TY - JOUR A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Börner, Andreas A1 - Gustus, R. A1 - Kannengießer, Thomas A1 - Wesling, V. A1 - Maus-Friedrichs, W. T1 - Surface finishing of hard-to-machine cladding alloys for highly stressed components N2 - The supply and processing of materials for highly stressed components are usually cost-intensive. Efforts to achieve cost and resource efficiency lead to more complex structures and contours. Additive manufacturing steps for component repair and production offer significant economic advantages. Machining needs to be coordinated with additive manufacturing steps in a complementary way to produce functional surfaces suitable for the demands. Regarding inhomogeneity and anisotropy of the microstructure and properties as well as production-related stresses, a great deal of knowledge is still required for efficient use by small- and medium-size enterprises, especially for the interactions of subsequent machining of these difficult-to-machine materials. Therefore, investigations on these influences and interactions were carried out using a highly innovative cost-intensive NiCrMo alloy (IN725). These alloys are applied for claddings as well as for additive component manufacturing and repair welding using gas metal arc welding processes. For the welded specimens, the adequate solidification morphology, microstructure and property profile were investigated. The machinability in terms of finishing milling of the welded surfaces and comparative analyses for ultrasonic-assisted milling processes was examined focussing on surface integrity. It was shown that appropriate cutting parameters and superimposed oscillating of the milling tool in the direction of the tool rotation significantly reduce the mechanical loads for tool and workpiece surface. This contributes to ensure a high surface integrity, especially when cutting has to be carried out without cooling lubricants. KW - WAAM KW - IN725 KW - Machining KW - Ultrasonic-assisted milling KW - Residual stresses KW - Cutting forces KW - Surface integrity KW - Microstructure PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524872 DO - https://doi.org/10.1007/s00170-021-06815-y VL - 114 IS - 5-6 SP - 1427 EP - 1442 PB - Springer AN - OPUS4-52487 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steppan, Enrico A1 - Mantzke, Philipp A1 - Steffens, Benjamin A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Thermal desorption analysis for hydrogen trapping in microalloyed high-strength steels N2 - Hydrogen can have an extreme degradation effects in steels, particularly concerning the mechanical properties. These effects can lead to hydrogen-assisted cracking in microalloyed high-strength steels during fabrication and/or operation in industrial applications. In order to study these effects, electrochemically charged tensile specimens were tested to elucidate the degradation of their properties. The carrier gas hot extraction (CGHE) method, which functionally combines a mass spectrometer with a thermal desorption analysis (TDA) process, was used for the detection of ultra-low diffusible hydrogen concentrations in the material specimens. The mass spectrometer provided rapid and automatic determination of hydrogen concentration, whereas the TDA presented the activation energy within the respective test specimen at the specific temperature. Additionally, specimen temperature was carefully monitored to reduce the evaluation error for local effusion peaks. A quenching and deformation dilatometer was used for the analysis of typical heat-affected zones during the welding process for a high reproducibility of the homogenous microstructures that were studied. The present work shows the interaction between hydrogen and lattice defects in different microalloyed materials and heat-affected zones of weldable fine-grained steels. These steels were prepared in a quenched and tempered condition and in a thermo-mechanically rolled condition. These preparations were made according to German standard DIN EN 10025-6 and to DIN EN 10149-2, respectively. The trapping characteristics of two steel grades, S690QL and S700MC, were studied with respect to the activation energy dependent on carbon content and microalloying elements such as Ti, Nb, Mo, Cr, and V. The two steel grades exhibited several types of traps: carbide formations, dislocations, and/or grain boundaries were common, which can influence activation energy and hydrogen solubility. The type and dimension of inclusions or particles also affected the hydrogen trapping behavior. A decrease of carbon and specific alloying elements in thermo-mechanically hot rolled steels led to a change in the activation energy binding the trapped hydrogen. This thermo-mechanically hot rolled steel revealed an increased interaction between hydrogen and precipitations. The higher carbon content in the quenched and tempered steel led to a higher interaction between hydrogen and iron carbide, specifically in the martensitic phase. Furthermore, the trapping behavior in heat-affected zones showed a significant increase in activation energy, especially in the coarse-grained microstructure. These previously mentioned various effects were studied to better understand the degradation of mechanical properties in these two steels. KW - Microalloyed steels KW - Hydrogen embrittlement KW - Heating KW - Chemical analysis KW - Microstructure KW - Heat-affected zone PY - 2017 DO - https://doi.org/10.1007/s40194-017-0451-z SN - 0043-2288 SN - 1878-6669 VL - 61 IS - 4 SP - 637 EP - 648 PB - Springer CY - Berlin Heidelberg AN - OPUS4-40190 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - NbC grain growth control and mechanical properties of Ni bonded NbC cermets prepared by vacuum liquid phase sintering N2 - The current study reports on the effect of the sintering temperature and secondary carbide (VC, Mo2C and TiC) and Mo additions on the NbC grain growth, microstructure evolution as well as concomitant Vickers hardness (HV30) and fracture toughness of Ni-bonded NbC cermets. KW - Cermet KW - Niobium carbide KW - Sintering KW - Microstructure KW - Mechanical properties PY - 2018 DO - https://doi.org/10.1016/j.ijrmhm.2017.12.013 SN - 0263-4368 VL - 72 SP - 63 EP - 70 PB - Elsevier Science CY - Amsterdam AN - OPUS4-43582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Agudo Jácome, Leonardo A1 - Göbenli, G. A1 - Eggeler, G. ED - Göken, M. T1 - Transmission electron microscopy study of the microstructural evolution during high-temperature and low-stress (011) [01-1] shear creep deformation of the superalloy single crystal LEK 94 N2 - The present work describes the shear creep behavior of the superalloy LEK 94 at temperatures between 980 and 1050 °C and shear stresses between 50 and 140 MPa for loading on the macroscopic crystallographic shear system (MCSS) (011)[01-1]. The strain rate versus strain curves show short primary and extended secondary creep regimes. We find an apparent activation energy for creep of Qapp = 466 kJ/mol and a Norton-law stress exponent of n = 6. With scanning transmission electron microscopy, we characterize three material states that differ in temperature, applied stress, and accumulated strain/time. Rafting develops perpendicular to the maximum principal stress direction, gamma channels fill with dislocations, superdislocations cut gamma' particles, and dislocation networks form at gamma/gamma' interfaces. Our findings are in agreement with previous results for high-temperature and low-stress [001] and [110] tensile creep testing, and for shear creep testing of the superalloys CMSX-4 and CMSX-6 on the MCSSs (111)[01-1] and (001)[100]. The parameters that characterize the evolving gamma/gamma' microstructure and the evolving dislocation substructures depend on creep temperature, stress, strain, and time. KW - Dislocations KW - Microstructure KW - Scanning transmission electron microscopy (STEM) KW - Creep KW - Shear test PY - 2017 DO - https://doi.org/10.1557/jmr.2017.336 SN - 0884-2914 SN - 2044-5326 VL - 32 IS - 24 SP - 4491 EP - 4502 PB - Cambridge University Press CY - Cambrigde AN - OPUS4-43756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruno, Giovanni A1 - Kachanov, Mark T1 - Microstructure-property connections for porous ceramics: The possibilities offered by micromechanics N2 - Microstructure of porous ceramics is highly “irregular”: it comprises pores and microcracks of diverse shapes and orientations. This makes their quantitative modeling challenging, and one often resorts to empirical relations containing Fitting Parameters and having somewhat uncertain range of applicability. We review the substantial progress made in modeling of “irregular” microstructures that does not seem to have been sufficiently utilized in the context of ceramics. We discuss the possibilities offered by micromechanics in developing microstructure–property relations for porous microcracked ceramics. After an overview of relevant micromechanics topics, we focus on several issues of specific interest for ceramics: nonlinear stress–strain behavior, effective elastic properties, and thermally induced microcracking. We discuss extraction of microscale Parameters (such as strength of the intergranular cohesion, density of cracks and pores, etc.) from macroscopic data and identify the extent of uncertainty in this process. We also argue that there is no quantitative correlation between fracturing process and the loss of elastic stiffness. KW - Ceramics KW - Microcracking KW - Pores KW - Microstructure KW - Micromechanics KW - Intergranular strength KW - Nonlinearity KW - Stress– strain curves PY - 2016 DO - https://doi.org/10.1111/jace.14624 SN - 0002-7820 SN - 1551-2916 VL - 99 IS - 12 SP - 3829 EP - 3852 AN - OPUS4-39355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, F. A1 - Bente, Klaas A1 - Codutti, A. A1 - Faivre, D. T1 - Using Shape Diversity on the Way to Structure-Function Designs for Magnetic Micropropellers N2 - Synthetic microswimmers mimicking biological movements at the microscale have been developed in recent years. Actuating helical magnetic materials with a homogeneous rotating magnetic field is one of the most widespread techniques for propulsion at the microscale, partly because the actuation strategy revolves around a simple linear relationship between the actuating field frequency and the propeller velocity. However, full control of the swimmers’ motion has remained a challenge. Increasing the controllability of micropropellers is crucial to achieve complex actuation schemes that, in turn, are directly relevant for numerous applications. However, the simplicity of the linear relationship limits the possibilities and flexibilities of swarm control. Using a pool of randomly shaped magnetic microswimmers, we show that the complexity of shape can advantageously be translated into enhanced control. In particular, directional reversal of sorted micropropellers is controlled by the frequency of the actuating field. This directionality change is linked to the balance between magnetic and hydrodynamic forces. We further show an example of how this behavior can experimentally lead to simple and effective sorting of individual swimmers from a group. The ability of these propellers to reverse swimming direction solely by frequency increases the control possibilities and is an example for propeller designs, where the complexity needed for many applications is embedded directly in the propeller geometry rather than external factors such as actuation sequences. KW - Active Matter KW - Low Reynolds number swimmers KW - Actuating materials KW - Microstructure KW - Swarming PY - 2019 DO - https://doi.org/10.1103/PhysRevApplied.11.034039 VL - 11 IS - 3 SP - 034039 PB - American Physical Society AN - OPUS4-47731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rodrigues, A. C. P. A1 - Feller, A. A1 - Agudo Jácome, Leonardo A1 - Azevedo, C. R. F. T1 - Use of synthetic Fe3O4-rich tribofilms to investigate the effect of microconstituents, temperature and atmosphere on the friction coefficient during pin-on-disc tribotest N2 - This work investigates the effect of the tribotesting parameters (temperature, atmosphere, and third body chemical composition) on the coefficient of friction (CoF) during pin-on-disc dry (PoD) sliding tribotests using artificial third bodies. The third body comprised nanometric Fe3O4-based binary to quaternary chemical compositions containing copper, graphite, and zirconia. These mixtures were manually or ball-milled prepared, and pin-on-disc tribotests were conducted at 23 °C and 400 °C under air or nitrogen atmospheres. Combining PoD and artificial third body to create synthetic tribofilms might be useful for testing new formulations of Cu-free friction materials. Microstructural characterisation of the tribofilms was used to study the stability of the Fe3O4, copper, and graphite nanoparticles under different testing conditions to understand their effects on the CoF. For the Fe3O4-C-ZrO2-X systems, the ball milling mixing promoted the formation of turbostratic graphite in the tribofilm, impairing the lubricating effect of the graphite under air atmosphere at 23 °C. The formation of monoclinic CuO in the tribofilms during tribotests at 400 °C under air and N2 atmospheres promoted a lubricating effect. KW - Tribology KW - Microstructure KW - Oxide KW - Transmission electron microscopy PY - 2022 DO - https://doi.org/10.1088/2051-672X/ac9d51 SN - 2051-672X VL - 10 IS - 4 SP - 044009-1 EP - 044009-18 PB - IOP Pobilishing AN - OPUS4-56467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kingsbery, Phillip A1 - Stephan-Scherb, Christiane T1 - Effect of KCl deposits in high‐temperature corrosion on chromium‐rich steels in SO2‐containing atmosphere N2 - High‐temperature corrosion was studied under multiple chemical loads on ferritic‐austenitic model alloys (Fe–13Cr, Fe–18Cr–12Ni, and Fe‐25Cr–20Ni) with KCl deposit under 0.5% SO2/99.5% Ar gas atmosphere at 560°C. Postexposure characterization was done by X‐ray diffraction and scanning electron microscopy. In a pure SO2/Ar environment a protective Cr2O3 scale was formed by all samples. The introduction of KCl deposits causes the scale to be nonprotective and multilayered, consisting of CrS, FeS, Cr2O3, Fe3O4, and Fe2O3. The impact of the microstructure and alloying elements is discussed. KW - High‐temperature corrosion KW - KCl KW - Microstructure KW - SO2 KW - Steel alloy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543056 DO - https://doi.org/10.1002/maco.202112901 VL - 73 IS - 5 SP - 758 EP - 770 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54305 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diewald, F. A1 - Epple, Niklas A1 - Kraenkel, T. A1 - Gehlen, C. A1 - Niederleithinger, Ernst T1 - Impact of External Mechanical Loads on Coda Waves in Concrete N2 - During their life span, concrete structures interact with many kinds of external mechanical loads. Most of these loads are considered in advance and result in reversible deformations. Nevertheless, some of the loads cause irreversible, sometimes unnoticed changes below the macroscopic scale depending on the type and dimension of the impact. As the functionality of concrete structures is often relevant to safety and society, their condition must be known and, therefore, assessed on a regular basis. Out of the spectrum of non-destructive monitoring methods, Coda Wave Interferometry using embedded ultrasonic sensors is one particularly sensitive technique to evaluate changes to heterogeneous media. However, there are various influences on Coda waves in concrete, and the interpretation of their superimposed effect is ambiguous. In this study, we quantify the relations of uniaxial compression and uniaxial tension on Coda waves propagating in normal concrete. We found that both the signal correlation of ultrasonic signals as well as their velocity variation directly reflect the stress change in concrete structures in a laboratory environment. For the linear elastic range up to 30% of the strength, we calculated a velocity variation of −0.97‰/MPa for compression and 0.33%/MPa for tension using linear regression. In addition, these parameters revealed even weak irreversible changes after removal of the load. Furthermore, we show the time-dependent effects of shrinkage and creep on Coda waves by providing the development of the signal parameters over time during half a year together with creep recovery. Our observations showed that time-dependent material changes must be taken into account for any comparison of ultrasonic signals that are far apart in time. The study’s results demonstrate how Coda Wave Interferometry is capable of monitoring stress changes and detecting even small-size microstructural changes. By indicating the stated relations and their separation from further impacts, e.g., temperature and moisture, we anticipate our study to contribute to the qualification of Coda Wave Interferometry for its application as an early-warning system for concrete structures. KW - Ultrasound KW - Coda Wave Interferometry (CWI) KW - Mechanical Load KW - Microstructure KW - Concrete PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556878 DO - https://doi.org/10.3390/ma15165482 SN - 1996-1944 VL - 15 IS - 16 SP - 1 EP - 15 PB - MDPI AN - OPUS4-55687 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ávila Calderón, Luis Alexander A1 - Graf, B. A1 - Rehmer, Birgit A1 - Petrat, T. A1 - Skrotzki, Birgit A1 - Rethmeier, Michael T1 - Characterization of Ti-6Al-4V fabricated by multilayer laser powder-based directed energy deposition N2 - Laser powder-based directed energy deposition (DED-L) is increasingly being used in additive manufacturing (AM). As AM technology, DED-L must consider specific challenges. It must achieve uniform volume growth over hundreds of layers and avoid heat buildup of the deposited material. Herein, Ti–6Al–4V is fabricated using an approach that addresses these challenges and is relevant in terms of transferability to DED–L applications in AM. The assessment of the obtained properties and the discussion of their relationship to the process conditions and resulting microstructure are presented. The quality of the manufacturing process is proven in terms of the reproducibility of properties between individual blanks and with respect to the building height. The characterization demonstrates that excellent mechanical properties are achieved at room temperature and at 400 °C. KW - AGIL KW - Laser powder-based directed energy deposition KW - Tensile properties KW - Ti-6Al-4V KW - Microstructure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542262 DO - https://doi.org/10.1002/adem.202101333 SN - 1438-1656 SN - 1527-2648 SP - 1 EP - 15 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -