation PY - 2019 DO - https://doi.org/10.1002/maco.201810644 VL - 70 IS - 8 SP - 1360 EP - 1370 PB - Wiley VCH-Verlag AN - OPUS4-47934 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yusenko, Kirill A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Emmerling, Franziska T1 - BAMline 2.0 – further technical developments for a broader multipurpose hard X-ray beamline at BESSY II N2 - We show further development of our beamline in the contexst of further itermational collaboration. T2 - PACC and AfSC CY - Accra, Ghana DA - 28.01.2019 KW - Synchrotron radiation PY - 2019 AN - OPUS4-47317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -