TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Özcan Sandikcioglu, Özlem A1 - Widdel, F. T1 - Microbial corrosion of iron coupled to methanogenesis by strains from different environments N2 - Microbially influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) which act upon the metal by the reactiveness of hydrogen sulfide, and by withdrawal of the available electrons (Fe → Fe²⁺ + 2e⁻ ; E° = 0.47 V) in electrical contact through surface attachment. Also methanogenic archaea are supposed to cause MIC. Because they do not produce hydrogen sulfide, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. Precipitation of siderite (4Fe + 5HCO₃⁻ + 5H⁺ → 4FeCO₃ + CH₄ + 3H₂O) can lead to an insulating layer on the metal surface and lower the corrosion rate. Still, the extent of FeCO₃ precipitation may be significantly influenced by environmental conditions such as pH and advective processes. To investigate the corrosive potential of methanogens, we studied strains isolated from marine sediments (Methanococcus maripaludis 14266, 2067, Methanobacterium-affiliated strain IM1), crude oil tanks (Methanococcus maripaludis Mic1c10, KA1) and the oral cavity (Methanobrevibacter oralis) in a closed (batch) culture, and in a sand-packed flow-through cell with pH control and simulation of a fluctuating environment. Results indicate that the rates of iron corrosion due to coupled methanogenesis (up to 0.3 mm/yr) are comparable to that caused by SRM. Surface analyses of the metal showed severe pitting. Such knowledge and deeper understanding also from an electrokinetic point of view may not only provide further models in microbial electrophysiology, but also contribute to mitigation strategies in MIC. T2 - ISME 17th International Symposium on Microbial Ecology CY - Leipzig, Germany DA - 12.08.2018 KW - Corrosion KW - Methanogens KW - Biofilm KW - Flow-System KW - Iron PY - 2018 AN - OPUS4-45735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Özcan Sandikcioglu, Özlem A1 - Widdel, F. T1 - Microbial corrosion of iron coupled to methanogenesis by strains from different environments N2 - Microbially influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) which act upon the metal by the reactiveness of hydrogen sulfide, and by withdrawal of the available electrons in electrical contact with the metal. Methanogenic archaea are supposed to cause MIC. Because they do not produce hydrogen sulfide, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. Precipitation of siderite (4Fe + 5HCO3 + 5H+  4FeCO3 + CH4 + 3H2O) can lead to an insulating layer on the metal surface and lower the corrosion rate. Still, the extent of FeCO3 precipitation may be significantly influenced by environmental conditions such as pH and advective processes. T2 - EMBO-Workshop CY - Vienna, Austria DA - 02.08.2018 KW - Methanogens KW - MIC KW - Corrosion KW - Environmental Simulation PY - 2018 AN - OPUS4-46396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Özcan Sandikcioglu, Özlem A1 - Widdel, F. T1 - Microbial corrosion of iron coupled to methanogenesis by strains from different environments N2 - Microbially influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) which act upon the metal by the reactiveness of hydrogen sulfide, and by withdrawal of the available electrons in electrical contact with the metal. Methanogenic archaea are supposed to cause MIC. Because they do not produce hydrogen sulfide, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. Precipitation of siderite (4Fe + 5HCO3 + 5H+  4FeCO3 + CH4 + 3H2O) can lead to an insulating layer on the metal surface and lower the corrosion rate. Still, the extent of FeCO3 precipitation may be significantly influenced by environmental conditions such as pH and advective processes. T2 - ISME CY - Leipzig, Germany DA - 12.08.2018 KW - Methanogens KW - MIC KW - Corrosion KW - Environmental Simulation PY - 2018 AN - OPUS4-46397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kleinbub, Sherin A1 - An, Biwen Annie A1 - Özcan Sandikcioglu, Özlem A1 - Dommisch, H. A1 - Koerdt, Andrea T1 - The impact of methanogenic Archaea on material, environment and health N2 - Microbiologically influence corrosion (MIC) has become a big concern due the increased usage of different metals by our society. Microorganisms can use metal as an electron donor, causing unpredictable but serious damages. Nowadays it is known that besides sulfate reducing bacteria (SRB), other microorganisms including acetogens, iron oxidizers and methanogens can also induce MIC. Current studies related to methanogen-induced MIC (MI-MIC) mainly focused on environmental isolates from the oil and gas industry (e.g. Methanococcus maripaludis) with industrial materials e.g. iron. However, MI-MIC can occur in many other environments as well, including the oral cavity. Methanobrevibacter oralis is a methanogen isolated from the human oral cavity and was found more frequently in patients suffering from peri-implantitis/periodontitis. Titanium-implants removed from those patients have also showed clear signs of corrosion. The aim of our study is to establish and analyze corrosion potentials of dental metals (e.g. titanium) by oral methanogens. Periodontal pockets samples from patients suffering from periodontitis/peri-implantitis were taken for methanogenic and SRB enrichments. Stainless steel, pure titanium or Ti-6Al-4V alloy was used for corrosion studies. Corrosion rates and methane production were measured using weight-loss method and gas chromatography, respectively. Metal surfaces were visualized with scanning electron microscopy. Microbial communities in the dental pockets of healthy people and patients will be compared using 16S rRNA amplicon sequencing. Overall, this is the first study investigating the susceptibility of different dental implant materials to corrosion using human-related Archaea. The outcomes of this study can be further explored for a variety of clinical applications. T2 - ISME 17th International Symposium on Microbial Ecology CY - Leipzig, Germany DA - 12.08.2018 KW - Methanogens KW - Corrosion KW - Biofilm PY - 2018 AN - OPUS4-45932 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kauss, N. A1 - Rosemann, Paul A1 - Halle, T. T1 - Age-hardening behaviour, microstructure and corrosion resistance of the copper alloyed stainless steel 1.4542 N2 - The copper alloyed stainless steel 1.4542 (X5CrNiCuNb16-4) is used in different areas due to its good mechanical properties and corrosion resistance. Strength and corrosion resistance can be adjusted by the heat treatment, which is of importance for the application of this alloy. The mechanical properties (strength and hardness) are attributed to the dispersive precipitation of the copper rich ε–Phase. The additional precipitation of chromium carbides can reduce the corrosion resistance. Different ageing states were produced to investigate the precipitation behaviour with various methods. Furthermore, the influence of cold-rolling on the precipitation behaviour was studied in comparison to a solution annealed state without deformation. The microstructure was studied by SEM and the variations of hardness and magnetic proportion were characterised. The electrochemical potentiodynamic reactivation (EPR) was used to determine the corrosion resistance and detect chromium depletion in all heattreated states. The results show that a work hardening accelerates the precipitation rate, while ageing at 600 °C reduces the corrosion resistance due to chromium depletion. T2 - WTK2018 CY - Chemnitz DA - 14.03.2018 KW - Corrosion KW - Corrosion resistance KW - Corrosion testing KW - EPR KW - Heat treatment KW - Stainless steel PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-452482 DO - https://doi.org/10.1088/1757-899X/373/1/012020 SN - 1757-899X SN - 1757-8981 VL - 373 SP - Article 012020, 1 EP - 9 PB - Institute of Physics CY - London AN - OPUS4-45248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kauss, N. A1 - Rosemann, Paul A1 - Halle, T. T1 - Age-hardening behaviour, microstructure and corrosion resistance of the copper alloyed stainless steel 1.4542 N2 - The copper alloyed stainless steel 1.4542 (X5CrNiCuNb16-4) is used in different areas due to its good mechanical properties and corrosion resistance. Strength and corrosion re-sistance can be adjusted by the heat treatment, which is of importance for the application of this alloy. The mechanical properties (strength and hardness) are attributed to the dispersive precipitation of the copper rich ε–Phase. The additional precipitation of chromium carbides can reduce the corrosion resistance. Different ageing states were produced to investigate the precipitation behaviour with various methods. Furthermore, the influence of cold-rolling on the precipitation behaviour was studied in comparison to a solution annealed state without deformation. The microstructure was studied by SEM and the variations of hardness and magnetic proportion were characterised. The electrochemical potentiodynamic reactivation (EPR) was used to determine the corrosion resistance and detect chromium depletion in all heat-treated states. The results show that a work hardening accelerates the precipitation rate, while ageing at 600 °C reduces the corrosion re-sistance due to chromium depletion. T2 - EUROCORR 2018 CY - Krakow, Poland DA - 09.09.2018 KW - Corrosion KW - Stainless steel KW - Corrosion resistance KW - EPR KW - Corrosion testing KW - Heat treatment KW - ThermoCalc KW - REM KW - Martensitic stainless steels PY - 2018 AN - OPUS4-45955 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kauss, N. A1 - Rosemann, Paul T1 - Age-hardening behaviour, microstructure and corrosion resistance of the copper alloyed stainless steel 1.4542 N2 - The copper alloyed stainless steel 1.4542 (X5CrNiCuNb16-4) is used in different areas due to its good mechanical properties and corrosion resistance. Strength and corrosion resistance can be adjusted by the heat treatment, which is of importance for the application of this alloy. The mechanical properties (strength and hardness) are attributed to the dispersive precipitation of the copper rich ε–Phase. The additional precipitation of chromi-um carbides can reduce the corrosion resistance. Different ageing states were produced to investigate the precipitation behaviour with various methods. Furthermore, the influence of cold-rolling on the precipitation behaviour was studied in comparison to a solution annealed state without deformation. The microstructure was studied by SEM and the variations of hardness and magnetic proportion were characterised. The electrochemical potentiodynamic reactivation (EPR) was used to determine the corrosion resistance and detect chromium depletion in all heat-treated states. The results show that a work hard-ening accelerates the precipitation rate, while ageing at 600 °C reduces the corrosion resistance due to chromium depletion. T2 - 20. Werkstofftechnischen Kolloquium CY - Chemnitz, Germany DA - 14.03.2018 KW - Corrosion KW - Heat treatment KW - Stainless steel KW - Corrosion resistance KW - EPR KW - Corrosion testing PY - 2018 AN - OPUS4-44553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kauss, N. A1 - Rosemann, Paul T1 - Age-hardening behaviour, microstructure and corrosion resistance of the copper alloyed stainless steel 1.4542 N2 - The copper alloyed stainless steel 1.4542 (X5CrNiCuNb16-4) is used in different areas due to its good mechanical properties and corrosion resistance. Strength and corrosion resistance can be adjusted by the heat treatment, which is of importance for the application of this alloy. The mechanical properties (strength and hardness) are attributed to the dispersive precipitation of the copper rich ε–Phase. The additional precipitation of chromi-um carbides can reduce the corrosion resistance. Different ageing states were produced to investigate the precipitation behaviour with various methods. Furthermore, the influence of cold-rolling on the precipitation behaviour was studied in comparison to a solution annealed state without deformation. The microstructure was studied by SEM and the variations of hardness and magnetic proportion were characterised. The electrochemical potentiodynamic reactivation (EPR) was used to determine the corrosion resistance and detect chromium depletion in all heat-treated states. The results show that a work hard-ening accelerates the precipitation rate, while ageing at 600 °C reduces the corrosion resistance due to chromium depletion. T2 - 20. Werkstofftechnisches Kolloquium CY - Chemnitz, Germany DA - 14.03.2018 KW - Corrosion KW - Corrosion resistance KW - Corrosion testing KW - EPR KW - Heat treatment KW - Stainless steel PY - 2018 SN - 978-3-00-058901-0 SN - 1439-1597 VL - 72 SP - 277 EP - 284 PB - Eigenverlag CY - Chemnitz AN - OPUS4-44558 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kauss, N. A1 - Heyn, A. A1 - Rosemann, Paul T1 - How to Detect Sensitivity on Aged Lean-Duplex Stainless Steel With Electrochemical Methods N2 - The influence of isothermal ageing on microstructure, sensitisation and pitting corrosion resistance of the lean duplex stainless steel (LDSS) X2CrNiN23-4 was investigated with various electrochemical methods. The aging at 600 °C (from 0.1 h up to 20 h) lead to the formation of precipitations at the ferrite-ferrite (α/α) and ferrite-austenite (α/γ) grain boundaries, inducing sensitisation due to chromium depletion. The degree of sensitisation was evaluated with the double loop electrochemical potentiokinetic reactivation method (DL-EPR) according to ASTM G108 and correlated with critical pitting potentials (Epit) as well as critical pitting temperature (CPT) measured in an electrolyte according to ASTM G48 using electrochemical noise. Up to an ageing time of 1 h, the sensitisation did rise significantly, stabilising at a nearly constant level with a slight drop at 20 h. This behaviour correlated perfectly with the potentiodynamically determined pitting potentials Epit and sensitisation. The CPT showed a higher sensitivity at short ageing times compared to the DL-EPR and Epit. Finally, the KorroPad method was applied to visualise the sensitisation induced reduction of pitting corrosion resistance. The “KorroPad” is an agar-based gel-electrolyte containing 0.1 mol/l sodium chloride (NaCl) and 0.1 mol/l potassium ferricyanide III (K3[Fe(CN)6]), invented at the Federal Institute of Materials Research and Testing in Berlin (Germany) to detect surfaces of stainless steel prone to pitting corrosion. The standard configuration of the KorroPad showed no differentiation for the various aging conditions. Increasing the concentration of both NaCl and potassium ferrocyanide III to 0.5 M shifts the detection limit of the KorroPad method to stainless steels with higher corrosion resistance, producing the same trends detected by standard electrochemical pitting corrosion values (Epit, CPT) and sensitisation (DL-EPR). By that, the KorroPad method was successfully adjusted to the lean-duplex stainless steel X2CrNiN23-4, enabling short-time testing to detect sensitization. T2 - Electrochemical Methods in Corrosion Research 2018 CY - Cambridge, UK DA - 22.07.2018 KW - Corrosion testing KW - Duplex stainless steels KW - Corrosion KW - KorroPad KW - Pitting corrosion KW - EPR KW - Electrochemical noise KW - Stainless steel PY - 2018 AN - OPUS4-45615 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kauss, N. A1 - Halle, T. A1 - Rosemann, Paul T1 - Age-hardening behavior, microstructure and corrosion resistance of the copper alloyed stainless steel 1.4542 N2 - The copper alloyed stainless steel 1.4542 (X5CrNiCuNb16-4) is used in different areas due to its good mechanical properties and corrosion resistance. Strength and corrosion resistance can be adjusted by the heat treatment, which is of importance for the application of this alloy. The mechanical properties (strength and hardness) are attributed to the dispersive precipitation of the copper rich ε–Phase. The additional precipitation of chromium carbides can reduce the corrosion resistance. Different ageing states were produced to investigate the precipitation behaviour with various methods. Furthermore, the influence of cold-rolling on the precipitation behaviour was studied in comparison to a solution annealed state without deformation. The microstructure was studied by SEM and the variations of hardness and magnetic proportion were characterised. The electrochemical potentiodynamic reactivation (EPR) was used to determine the corrosion resistance and detect chromium depletion in all heat-treated states. The results show that a work hardening accelerates the precipitation rate, while ageing at 600 °C reduces the corrosion resistance due to chromium depletion. T2 - Materials Science and Engineering 2018 (MSE) CY - Darmstadt, Germany DA - 26.09.2018 KW - Corrosion KW - Corrosion resistance KW - Corrosion testing KW - EPR KW - Heat treatment KW - Martensitic stainless steels KW - REM KW - Stainless steel KW - ThermoCalc PY - 2018 AN - OPUS4-46094 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heyn, A. A1 - Müller, Thoralf A1 - Balzer, M. A1 - Fenker, M. A1 - Kappl, H. T1 - Corrosion protection mechanisms of TiMgN hard coatings on steel N2 - . Hard coated steel components are used in a wide application range, mostly for protective, wear resistant and decorative purposes. Despite of these coatings being regarded as relatively dense, there is always a high risk of localized corrosion when a coated low alloyed steel component encounters a surrounding high humidity atmosphere or even an aqueous medium. An approach to enhance the corrosion properties is the addition of magnesium to physical vapor deposited hard coatings, like TiN. It has been found that there is a remarkable increase in corrosion resistance in dependence of magnesium content of the TiMgN coating and its surface properties. In this work the authors will explain the underlying corrosion protection mechanisms by means of electrochemical and analytical studies. The positive impact of magnesium in the coating relates on its preferred dissolution vs. steel. This causes the potential to shift to more negative direction with respect to the steel substrate and additionally leads to a temporarily passivation of the steel due to alkalization of the surrounding electrolyte by formation of magnesium hydroxide. T2 - 20. Werkstofftechnisches Kolloquium CY - Chemnitz, Germany DA - 14.03.2018 KW - Corrosion KW - Titanium nitride KW - PVD hard coating KW - Magnesium PY - 2018 SN - 978-3-00-058901-0 SN - 1439-1597 VL - 72 SP - 74 EP - 83 PB - Eigenverlag CY - Chemnitz AN - OPUS4-44526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heyn, A. A1 - Müller, Thoralf A1 - Balzer, M. A1 - Fenker, M. A1 - Kappl, H. T1 - Corrosion protection mechanisms of TiMgN hard coatings on steel N2 - Hard coated steel components are used in a wide application range, mostly for protective, wear resistant and decorative purposes. Despite of these coatings being regarded as relatively dense, there is always a high risk of localized corrosion when a coated low alloyed steel component encounters a surrounding high humidity atmosphere or even an aqueous medium. An approach to enhance the corrosion properties is the addition of magnesium to physical vapor deposited hard coatings, like TiN. It has been found that there is a remarkable increase in corrosion resistance in dependence of magnesium content of the TiMgN coating and its surface properties. In this work the authors will explain the underlying corrosion protection mechanisms by means of electrochemical and analytical studies. The positive impact of magnesium in the coating relates on its preferred dissolution vs. steel. This causes the potential to shift to more negative direction with respect to the steel substrate and additionally leads to a temporarily passivation of the steel due to alkalization of the surrounding electrolyte by formation of magnesium hydroxide. T2 - 20. Werkstofftechnisches Kolloquium CY - Chemnitz, Germany DA - 14.03.2018 KW - Corrosion KW - Titanium nitride KW - PVD hard coating KW - magnesium PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-457117 DO - https://doi.org/10.1088/1757-899X/373/1/012009 SN - 1757-8981 VL - 373 IS - 1 SP - 012009, 1 EP - 10 PB - IOP Publishing Ltd AN - OPUS4-45711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Erning, Johann Wilhelm T1 - Pinguin di Jerman: Apa hubungannya dengan korosi? T1 - Penguins in Germany: What does it has to do with corrosion? N2 - A failure case in an animal enclosure at Hannover Zoo is presented. Reasons for corrosive failure and solutions are discussed. T2 - Lecture at Institut Teknologi Sepuluh Nopember (ITS) CY - Surabaya, Indonesia DA - 12.11.2018 KW - Corrosion KW - Marine PY - 2018 AN - OPUS4-46741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph T1 - Challenges for corrosion resistance of metallic materials in geothermal applications N2 - Corrosion aspects for use of metallic materials in geothermal applications are presented and discussed. T2 - Corrosion Workshop beim Geothermie Kongress 2018 CY - Essen, Germany DA - 27.11.2018 KW - Corrosion KW - Geothermal KW - Steel PY - 2018 AN - OPUS4-46744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bäßler, Ralph T1 - Corrosion science and Technology (Book review) N2 - It can be concluded, that this book fulfills its intention to be a relevant practical guide for students and professionals. The interested reader can get an insight into of all kinds of aspects one should consider when dealing with corrosion. KW - Corrosion PY - 2018 DO - https://doi.org/10.1002 maco.201870114 SN - 0947-5117 VL - 69 IS - 11 SP - 1677 EP - 1678 PB - Wiley‐VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-46748 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Burkert, Andreas A1 - Müller, Thoralf A1 - Lehmann, Jens A1 - Mietz, Jürgen T1 - Long-term corrosion behaviour of stainless steels in marine atmosphere N2 - Nine different stainless steel alloys were exposed for 5 years under marine environment and their corrosion behaviour was compared and assessed. The investigation of four different surface finishes for all alloys tested further enabled to consider industry-specific features of the surface finish for the material comparison. The results of the exposure tests yield conclusions regarding the influence of alloy composition, surface finish and exposure duration under marine environment. The three duplex stainless steels revealed excellent corrosion resistance even in case of crevices during the 5 years of exposure under the given exposure conditions. Also the molybdenum-alloyed ferritic steel 1.4521 showed good corrosion resistance comparable to the classical austenitic materials 1.4301 and 1.4404. KW - Corrosion KW - Free weathering KW - Marine atmosphere KW - Stainless steels PY - 2018 DO - https://doi.org/10.1002/maco.201709636 SN - 0947-5117 SN - 1521-4176 VL - 69 IS - 1 SP - 20 EP - 28 PB - Wiley-VCH Verlag GmbH & Co KGaA CY - Weinheim AN - OPUS4-43625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bettge, Dirk A1 - Kratzig, Andreas A1 - Peetz, Christoph A1 - Kranzmann, Axel T1 - Interaction of Oxidizing and Reductive Impurities in CO2 Streams with Transport Pipeline Steel N2 - A main goal of CLUSTER CCS project at BAM was to study the corrosion behaviour of pipeline steel with dense phase carbon dioxide containing impurities. Depending on the kind of impurities specific corrosion mechanisms and corrosion rates were determined. T2 - CO2 and H2 Technologies for the Energy Transition CY - BAM, Berlin, Germany DA - 28.11.2018 KW - Carbon capture KW - Carbon dioxide KW - Corrosion KW - CCS PY - 2018 AN - OPUS4-47016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Balzer, M. A1 - Fenker, M. A1 - Kappl, H. A1 - Müller, Thoralf A1 - Heyn, A. A1 - Heiss, A. A1 - Richter, A. T1 - Corrosion protection of steel substrates by magnetron sputtered TiMgN hard coatings: Structure, mechanical properties and growth defect related salt spray test results N2 - Hard and wear resistant coatings deposited by PVD techniques have been characterized for decades for their capabilities to protect steel substrates from corrosion. In the present work the effect of Mg incorporated into TiN coatings is described in terms of the corrosion behavior as well as the mechanical and structural properties. TiN and TiMgN films with Mg contents between 10 and 35 at.% were deposited onto mirror polished 100Cr6 (1.3505) steel samples with 2.5 and 5 μm thickness by using DC magnetron sputtering. The corrosion protection capabilities of the coatings were characterized by neutral salt spray (NSS) test, considering the amounts and sizes of growth defects inherent in each coated sample as determined by a recently developed optical scan method (Large Area High Resolution mapping). The defect data were statistically analyzed for improved interpretation of NSS test results. Chosen growth defects were additionally analyzed by focused ion beam technique. Furthermore the coating composition and morphology, the hardness and the tribological behavior were characterized. Polished steel samples coated with 2.5 μm TiMgN containing about 35 at.% Mg were in the plane free of corrosion after 24 h in a NSS test. TiMgN with 10 or 20 at.% Mg only provided a slightly improved corrosion protection in relation to pure TiN coatings, which was limited to certain types of growth defects. The highest Mg containing coatings exhibited a decreased hardness down to 1200 or 1800 HV depending on type of deposition (HV 1200: Ti- and Mg-target with rotating substrate holder, 1800: Mg-plugged Ti-target with static substrate holder), but also showed a strongly improved wear resistance against Al2O3 related to pure TiN. By analyzing the NSS test results it was found that the corrosion behavior of the coated samples did not only depend strongly on the Mg content, but also on the sample individual defect concentrations. Therefore this subject is extensively discussed. KW - Physical vapour deposition (PVD) KW - Corrosion KW - Growth defects KW - Pinholes KW - Magnesium KW - TiMgN PY - 2018 DO - https://doi.org/10.1016/j.surfcoat.2018.05.037 SN - 0257-8972 VL - 349 IS - 9 SP - 82 EP - 92 PB - Elsevier B.V. AN - OPUS4-45712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Babutzka, Martin T1 - Vorstellung des Programms WIPANO sowie aktueller Projektskizzen der BAM im Fachbereich 7.6 N2 - Der Vortrag erläutert die Förderschwerpunkte der Förderinitiative WIPANO des BMWi und zeigt aktuelle Projektskizzen sowie Projekte des Fachbereiches 7.6. T2 - Arbeitskreissitzung „Korrosionsuntersuchung und -überwachung“ des GfKORR e. V. CY - Berlin, Germany DA - 08.10.2018 KW - Korrosion KW - Corrosion KW - Zink KW - Spannstahl KW - KorroPad PY - 2018 AN - OPUS4-46379 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela A1 - Bäßler, Ralph A1 - Roth, C. T1 - Polyaniline/silicon dioxide containing coating for use in artificial geothermal brines N2 - Geothermal brine is a complex system containing a wide variety of dissolved salts resulting from the condition s in a geothermal well. These fluids lead to corrosion in pipes and other parts of geothermal system construction and necessitate intense research efforts in finding new suitable materials. Carbon steel is susceptible to corrosion in geothermal brine especially when it is exposed to a high temperature and high-pressure medium, which is considered to be an aggressive environment. An artificial geothermal water, bas ed on a brine composition found in Indonesia, was used to investigate the performance of high alloyed materials. The electrolyte has pH 4 and contains 1,500 mg/l Cl-, 20 mg/l SO4 2-, 15 mg/l HCO3 -, 200 mg/l Ca 2+, 250 mg/l K+, and 600 mg/l Na+. In order to protect the bare material in geothermal application, it is necessary to either use high alloyed material s or coatings. In this research, a coating system consisting of polyaniline and silicon dioxide was investigated regarding its behavior to protect carbon steel. In detail, the effect of SiO2 and polyaniline (PANi) addition was evaluated by exposure and electrochemical tests for 7 days, i.e. electrochemical impedance spectroscopy (EIS) and open circuit potential (OCP ) at room temperature and 150 °C with 1 MPa pressure . T2 - NACE International Annual Corrosion Conference CY - Phoenix, AZ, USA DA - 15.04.2018 KW - Geothermal KW - Coating KW - SiO 2 KW - Polyaniline KW - Corrosion PY - 2018 SP - 10708, 1 EP - 14 PB - Omnipress CY - Houston AN - OPUS4-44916 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -