TY - CONF A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - Anwendung der Laserimplantation zur Strukturierung verschleißgefährdeter Werkzeuge N2 - In einer Vielzahl technischer Anwendungen spielt die Aufrechterhaltung eines definierten Reibungs- und Verschleißverhaltens zwischen bewegten Oberflächen für die Sicherheit und Funktionalität eine entscheidende Rolle. Die Oberflächentechnik versucht durch geeignete Verfahren die Randschichten zu ertüchtigen, um Reibung und Verschleiß zu kontrollieren. Eine Verbesserung der Materialeigenschaften kann durch flächige Beschichtungen erreicht werden. Zusätzlich ermöglichen Oberflächenstrukturierungen breite Möglichkeiten zur Beeinflussung des Schmierungszustandes bzw. der Kontaktbedingungen. Neben Negativstrukturen bieten ebenfalls erhabene Mikrostrukturen großes Potenzial zur Beeinflussung des tribologischen Verhaltens. Ihr Einsatz ist aber aufgrund der besonderen Verschleißproblematik erhabener Strukturen momentan limitiert, so dass in der Regel zusätzliche verschleißreduzierende Beschichtungen notwendig werden. In diesem Beitrag wurde das Verfahren der Laserimplantation angewandt, mit dem erhabene und separierte Oberflächenstrukturen hoher Verschleißfestigkeit in einem Fertigungsschritt erzeugbar sind. Das Verfahren basiert auf einem lokalisierten Dispergieren von Hartstoffpartikeln. Hierfür wurde erstmalig ein gepulster Faserlaser mit hoher Strahlqualität zur Erzeugung punkt- und linienförmiger Mikrostrukturen angewandt. Versuche wurden auf dem Kaltarbeitsstahl X153CrMoV12 unter Anwendung von Titandiborid als Hartstoff durchgeführt. Anhand von Härtemessungen konnte gezeigt werden, dass sowohl punkt- als auch linienförmige Strukturen mit Härten über 1000 HV1 und einer feinkörnigen Mikrostruktur mit feinverteilten Hartstoffpartikeln herstellbar sind. Des Weiteren war es möglich, die Implantgeometrien, welche an Querschliffen und durch Weißlichtinterferometeraufnahmen erfasst wurden, durch die Pulsleistung und Pulsdauer zu steuern. T2 - 38. Assistentenseminar der WGF CY - Rabenau, Germany DA - 06.09.2017 KW - Laserimplantation PY - 2018 SN - 978-3-96144-028-3 VL - 342 SP - 24 EP - 33 CY - Düsseldorf AN - OPUS4-47295 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Ökologische Bilanzierung von Schmelzschweißverfahren unter Berücksichtigung vor- und nachgelagerter Prozessschritte N2 - In diesem Vortrag werden die aktuellen Forschungsergebnisse im Bereich der ökologischen Bilanzierung von Schweißprozessen dargestellt. Der Fokus liegt hierbei in der Ermittlung relevanter Wirkkategorien zur Charakterisierung der Umweltwirkungen von Schweißprozessen. Exemplarisch für verschiedene Verfahrenskombinationen werden die ökologischen Umweltwirkungen auf Basis eines Life Cycle Assessments ermittelt und verfahrensspezifische Einflussgrößen analysiert. T2 - DVS Fachausschuss 3 "Lichtbogenschweißen" CY - Salzgitter Mannesmann Forschung, Duisburg, Germany DA - 13.03.2018 KW - Life Cycle Assessment (LCA) Schweißprozesse KW - Life Cycle Assessment (LCA) Umweltwirkungen KW - Life Cycle Assessment (LCA) Fusion welding KW - Life Cycle Assessment (LCA) Impact categories PY - 2018 AN - OPUS4-46641 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bakir, Nasim A1 - Pavlov, V. A1 - Zavjalov, S. A1 - Volvenko, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Novel metrology to determine the critical strain conditions required for solidification cracking during laser welding of thin sheets N2 - This paper represents the results for proposed optical flow method based on the Lucas-Kanade (LK) algorithm applied to two different problems. The following observations can be made: - The estimated strain and displacement for conducted tensile test are generally very close to those measured with conventional DIC-technique. - The LK technique allows measurement of strain or displacement without special selection of a region of interest. Using a novel optical measurement technique together with the optical flow algorithm, a twodimensional deformation analysis during welding was conducted. This technique is the first to provide a measurement of the full strain field locally in the immediate vicinity of the solidification front. Additionally, the described procedure of the optical measurement allows the real material-dependent values of critical strain characterizing the transition to hot cracking during laser welding processes to be determined. T2 - Beam Technologies and Laser Application CY - Sankt Petersburg, Russia KW - Hot cracking test KW - Local critical strain KW - Solidification cracking KW - Laser beam welding KW - Novel metrology PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-467226 DO - https://doi.org/10.1088/1742-6596/1109/1/012047 SN - 1742-6596 VL - 1109 IS - 012047 SP - 1 EP - 9 PB - IOP Publ. CY - Bristol AN - OPUS4-46722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakir, Nasim A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - About the origin of solidification cracking in laser welded thick-walled structures N2 - In this study, a three-dimensional CFD-simulation model was developed to simulate the fluid flow in the weld pool. The CFD-model showed a bulging region in the middle of the depth, which is separated from the top surface and bottom surface by two narrowing regions. It can be concluded that the interaction of the movement of the laser source with the Marangoni vortex leads to a teardrop shape at the upper and bottom surface of the workpiece. Additionally, it shows that the bulging in the weld is a result of the backflows on the upper and lower sides due to the thermo-capillary-driven flows. The weld pool shape was used as a heat source in a two-dimensional thermomechanical model, which allows a highly accurate transformation of the weld pool dimensions obtained from the CFD model. This developed technique allows the consideration of physical aspects, which cannot be considered when using traditional heat sources. The mechanical model has shown that the chronological order of the solidification of the weld has a significant influence on the nature and distribution of the stresses in the weld. High tensile stress has been observed in the bulging region, i.e. in the susceptible region for solidification cracking, when compared to the other narrowing regions, which show compressive stress. T2 - 4th International Conference on Welding and Failure Analysis of Engineering Materials CY - Aswan, Egypt DA - 19.11.2018 KW - Laser beam welding KW - Solidification cracking KW - Numerical simulation KW - Weld pool geometry KW - CFD-model KW - FE-model PY - 2018 SP - W-6, 1 EP - 10 CY - Aswan, Egypt AN - OPUS4-46735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Siayah, A. A1 - El-Batahgy, A. A1 - Khafagi, S. A1 - Gumenyuk, Andrey A1 - Gook, S. A1 - Rethmeier, Michael T1 - A study on shielded metal arc welding of 9%Ni steel using non-conventional ferritic welding electrode for LNG facilities N2 - The present research work aims at clarification of the effect of the welding electrode type on the mechanical properties of SMA welded joints of 9%Ni steel plates. Properties of produced SMA welded joints were evaluated using different non-destructive and destructive investigation methods. In comparison with the conventionally used Ni-based welding electrode ENiCrMo-3 (AWS A5.11), an experimentally produced non-conventional ferritic welding electrode with 11%Ni (ENi11-Company specification) has resulted in a better combination of the mechanical properties of SMA welded joints of this steel type for critical cryogenic applications. Besides, a positive economic impact for the experimentally produced non-conventional ferritic welding electrode, due to its lower cost, could be another attractive aspect. T2 - 4th International Conference on Welding and Failure Analysis of Engineering Materials CY - Aswan, Egypt DA - 19.11.2018 KW - 9%Ni steel, KW - SMAW KW - Conventional Ni-based austenitic welding electrode KW - Mechanical properties KW - Ferritic welding electrode PY - 2018 SP - W-21, 1 EP - 3 AN - OPUS4-46736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - El-Batahgy, A. A1 - Gook, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Effect of laser-beam and hybrid-laser-arc welding parameters and filler metal on microstructure and mechanical properties of thick heat-treated steel X8ni9+Qt640 for cryogenic service N2 - The present research work encloses results of experimental investigations of the interaction between welding process parameters for laser-beam and hybrid-laser-arc as well as type of the filler metal and the achievable mechanical properties of the weld joints on steel grade X8Ni9+QT640 for cryogenic service containing 9% nickel. The results obtained contribute to the development and conversion in the industrial practice a new laser beam-based welding technology for the automated manufacturing of facilities for the liquefaction, storage and the transport of natural gases (LNG facilities). The results show, that the martensitic microstructure of the laser weld metal including low amount of retained austenite not exceeding 3.5% leads to the relatively low V-notch impact energy. The remarkable heterogeneity in the chemical composition of the weld metal through the weld thickness could be recognized in the case of hybrid-laser-arc welding with ERNiCrMo-3 austenitic filler metal, what also led to insufficient impact toughness of the weld metall. The most promising results could be achieved by using 11%Ni filler wire, which is similar to the base metal and provides a homogeneous microstructure with uniform distribution of Ni through the weld seam. It is remarkable, that a correlation between Charpy impact toughness and wire feeding speed and respectively process heat input exists. The highest toughness values were 134±58 J at -196C. The both laser as well as laser-hybrid welds passed the tensile test. The failure stress of 720±3 MPa with a fracture location in the base material was achieved for all samples tested. T2 - 4th International Conference on Welding and Failure Analysis of Engineering Materials CY - Aswan, Egypt DA - 19.11.2018 KW - Hybrid-laser-arc welding KW - Laser-beam welding, KW - Cryogenic steel KW - Microstructure KW - Tensile strength PY - 2018 SP - W-29, 1 EP - 10 AN - OPUS4-46738 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Gekoppelte numerische Untersuchung der Bildung von Mittelrippendefekten beim Hochleistungslaserstrahlschweißen N2 - Die Entstehung von Erstarrungsrissen stellt ein in der Schweißtechnik lange bekanntes Problem dar. Diese prozessseitige Herausforderung ist selbst nach dem heutigen Wissenstand schwer zu beherrschen und gefährdet die Sicherheit der gefügten Bauteile. Dieses Problem erweist sich als besonders schwierig beim einlagigen Hochleistungslaserstrahlschweißen von Metallteilen hoher Blechstärke, welche eine essentielle Rolle in vielerlei industriellen Anwendungen spielen. Gegenstand des hier bearbeiteten Forschungsprojekts war die numerische Untersuchung der Entstehungsmechanismen des Mittelrippendefekts beim Laserstrahlschweißen niedriglegierter Stähle. Mittels mehrerer gekoppelter Simulationen, für welche sowohl kommerziellen Softwares, wie COMSOL Multiphysics und ANSYS, als auch in-house entwickelte Programme eingesetzt worden sind, wurden die am stärksten ausgeprägten Mechanismen der Erstarrungsrissbildung und deren Zusammenspiel aufgeklärt. Begleitend zur Simulation wurden mehrere experimentelle Untersuchungen für den niedriglegierten Baustahl S355 an den Blechdicken 12 mm und 15 mm zu deren Validierung durchgeführt. Die Ergebnisse der Simulation des Kristallwachstums, der Diffusion und der Makroseigerung von Schwefel zeigen, dass die Risse für bestimmte Werkstoffe mit einer hohen Konzentration an Verunreinigungen hauptsächlich metallurgisch bedingt entstehen können. Allerdings zeigte die Untersuchung des Einflusses der Ausbauchung (Bulging) im Mittenbereich der Schweißnaht auf das transiente Temperaturfeld und die transienten Transversalspannungen im risskritischen Bereich auch, dass die Rissbildung nicht nur metallurgisch bedingt und insbesondere auch für aus metallurgischer Sicht eigentlich rissunkritische Materialien auftreten kann. Der Bulging-Bereich hat sich in der Untersuchung als besonders kritisch in allen Teilen der Simulationskette gezeigt. Die Einflüsse dieser geometrischen Besonderheit konnten bei allen physikalischen Teilaspekten der Problematik als heißrissinduzierend identifiziert werden. Von besonderer Bedeutung wird an dieser Stelle das erkannte Zusammenspiel dieser Einflüsse hervorgehoben. Bisher wurde die Bildung der Erstarrungsrisse hauptsächlich durch einen einzelnen physikalischen Aspekt, wie z.B. rein metallurgisch oder rein thermomechanisch bedingt, isoliert betrachtet. Die gewonnen Erkenntnisse über die Einflüsse des Bulgings auf die unterschiedlichen Teilaspekte zeigen deutlich, dass alle Entstehungsmechanismen auch die Schmelzbadgeometrie als Ursprung haben. Von dieser hängen die transienten Temperatur- und Spannungsfelder, die Kristallwachsrichtung, die Erstarrungsgeschwindigkeit und die Konzentration von Verunreinigungen, welche zur Entstehung von niedrigschmelzenden Phasen führt, ab. Die Ergebnisse des Forschungsvorhabens sind vielfach in referierten Zeitschriften und auf Fachtagungen veröffentlicht worden. Hervorzuheben dabei ist der „Best Presentation Award“ auf der LANE Conference 2018 in Fürth, wodurch die Thematik einem breiten Publikum bekannt gemacht werden konnte. KW - Laserstrahlschweißen KW - Mittelrippendefekt KW - Simulation PY - 2019 SP - 1 EP - 14 AN - OPUS4-49516 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Study on Duplex Stainless Steel Powder Compositions forthe Coating of Thick Plates for Laser Beam Welding N2 - Duplex stainless steels combine the positive properties of its two phases, austenite and ferrite. Due to its good corrosion resistance, high tensile strength and good ductility it has multiple applications. But laser beam welding of duplex steels changes the balanced phase distribution in favor of ferrite. This results in a higher vulnerability to corrosion and a lower ductility. In this study different powder combinations consisting of duplex and nickel for coating layers by laser metal deposition are investigated. Afterwards laser tracks are welded, and the temperature cycles measured. The ferrite content of the tracks are analyzed by feritscope, metallographic analysis and Electron Backscatter Diffraction. The goal is the development of a powder mixture allowing for a duplex microstructure in a two-step process, where firstly the edges of the weld partners are coated with the powder mixture by LMD and secondly those edges are laser beam welded. The powder mixture identified by the pretests is tested in the two-step process and analyzed by metallographic analysis, energy dispersive X-ray spectroscopy and Vickers hardness tests. The resulting weld seams show a balanced duplex microstructure with a homogenous nickel distribution and a hardness of the weld seam similar to the base material. KW - Duplex AISI 2205 KW - Stainless Steel KW - Laser Beam Welding KW - Nickel KW - Laser Metal Deposition PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554663 DO - https://doi.org/10.1002/adem.202101327 SN - 1438-1656 VL - 24 IS - 6 SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim AN - OPUS4-55466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Straße, Anne A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael ED - Schmidt, M. ED - Vollertsen, F. ED - Schmidt, B. M. T1 - Preliminary study to investigate the applicability of optical strain measurement technique for the detection of hot cracks in laser metal deposited layers N2 - Laser metal deposition (LMD) as an additive manufacturing technique became increasingly important in recent years and thus the demand for component safety. This is the reason, for the need for reliable in-situ defect detection techniques. For laser beam weld seams an optical measurement technique based on an optical flow algorithm was successfully used to define the critical straining conditions that lead to hot cracking. This algorithm was adapted for bead-on-plate weld seams on LMD deposited layers of IN718 alloy while performing external strain on the specimen in an externally loaded hot cacking test facility. The resulting transversal hot cracks along the weld seam were localized via X-Ray inspection and the type of cracking confirmed by Scanning Electron Microscopy (SEM). The strain distribution was measured in the vicinity of the solidification front and correlated to the detected hot cracks. Based on the results this technique could be adopted for LMD experiments. T2 - 12th CIRP Conference on Photonic Technologies [LANE 2022] CY - Fürth, Germany DA - 04.09.2022 KW - Laser Metal Deposition (LMD) KW - Strain measurement KW - Optical flow KW - Critical strain PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556445 DO - https://doi.org/10.1016/j.procir.2022.08.034 VL - 111 SP - 335 EP - 339 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-55644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Karkhin, Victor A1 - Rethmeier, Michael ED - Sommertisch, C. ED - Enzinger, N. ED - Mayr, P. T1 - A novel approach for calculating the thermal cycle of a laser beam welding process using a stationary CFD model N2 - This work aims to find the thermal cycles during and after fusion welding through simulation by first calculating the resulting local temperature field in the quasi-stationary part of the process. Here complete-penetration keyhole laser beam welding with a laser power of 18 kW on a 15 mm thick slab of a low-alloyed steel at a welding speed of 2 m/min is considered. In order to physically depict the laser material interaction a multi-physics numerical model including the effects of phase transformation, thermo-capillary convection, natural convection and temperature-dependent material properties up to evaporation temperature is developed. It uses a fixed keyhole geometry with a right truncated circular cone shape to introduce the laser beam energy to the workpiece. In a subsequent study, the resulting local temperature field is then used as an equivalent heat source in order to predict the unsteady thermal cycle during and after fusion welding. The translational movement of the laser beam through the workpiece is represented by a moving mesh approach. For the simulation, stationary heat transfer and fluid dynamics are described by a system of strongly coupled partial differential equations. These are solved with the commercial finite element software COMSOL Multiphysics 5.0. The results of the numerical simulation are validated by experiments, where the weld bead shapes and the thermal cycles show good correlation. T2 - 12th International Seminar "Numerical Analysis of Weldability" CY - Graz, Austria DA - 24.09.2018 KW - Equivalent heat source KW - Process simulation KW - Laser beam welding KW - Transient heat transfer KW - Moving mesh PY - 2019 SN - 978-3-85125-616-1 VL - 12 SP - Chapt. VI, 694 EP - 710 PB - Verlag der Technischen Universität Graz AN - OPUS4-48817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -