TY - CONF A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael A1 - Karkhin, V. T1 - Mathematical modeling of the geometrical differences between the weld end crater and the steady-state weld pool N2 - The geometrical characteristics of the weld end crater are commonly used for the validation of numerical results in welding simulation. A semi-analytical model calculating the cooling stage of the welding process after the moving energy source is turned off has been developed. A solution for various combinations of heat sources and workpieces has been found. The theoretical limits for the heat transfer of the absorbed energy during cooling in a thin plate and a semi-infinite body were studied. It is shown that after turning off the energy source, an additional melting of the base material in longitudinal direction may occur. The developed technique is applied to complete-penetration keyhole laser beam welding of a 2 mm thick austenitic chromium-nickel 316L steel plate at a welding speed of 20 mm/s and a laser power of 2.3 kW. The results show a theoretical increase of the weld end crater length in comparison to the length of the steady-state weld pool of up to 19 %. A shift of the centre of the end crater, in which the solidification of the liquid metal ends, towards the tail of the end crater relative to the axis of the heat source at the time of its termination, was computed. The speed and the direction of crystallization of the molten material in the weld pool and the end crater were found to be different. A good agreement between the computational results and the welding experiments was achieved. T2 - ICALEO 2019 - The International Congress on Applications of Lasers & Electro-Optics CY - Orlando, FL, USA DA - 07.10.2019 KW - Keyhole mode welding KW - Weld pool shape KW - End-crater KW - Heat conduction PY - 2019 AN - OPUS4-49341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Karkhin, Victor A1 - Khomich, P. A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Assessment of welding thermal cycles by boundary element method N2 - A numerical framework simulation of the steady-state thermal behaviour in keyhole mode welding has been developed. It is based on the equivalent heat source concept and consists of two parts: computational thermo-fluid dynamics and heat conduction. The solution of the thermo-fluid dynamics problem by the finite element method for a bounded domain results in a weld pool interface geometry being the input data for a subsequent heat conduction problem solved for a workpiece by proposed boundary element method. The main physical phenomena, such as keyhole shape, thermo-capillary and natural convection and temperaturedependent material properties are taken into consideration. The developed technique is applied to complete-penetration keyhole laser beam welding of a 15 mm thick low-alloyed steel plate at a welding speed of 33 mm/s and a laser power of 18 kW. The fluid flow of the molten metal has a strong influence on the weld pool geometry. The thermo-capillary convection is responsible for an increase of the weld pool size near the plate surfaces and a bulge formation near the plate middle plane. The numerical and experimental molten pools, cross-sectional weld dimensions and thermal cycles of the heat affected zone are in close agreement. T2 - 72nd IIW Annual Assembly and International Conference CY - Bratislava, Slovakia DA - 07.07.2019 KW - Numerical simulation KW - Boundary element method KW - Themral cycles KW - Keyhole mode welding KW - Bulging PY - 2019 AN - OPUS4-48467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Lange, Fritz A1 - Bachmann, Marcel A1 - Rethmeier, Michael A1 - Hilgenberg, Kai T1 - Numerical simulation of the weld pool dynamics during pulsed laser welding using adapted heat source and vaporization models N2 - A transient simulation including the impact of the laser energy, the melting of the metal and the development of the weld pool was conducted to observe the evolution of the vapor capillary and the solidification of the melt in pulsed laser beam welding of AISI 304 steel. The phase field method was implemented to investigate the evolution and behavior of the liquid-gas interface during welding and to describe the condensed and vapor phases. The effects of phase transition, recoil pressure, thermo-capillary and natural convection, vaporization and temperature dependent material properties were taken into account. A Gaussian-like heat source under consideration of the Fresnel absorption model was used to model the energy input of the laser beam. The heat source model was extended by a newly developed empirical approach of describing multiple beam reflections in the keyhole. To validate this new model, the numerical results were compared to experimental data and good agreement regarding the size and shape of the weld pool was observed. T2 - LANE Conference 2018 CY - Fürth, Germany DA - 03.09.2018 KW - Pulsed laser beam welding KW - Weld pool dynamics KW - Multiple reflections KW - Vaporization PY - 2018 AN - OPUS4-45873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Ivanov, S. A1 - Valdaytseva, E. T1 - A simplified model for numerical simulation of laser metal deposition process with beam oscillation N2 - A simplified model for the numerical simulation of the laser metal deposition process with beam oscillation is proposed. The model studies circular and lateral oscillations in order to reduce the porosity of the deposited part, to increase the process efficiency and the gap bridging ability as well. The deposition rate is increased by modifying the shape and the width of the molten pool through an optimized laser beam power distribution and oscillation amplitude. The relationship between the process conditions and the shape of the fabricated part are determined. It is found that an increase of the amplitude by a lateral oscillation of the beam reduces the heat flux and hence the shape of the deposited wall. A good correlation between the numerically calculated results and the experimental measurements is obtained. T2 - 9th International Conference on Beam Technologies and Laser Applications CY - St. Petersburg, Russia DA - 17.09.2018 KW - Numerical modelling KW - Laser metal deposition KW - Beam oscillations PY - 2018 AN - OPUS4-46017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Karkhin, V. A1 - Rethmeier, Michael T1 - A novel approach for calculating the thermal cycle of a laser beam welding process using a stationary CFD model N2 - This work aims to find the thermal cycles during and after fusion welding through simulation by first calculating the resulting local temperature field in the quasi-stationary part of the process. Here complete-penetration keyhole laser beam welding with a laser power of 18 kW on a 15 mm thick slab of a low-alloyed steel at a welding speed of 2 m/min is considered. In order to physically depict the laser material interaction a multi-physics numerical model including the effects of phase transformation, thermo-capillary convection, natural convection and temperature-dependent material properties up to evaporation temperature is developed. It uses a fixed keyhole geometry with a right truncated circular cone shape to introduce the laser beam energy to the workpiece. In a subsequent study, the resulting local temperature field is then used as an equivalent heat source in order to predict the unsteady thermal cycle during and after fusion welding. The translational movement of the laser beam through the workpiece is represented by a moving mesh approach. For the simulation, stationary heat transfer and fluid dynamics are described by a system of strongly coupled partial differential equations. These are solved with the commercial finite element software COMSOL Multiphysics 5.0. The results of the numerical simulation are validated by experiments, where the weld bead shapes and the thermal cycles show good correlation. T2 - 12th International Seminar "Numerical Analysis of Weldability" CY - Graz-Seggau, Austria DA - 23.09.2018 KW - Equivalent volumetric heat source KW - Process simulation KW - Laser beam welding KW - Transient heat transfer KW - Moving mesh PY - 2018 AN - OPUS4-46037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Bakir, Nasim A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Na, S.-J. A1 - Retmeier, Michael T1 - On the search for the origin of the bulge effect in high power laser beam welding N2 - The shape of the weld pool in laser beam welding plays a major role to understand the dynamics of the melt and its solidification behavior. The aim of the present work was its experimental and numerical investigation. To visualize the geometry of the melt pool in the longitudinal section a butt joint configuration of 15 mm thick structural steel and transparent quartz glass was used. The weld pool shape was recorded by means of a high-speed video camera and two thermal imaging MWIR and VIS cameras. The observations show that the dimensions of the weld pool vary depending on the depth. The regions close to the surface form a teardrop shaped weld pool. A bulge-region and its temporal evolution were observed approximately in the middle of the depth of the weld pool. Additionally, a transient numerical simulation was performed until reaching a steady state to obtain the weld pool shape and to understand the formation mechanism of the observed bulging phenomena. A fixed keyhole with an experimentally obtained shape was used to represent the full-penetration laser beam welding process. The model considers the local temperature field, the effects of phase transition, thermo-capillary convection, natural convection and temperature-dependent material properties up to evaporation temperature. It was found that the Marangoni convection and the movement of the laser heat source are the dominant factors for the formation of the bulging-region. Good correlation between the numerically calculated and the experimentally observed weld bead shapes and the time-temperature curves on the upper and bottom surface were found. T2 - International Congress on Applications of Lasers & Electro-Optics (ICALEO®) CY - Orlando, FL, USA DA - 14.10.2018 KW - High power laser beam welding KW - Solidification cracking KW - Bulging effect KW - Numerical modelling PY - 2018 AN - OPUS4-46339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Artinov, Antoni T1 - On the mathematical analysis of the relationship between the bulging region and the centerline solidification cracking in laser beam welding N2 - The present Ph.D. thesis provides a comprehensive experimental and theoretical study of the bulging-cracking relationship in laser beam welding of thick unalloyed steel sheets. It focuses on experimentally proving the existence of the bulging region and on developing a coupled multiphysics mathematical framework to analyze its influence on the three critical factors controlling the susceptibility to solidification cracking, namely the thermal, metallurgical, and mechanical factors. The research employs a novel experimental setup, utilizing a combination of transparent quartz glass and thick unalloyed steel sheet, enabling real-time visualization of the weld pool geometry and confirming the existence of a distinctive bulging region. To deepen the understanding of these experimental insights, an extensive multiphysics mathematical framework was developed and rigorously verified and validated. This framework introduces an innovative approach using Lamé curves for accurately describing complex three-dimensional weld pool geometries, including the bulging region's characteristics. Through analytical solutions and numerical procedures, it facilitates the computation of solidification parameters, which are crucial for understanding the metallurgical aspects of crack formation. The framework also incorporates a mechanical model to assess and evaluate the local stress distribution within the bulging region. The findings indicate that an elongated, sharply shaped bulging region significantly increases the susceptibility to solidification cracking. This is attributed to its adverse impact on the distribution and local dwell time of liquid metal residing at grain boundaries during solidification, combined with the localized tensile stresses identified in the bulging region. In essence, this research contributes to the broader understanding of solidification cracking in laser beam welding of thick unalloyed steel sheets, with a particular focus on the bulging region. The insights and methodologies developed in this thesis are valuable for future research and advancements in the application of the laser beam welding technology for joining high-thickness unalloyed steel components. KW - Bulging effect KW - Centerline solidification cracking KW - Mathematical modeling KW - Structural steel KW - High power laser beam welding PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-599010 SP - 1 EP - 152 CY - Berlin AN - OPUS4-59901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Karkhin, V. A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - A General Analytical Solution for Two-Dimensional Columnar Crystal Growth during Laser Beam Welding of Thin Steel Sheets N2 - The main solidification parameters, namely the crystal axis, the growth rate, and the cross-sectional area of the columnar crystal control the primary microstructure and thus the final weld seam properties. Limited understanding of solidification parameters due to complexities in experimental and theoretical weld pool boundary determination and its mathematical description. Application of local Lamé curves for efficient weld pool boundary reconstruction Derivation of general analytical solutions for the main solidification parameters of a two-dimensional columnar crystal growth during laser beam welding of thin steel sheets. The Lamé curves approximation technique was successfully applied for the reconstruction of the rear part of the two-dimensional steady-state weld pool boundary. General analytical expressions for the main solidification parameters, namely the crystal axis, the growth rate and the cross-sectional area of the crystal were derived. The derived expressions and herewith obtained results were verified and validated by comparing them to known theoretical solutions and experimental measurements. Dimensionless analysis of the influence of the size and shape of the rear weld pool boundary on the solidification parameters was provided. The derived general solutions and the analysis provided allow for critical welding parameters to be estimated and adapted accordingly to improve the welding process. T2 - 3rd International Conference on Advanced Joining Processes CY - Braga, Portugal DA - 19.10.2023 KW - Laser beam welding KW - Analytical solution KW - Columnar crystal growth PY - 2023 AN - OPUS4-59174 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Karkhin, Victor A1 - Rethmeier, Michael ED - Sommertisch, C. ED - Enzinger, N. ED - Mayr, P. T1 - A novel approach for calculating the thermal cycle of a laser beam welding process using a stationary CFD model N2 - This work aims to find the thermal cycles during and after fusion welding through simulation by first calculating the resulting local temperature field in the quasi-stationary part of the process. Here complete-penetration keyhole laser beam welding with a laser power of 18 kW on a 15 mm thick slab of a low-alloyed steel at a welding speed of 2 m/min is considered. In order to physically depict the laser material interaction a multi-physics numerical model including the effects of phase transformation, thermo-capillary convection, natural convection and temperature-dependent material properties up to evaporation temperature is developed. It uses a fixed keyhole geometry with a right truncated circular cone shape to introduce the laser beam energy to the workpiece. In a subsequent study, the resulting local temperature field is then used as an equivalent heat source in order to predict the unsteady thermal cycle during and after fusion welding. The translational movement of the laser beam through the workpiece is represented by a moving mesh approach. For the simulation, stationary heat transfer and fluid dynamics are described by a system of strongly coupled partial differential equations. These are solved with the commercial finite element software COMSOL Multiphysics 5.0. The results of the numerical simulation are validated by experiments, where the weld bead shapes and the thermal cycles show good correlation. T2 - 12th International Seminar "Numerical Analysis of Weldability" CY - Graz, Austria DA - 24.09.2018 KW - Equivalent heat source KW - Process simulation KW - Laser beam welding KW - Transient heat transfer KW - Moving mesh PY - 2019 SN - 978-3-85125-616-1 VL - 12 SP - Chapt. VI, 694 EP - 710 PB - Verlag der Technischen Universität Graz AN - OPUS4-48817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Meng, Xiangmeng A1 - Karkhin, V. A1 - Rethmeier, Michael T1 - On the relationship between the bulge effect and the hot cracking formation during deep penetration laser beam welding N2 - Recent studies have confirmed the widening of the weld pool interface, known as a bulge effect, during deep penetration high power laser beam welding. The link between such geometric particularities of the weld pool shape and the hot cracking phenomena is significant. The present work seeks to extend the level of understanding by investigating their relationship. A coupled multiphysics, multiscale numerical framework is developed, comprising a series of subsequent analyses. The study examines the influences of the bulge on the three most dominant effects causing hot cracking, namely the thermal cycles, the mechanical loading, and the local microstructure. The bulge in the weld pool shape forms approximately in the middle of the plate, thus correlating with the location of hot cracking. It increases the hot cracking susceptibility by enhancing the three dominant effects. The numerical results are backed up by experimental data. T2 - 11th CIRP Conference on Photonic Technologies [LANE 2020] KW - Hot cracking KW - Bulge effect KW - Numerical modelling KW - Laser beam welding KW - Deep penetration PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-512783 SN - 2212-8271 VL - 94 SP - 5 EP - 10 PB - Elsevier B.V. CY - Amsterdam [u.a.] AN - OPUS4-51278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Equivalent heat source approach in a 3D transient heat transfer simulation of full-penetration high power laser beam welding of thick metal plates N2 - A three-dimensional multi-physics numerical model was developed for the calculation of an appropriate equivalent volumetric heat source and the prediction of the transient thermal cycle during and after fusion welding. Thus the modelling process was separated into two studies. First, the stationary process simulation of full-penetration keyhole laser beam welding of a 15 mm low-alloyed steel thick plate in flat position at a welding speed of 2 m/min and a laser power of 18 kW was performed. A fixed keyhole with a right circular cone shape was used to consider the energy absorbed by the workpiece and to calibrate the model. In the calculation of the weld pool geometry and the local temperature field, the effects of phase transition, thermo-capillary convection, natural convection and temperature-dependent material properties up to evaporation temperature were taken into account. The obtained local temperature field was then used in a subsequent study as an equivalent heat source for the computation of the transient thermal field during the laser welding process and the cooling stage of the part. The system of partial differential equations, describing the stationary heat transfer and the fluid dynamics, were strongly coupled and solved with the commercial finite element software COMSOL Multiphysics 5.0. The energy input in the transient heat transfer simulation was realised by prescription of the nodes temperature. The prescribed nodes reproduced the calculated local temperature field defining the equivalent volumetric heat source. Their translational motion through the part was modelled by a moving mesh approach. An additional remeshing condition and helper lines were used to avoid highly distorted elements. The positions of the elements of the polygonal mesh were calculated with the Laplace’s smoothing approach. Good correlation between the numerically calculated and the experimentally observed weld bead shapes and transient temperature distributions was found. KW - Laser beam welding KW - Process simulation KW - Equivalent heat source KW - Transient heat transfer KW - Deformed geometry PY - 2018 UR - https://authors.elsevier.com/a/1WbSq44xZwola U6 - https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.058 SN - 0017-9310 SN - 1879-2189 VL - 122 SP - 1003 EP - 1013 PB - Elsevier Ltd. CY - Amsterdam [u.a.] AN - OPUS4-44272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Äquivalente Wärmequellenmodellierung beim Hochleistungslaserstrahlschweißen dicker Bleche N2 - Der vorgestellte Modellierungsprozess dient zur Abschätzung einer geeigneten äquivalenten Wärmequelle und Berechnung des thermischen Verhaltens beim Laserstrahlschweißen. Die Methode Kombiniert die Vorteile von gägngigen Simulationsverfahren und reduziert die berücksichtigte Anzahl an physikalischen Aspekten und Kalibrierungsparameter. Durch die modellierten physikalischen Phänomene konnten die Informationen über die Strömung im Schmelzbad und dessen Einfluss auf die resultierende lokale Temperaturverteilung und folglich auf das transiente Temperaturfeld gewonnen werden. Dadurch wurde die Simulatioszeit(inkl. Kalibrierungsaufwand) auf weniger als einen Tag Rechenzeit verringert. T2 - 38. Assistentenseminar Füge- und Schweißtechnik CY - Rabenau, Germany DA - 06.10.2017 KW - Äquivalente Wärmequelle KW - Bewegtes Gitter KW - Hochleistungslaserstrahlschweißen KW - Prozesssimulation KW - Knotenweise Zwangsbedingungen PY - 2019 SN - 978-3-96144-028-3 VL - 342 SP - 66 EP - 76 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-47699 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael A1 - Karkhin, V. A1 - Khomich, P. T1 - Modeling of hydrodynamic and thermal processes at laser welding with through penetration N2 - A mathematical model for physical processes in fusion welding has been developed. It is based on the equivalent heat source concept and consists of two parts: thermo-hydrodynamics of the weld pool and heat conduction in the weldment outside the pool. In thermo-hydrodynamic problem, temperature – dependent material properties, keyhole shape, thermo-capillary and natural convection, phase transformations and other physical phenomena are taken into consideration. Solution of the thermo-hydrodynamic problem by the finite element method is demonstrated with keyhole laser beam welding of a 15 mm thick steel plate. Thermo-capillary convection is primarily responsible for the intricate convex-concave melt pool shape and pool enlargement near the plate surfaces. The calculated and experimental molten pool dimensions are in close agreement. KW - Laser welding KW - Weld pool modeling KW - Heat conduction KW - Greens function method PY - 2021 U6 - https://doi.org/10.1080/09507116.2021.1989209 SP - 1 EP - 12 PB - Taylor & Francis Group AN - OPUS4-54022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Bakir, Nasim A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Na, S.-J. A1 - Rethmeier, Michael T1 - On the search for the origin of the bulge effect in high power laser beam welding N2 - The shape of the weld pool in laser beam welding plays a major role to understand the dynamics of the melt and its solidification behavior. The aim of the present work was its experimental and numerical investigation. To visualize the geometry of the melt pool in the longitudinal section a butt joint configuration of 15 mm thick structural steel and transparent quartz glass was used. The weld pool shape was recorded by means of a high-speed video camera and two thermal imaging MWIR and VIS cameras. The observations show that the dimensions of the weld pool vary depending on the depth. The regions close to the surface form a teardrop shaped weld pool. A bulge-region and its temporal evolution were observed approximately in the middle of the depth of the weld pool. Additionally, a transient numerical simulation was performed until reaching a steady state to obtain the weld pool shape and to understand the formation mechanism of the observed bulging phenomena. A fixed keyhole with an experimentally obtained shape was used to represent the full-penetration laser beam welding process. The model considers the local temperature field, the effects of phase transition, thermo-capillary convection, natural convection and temperature-dependent material properties up to evaporation temperature. It was found that the Marangoni convection and the movement of the laser heat source are the dominant factors for the formation of the bulging-region. Good correlation between the numerically calculated and the experimentally observed weld bead shapes and the time-temperature curves on the upper and bottom surface were found. T2 - International Congress on Applications of Lasers & Electro-Optics (ICALEO®) CY - Orlando, USA DA - 14.10.2018 KW - Bulging effect KW - High power laser beam welding KW - Numerical modelling KW - Solidification cracking PY - 2019 SP - 1 EP - 8 AN - OPUS4-47139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Bakir, Nasim A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Na, S.-J. A1 - Rethmeier, Michael T1 - On the search for the origin of the bulge effect in high power laser beam welding N2 - The shape of the weld pool in laser beam welding plays a major role to understand the dynamics of the melt and its solidification behavior. The aim of the present work was its experimental and numerical investigation. To visualize the geometry of the melt pool in the longitudinal section a butt joint configuration of 15 mm thick structural steel and transparent quartz glass was used. The weld pool shape was recorded by means of a high-speed video camera and two thermal imaging MWIR and VIS cameras. The observations show that the dimensions of the weld pool vary depending on the depth. The regions close to the surface form a teardrop shaped weld pool. A bulge-region and its temporal evolution were observed approximately in the middle of the depth of the weld pool. Additionally, a transient numerical simulation was performed until reaching a steady state to obtain the weld pool shape and to understand the formation mechanism of the observed bulging phenomena. A fixed keyhole with an experimentally obtained shape was used to represent the full-penetration laser beam welding process. The model considers the local temperature field, the effects of phase transition, thermo-capillary convection, natural convection and temperature-dependent material properties up to evaporation temperature. It was found that the Marangoni convection and the movement of the laser heat source are the dominant factors for the formation of the bulging-region. Good correlation between the numerically calculated and the experimentally observed weld bead shapes and the time-temperature curves on the upper and bottom surface were found. KW - Bulging effect KW - High power laser beam welding KW - Process simulation KW - Solidification KW - Hot cracking PY - 2019 U6 - https://doi.org/10.2351/1.5096133 SN - 1042-346X SN - 1938-1387 VL - 31 IS - 2 SP - 022413-1 EP - 022413-7 PB - AIP Publishing AN - OPUS4-47848 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Bakir, Nasim A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Weld pool shape observation in high power laser beam welding N2 - The geometry of the melt pool in laser beam welding plays a major role to understand the dynamics of the melt and its solidification behavior. In this study, a butt configuration of 15 mm thick structural steel and transparent quartz glass was used to observe the weld pool geometry by means of high-speed camera and an infrared camera recording. The observations show that the dimensions of the weld pool vary depending on the depth. The areas close to the weld pool surface take a teardrop-shape. A bulge-region and its temporal evolution were observed approximately in the middle of the depth of the weld pool. Additionally, a 3D transient thermal-fluid numerical simulation was performed to obtain the weld pool shape and to understand the formation mechanism of the observed bulging effect. The model takes into account the local temperature field, the effects of phase transition, thermo-capillary convection, natural convection and temperature-dependent material properties up to evaporation temperature. The numerical results showed good accordance and were furthermore used to improve the understanding of the experimentally observed bulging effect. T2 - LANE Conference 2018 CY - Fürth, Germany DA - 03.09.2018 KW - High power laser beam welding KW - Weld pool shape KW - Bulging KW - Numerical process simulation PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-458759 SN - 2212-8271 VL - 74 SP - 683 EP - 686 PB - Elsevier Ltd. CY - Amsterdam [u.a.] AN - OPUS4-45875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Karkhin, V. A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Mathematical modeling of the geometrical differences between the weld end crater and the steady-state weld pool N2 - The geometrical characteristics of the weld end crater are commonly used for the validation of numerical results in welding simulation. A semi-analytical model calculating the cooling stage of the welding process after the moving energy source is turned off has been developed. A solution for various combinations of heat sources and workpieces has been found. The theoretical limits for the heat transfer of the absorbed energy during cooling in a thin plate and a semi-infinite body were studied. It is shown that after turning off the energy source, an additional melting of the base material in longitudinal direction may occur. The developed technique is applied to complete-penetration keyhole laser beam welding of a 2 mm thick austenitic chromium-nickel 316L steel plate at a welding speed of 20 mm/s and a laser power of 2.3 kW. The results show a theoretical increase of the weld end crater length in comparison to the length of the steady-state weld pool of up to 19 %. A shift of the centre of the end crater, in which the solidification of the liquid metal ends, towards the tail of the end crater relative to the axis of the heat source at the time of its termination, was computed. The speed and the direction of crystallization of the molten material in the weld pool and the end crater were found to be different. A good agreement between the computational results and the welding experiments was achieved. T2 - ICALEO 2019 - The International Congress on Applications of Lasers & Electro-Optics (Proceedings) CY - Orlando, FL USA DA - 07.10.2019 KW - Keyhole mode welding KW - Weld pool shape KW - End-crater KW - Heat conduction PY - 2019 UR - http://icaleo.conferencespot.org/2019-proceedings?qr=1 SN - 978-1-940168-1-42 SP - 1 EP - 8 AN - OPUS4-49344 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Karkhin, V. A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Mathematical modeling of the geometrical differences between the weld end crater and the steady-state weld pool N2 - The geometrical characteristics of the weld end crater are commonly used as a means of validating numerical results in welding simulations. In this paper, an analytical model is developed for calculating the cooling stage of the welding process after the moving energy source is turned off. Solutions for various combinations of heat sources and heated bodies are found. It is shown that after turning off the Energy source, additional melting of the base material in the longitudinal direction may occur due to the overheated liquid metal. The developed technique is applied to complete-penetration keyhole laser beam welding of 2 mm thick austenitic stainless-steel plate 316L at a Welding speed of 20 mm/s and a laser power of 2.3 kW. The results show a theoretical increase in the weld end crater length of up to 19% compared to the length of the steady-state weld pool. It is found that at the moment of switch off, the weld end crater center, where solidification of the liquid metal ends, is shifted from the heat source axis toward the weld pool tail. The solidification rate and the direction of crystallization of the molten material during the welding process and those in the weld end crater differ significantly. A good agreement between the computational results and the welding experiments is achieved. KW - Weld end crater KW - Steady-state weld pool KW - Mathematical modeling KW - Solidification KW - Laser beam welding PY - 2020 U6 - https://doi.org/10.2351/7.0000068 VL - 32 IS - 2 SP - 022024-1 EP - 022024-6 PB - AIP Publishing AN - OPUS4-50767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Karkhin, V. A1 - Bakir, Nasim A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Lamé curves approximation for the assessment of the 3-D temperature distribution in keyhole mode welding processes N2 - A novel approach for the reconstruction of an equivalent volumetric heat source from a known weld pool shape is proposed. It is based on previously obtained weld pool geometries from a steady-state thermo-fluid dynamics simulation. Hereby the weld pool dimensions are obtained under consideration of the most crucial physical phenomena, such as phase transformations, thermo-capillary convection, natural convection and temperature-dependent material properties. The algorithm provides a time and calibration efficient way for the reproduction of the weld pool shape by local Lamé curves. By adjusting their parameters, the identification of the finite elements located within the weld pool is enabled. The heat input due to the equivalent heat source is assured by replacing the detected nodes’ temperature by the melting temperature. The model offers variable parameters making it flexible and adaptable for a wide range of workpiece thicknesses and materials and allows for the investigation of transient thermal effects, e.g. the cooling stage of the workpiece. The calculation times remain acceptably short especially when compared to a fully coupled process simulation. The computational results are in good agreement with performed complete-penetration laser beam welding experiments. T2 - ICALEO 2019 - 38th International congress on applications of lasers & electro-optics CY - Orlando, FL, USA DA - 07.10.2019 KW - Weld pool shape approximation KW - Keyhole mode laser beam welding KW - Numerical simulation KW - Superelliptic Lamé curves PY - 2019 UR - http://icaleo.conferencespot.org/2019-proceedings?qr=1 SN - 978-1-940168-1-42 SP - Paper # Macro 1002 AN - OPUS4-49310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Karkhin, V. A1 - Bakir, Nasim A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Lamé curve approximation for the assessment of the 3D temperature distribution in keyhole mode welding processes N2 - A novel approach for the reconstruction of an equivalent volumetric heat source from a known weld pool shape is proposed. It is based on previously obtained weld pool geometries from a steady-state thermo-fluid dynamics simulation. Hereby, the weld pool dimensions are obtained under consideration of the most crucial physical phenomena, such as phase transformations, thermo-capillary convection, natural convection, and temperature-dependent material properties. The algorithm provides a time and calibration efficient way for the reproduction of the weld pool shape by local Lamé curves. By adjusting their parameters, the identification of the finite elements located within the weld pool is enabled. The heat input due to the equivalent heat source is assured by replacing the detected nodes’ temperature by the melting temperature. The model offers variable parameters making it flexible and adaptable for a wide range of workpiece thicknesses and materials and allows for the investigation of transient thermal effects, e.g., the cooling stage of the workpiece. The calculation times remain acceptably short especially when compared to a fully coupled process simulation. The computational results are in good agreement with performed complete-penetration laser beam welding experiments. KW - Lamé curves approximation KW - Equivalent heat source KW - Thermal cycles KW - Numerical modeling KW - Keyhole mode welding PY - 2020 U6 - https://doi.org/10.2351/7.0000076 VL - 32 IS - 2 SP - 022042-1 EP - 022042-8 PB - AIP Publishing AN - OPUS4-50768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -