TY - CONF A1 - Bäßler, Ralph T1 - Determination of Corrosivity: Approach according to UN Regulations N2 - “Corrosive to Metals” (H290) describes the general potential danger of a substance to metallic materials. Uniform and localized attack is considered. It has nothing to do with containment material. Corrosion resistance of materials is determined similarly, but with much lower threshold values. Manual shall provide a simple test to easily determine the aggressivity potential to cause corrosion on metallic materials. Even a simple test requires experienced personnel. There seems to be a need of awareness and understanding training for both officials and applicants. T2 - ECHA GHS Training CY - Online meeting DA - 16.03.2021 KW - Corrosivity KW - Dangerous good KW - Corrosion PY - 2021 AN - OPUS4-52295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stoljarova, A. A1 - Regenspurg, S. A1 - Bäßler, Ralph A1 - Mathiesen, T. A1 - Braüner Nielsen, J. T1 - Effect of lead and copper containing brine on steel materials for geothermal applications – A corrosion study N2 - Geothermal brines often contain high amounts of lead and copper ions that can precipitate as native Cu and Pb as consequence of galvanic corrosion when brines react with carbon steel materials. This contribution evaluates which materials could overcome the problem of galvanic corrosion at geothermal environment. The behavior of these materials in water containing high chloride concentration (> 100 g/L NaCl) as well as various amounts of dissolved bCl2 and/or CuCl2 was characterized by electrochemical and exposure measurements. Both methods reveal carbon steel suffers corrosion susceptibility, accompanied by Cu◦ and/or Pb◦ precipitation on the surface. Electrochemical measurements on stainless steels result in significant difference in corrosion and repassivation potentials (Ecorr = -189 mV, Erep = 70 mV), indicating a good corrosion resistance. KW - Copper KW - Lead KW - Corrosion KW - Steel KW - Geothermal energy PY - 2021 DO - https://doi.org/10.1016/j.geothermics.2020.102024 SN - 0375-6505 VL - 91 SP - NIL_75 EP - NIL_85 PB - Elsevier CY - Amsterdam AN - OPUS4-51976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Bettge, Dirk A1 - Buggisch, E. A1 - Schiller, Bernadette Nicole A1 - Beck, M. T1 - Corrosion Study on Wellbore Materials for the CO2 Injection Process N2 - For reliability and safety issues of injection wells, corrosion resistance of materials used needs to be determined. Herein, representative low-cost materials, including carbon steel X70/1.8977 and low alloyed steel 1.7225, were embedded in mortar to mimic the realistic casing-mortar interface. Two types of cement were investigated: (1) Dyckerhoff Variodur commercial Portland cement, representing a highly acidic resistant cement and (2) Wollastonite, which can react with CO2 and become stable under a CO2 stream due to the carbonation process. Exposure tests were performed under 10 MPa and at 333 K in artificial aquifer fluid for up to 20 weeks, revealing crevice corrosion and uniform corrosion instead of expected pitting corrosion. To clarify the role of cement, simulated pore water was made by dispersing cement powder in aquifer fluid and used as a solution to expose steels. Surface analysis, accompanied by element mapping on exposed specimens and their crosssections, was carried out to trace the chloride intrusion and corrosion process that followed. KW - Carbon capture storage KW - CCS KW - Carbon dioxide KW - Corrosion KW - Carbon steel KW - Aquifer fluid KW - Cement KW - Casing KW - Pitting PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-519774 DO - https://doi.org/10.3390/pr9010115 SN - 2227-9717 VL - 9 IS - 1 SP - 115 PB - MDPI CY - Basel AN - OPUS4-51977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -