TY - CONF A1 - Uhlmann, E. A1 - Meier, P. A1 - Hinzmann, D. A1 - Kropidlowski, K. A1 - Prasol, L. A1 - Woydt, Mathias T1 - Dry turning with niobium carbide based tools N2 - In the present work it was shown that Niobium carbide (NbC) offers a competitive profile compared to tungsten carbide (WC) as cutting material regarding ist wear resistance preferably in metal cutting processes. T2 - WORLDPM 2018 CY - Beijing, China DA - 16.09.2018 KW - Turning KW - Semi-finishing KW - Niobium carbide KW - Tungsten carbide KW - Iron-based alloys KW - Aluminum PY - 2018 SP - Part 5, 775 EP - 784 AN - OPUS4-46203 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias A1 - Huang, S. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Cannizza, E. T1 - Tailoring the functional profile of niobium carbide (NbC) as cutting tool materials and for wear protection N2 - In the present work it was shown that the properties of NbCx, like micro-hardness, hot-hardness, sliding wear resistance, elastic modulus and toughness can be tailored by the C/Nb ratio, the addition of secondary carbides and the type of binder. T2 - WORLDPM2018 CY - Beijing, China DA - 16.09.2018 KW - Niobium carbide KW - Properties KW - Wear KW - Machining PY - 2018 SP - Part 5, 785 EP - 795 AN - OPUS4-46204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wäsche, Rolf A1 - Ehrke, R. A1 - Kramer, R. A1 - Jayachandran, A. R. A1 - Brandt, G. T1 - Influence of temperature on tribological behaviour of DLC coatings under lubricated conditions up to 250°C N2 - In the present work it was shown that there is an influence of temperature and counter body material on the tribological properties of a-C:H coatings deposited on Cronidur 30 steel in a lubricated ball on disk contact situation. T2 - ASIATRIB 2018 CY - Kuching, Sarawak, Malaysia DA - 17.09.2018 KW - DLC KW - Temperature KW - Lubricated sliding PY - 2018 SP - 253 EP - 254 AN - OPUS4-46213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brunner-Schwer, C. A1 - Kersting, R. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Laser-plasma-cladding as a hybrid metal deposition-technology applying a SLM-produced copper plasma nozzle N2 - Laser-Metal-Deposition (LMD) and Plasma-Transferred-Arc (PTA) are well known Technologies which can be used for cladding purposes. The prime objective in combining LMD and PTA as a Hybrid Metal Deposition-Technology (HMD) is to achieve high Deposition rates at low thermal Impact. Possible applications are coatings for wear protection or repair welding for components made of steel. The two energy sources (laser and Plasma arc) build a Joint process Zone and are configurated to constitute a stable process at laser powers between 0.4-1 kW (defocused) and Plasma currents between 75-200 A. Stainless steel 316L serves as filler material. For this HMD process, a Plasma Cu-nozzle is designed and produced by powder bed based Selective Laser Melting. The potential of the HMD Technology is investigated and discussed considering existing process. This paper demonstrates how the interaction of the two energy sources effects the following application-relevant properties: Deposition rate, powder Efficiency and energy Input. T2 - LANE 2018 CY - Fürth, Germany DA - 3.09.2018 KW - Laser-metal-deposition KW - Plasma-transferred-arc KW - SLM printed plasma torch KW - Laser-plasma hybrid PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-470999 UR - 10.1016/j.procir.2018.08.020 DO - https://doi.org/10.1016/j.procir.2018.08.020 SN - 2212-8271 VL - CIRP 74 SP - 738 EP - 742 PB - Sciencedirect CY - Berlin AN - OPUS4-47099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakir, Nasim A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - About the origin of solidification cracking in laser welded thick-walled structures N2 - In this study, a three-dimensional CFD-simulation model was developed to simulate the fluid flow in the weld pool. The CFD-model showed a bulging region in the middle of the depth, which is separated from the top surface and bottom surface by two narrowing regions. It can be concluded that the interaction of the movement of the laser source with the Marangoni vortex leads to a teardrop shape at the upper and bottom surface of the workpiece. Additionally, it shows that the bulging in the weld is a result of the backflows on the upper and lower sides due to the thermo-capillary-driven flows. The weld pool shape was used as a heat source in a two-dimensional thermomechanical model, which allows a highly accurate transformation of the weld pool dimensions obtained from the CFD model. This developed technique allows the consideration of physical aspects, which cannot be considered when using traditional heat sources. The mechanical model has shown that the chronological order of the solidification of the weld has a significant influence on the nature and distribution of the stresses in the weld. High tensile stress has been observed in the bulging region, i.e. in the susceptible region for solidification cracking, when compared to the other narrowing regions, which show compressive stress. T2 - 4th International Conference on Welding and Failure Analysis of Engineering Materials CY - Aswan, Egypt DA - 19.11.2018 KW - Laser beam welding KW - Solidification cracking KW - Numerical simulation KW - Weld pool geometry KW - CFD-model KW - FE-model PY - 2018 SP - W-6, 1 EP - 10 CY - Aswan, Egypt AN - OPUS4-46735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Siayah, A. A1 - El-Batahgy, A. A1 - Khafagi, S. A1 - Gumenyuk, Andrey A1 - Gook, S. A1 - Rethmeier, Michael T1 - A study on shielded metal arc welding of 9%Ni steel using non-conventional ferritic welding electrode for LNG facilities N2 - The present research work aims at clarification of the effect of the welding electrode type on the mechanical properties of SMA welded joints of 9%Ni steel plates. Properties of produced SMA welded joints were evaluated using different non-destructive and destructive investigation methods. In comparison with the conventionally used Ni-based welding electrode ENiCrMo-3 (AWS A5.11), an experimentally produced non-conventional ferritic welding electrode with 11%Ni (ENi11-Company specification) has resulted in a better combination of the mechanical properties of SMA welded joints of this steel type for critical cryogenic applications. Besides, a positive economic impact for the experimentally produced non-conventional ferritic welding electrode, due to its lower cost, could be another attractive aspect. T2 - 4th International Conference on Welding and Failure Analysis of Engineering Materials CY - Aswan, Egypt DA - 19.11.2018 KW - 9%Ni steel, KW - SMAW KW - Conventional Ni-based austenitic welding electrode KW - Mechanical properties KW - Ferritic welding electrode PY - 2018 SP - W-21, 1 EP - 3 AN - OPUS4-46736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - El-Batahgy, A. A1 - Gook, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Effect of laser-beam and hybrid-laser-arc welding parameters and filler metal on microstructure and mechanical properties of thick heat-treated steel X8ni9+Qt640 for cryogenic service N2 - The present research work encloses results of experimental investigations of the interaction between welding process parameters for laser-beam and hybrid-laser-arc as well as type of the filler metal and the achievable mechanical properties of the weld joints on steel grade X8Ni9+QT640 for cryogenic service containing 9% nickel. The results obtained contribute to the development and conversion in the industrial practice a new laser beam-based welding technology for the automated manufacturing of facilities for the liquefaction, storage and the transport of natural gases (LNG facilities). The results show, that the martensitic microstructure of the laser weld metal including low amount of retained austenite not exceeding 3.5% leads to the relatively low V-notch impact energy. The remarkable heterogeneity in the chemical composition of the weld metal through the weld thickness could be recognized in the case of hybrid-laser-arc welding with ERNiCrMo-3 austenitic filler metal, what also led to insufficient impact toughness of the weld metall. The most promising results could be achieved by using 11%Ni filler wire, which is similar to the base metal and provides a homogeneous microstructure with uniform distribution of Ni through the weld seam. It is remarkable, that a correlation between Charpy impact toughness and wire feeding speed and respectively process heat input exists. The highest toughness values were 134±58 J at -196C. The both laser as well as laser-hybrid welds passed the tensile test. The failure stress of 720±3 MPa with a fracture location in the base material was achieved for all samples tested. T2 - 4th International Conference on Welding and Failure Analysis of Engineering Materials CY - Aswan, Egypt DA - 19.11.2018 KW - Hybrid-laser-arc welding KW - Laser-beam welding, KW - Cryogenic steel KW - Microstructure KW - Tensile strength PY - 2018 SP - W-29, 1 EP - 10 AN - OPUS4-46738 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Nolze, Gert A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - Use of time-of-flight secondary ion mass spectrometry for the investigation of hydrogen-induced effects in austenitic steel AISI 304L N2 - During the energy transformation from fossil fuels to renewable energy sources, the use of hydrogen as fuel and energy storage can play a key role. This presents new challenges to industry and the scientific community alike. The storage and transport of hydrogen, which is nowadays mainly realized by austenitic stainless steels, remains problematic, which is due to the degradation of mechanical properties and the possibility of phase transformation by hydrogen diffusion and accumulation. The development of materials and technologies requires a fundamental understanding of these degradation processes. Therefore, studying the behavior of hydrogen in austenitic steel contributes to an understanding of the damage processes, which is crucial for both life assessment and safe use of components in industry and transportation. As one of the few tools that is capable of depicting the distribution of hydrogen in steels, time-of-flight secondary ion mass spectrometry was conducted after electrochemical charging. To obtain further information about the structural composition and cracking behavior, electron-backscattered diffraction and scanning electron microscopy were performed. Gathered data of chemical composition and topography were treated employing data fusion, thus creating a comprehensive portrait of hydrogen-induced effects in the austenite grade AISI 304L. Specimens were electrochemically charged with deuterium instead of hydrogen. This arises from the difficulties to distinguish between artificially charged hydrogen and traces existing in the material or the rest gas in the analysis chamber. Similar diffusion and permeation behavior, as well as solubility, allow nonetheless to draw conclusions from the experiments. T2 - 21st International Conference on Secondary Ion Mass Spectrometry CY - Kraków, Poland DA - 10.09.2017 KW - AISI 304L KW - Hydrogen KW - ToF-SIMS KW - Austenitic stainless steel PY - 2018 DO - https://doi.org/10.1116/1.5013931 SN - 1071-1023 VL - 36 IS - 3 SP - Article 03F103, 1 EP - 6 PB - American Vacuum Society (AVS) AN - OPUS4-44840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -