TY - CONF A1 - Laquai, René A1 - Schaupp, Thomas A1 - Müller, Bernd R. A1 - Griesche, Axel A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - 3D Crack analysis in hydrogen charged lean duplex stainless steel with synchrotron refraction CT N2 - Hydrogen in metals can cause a degradation of the mechanical properties, the so-called hydrogen embrittlement. In combination with internal stresses, hydrogen assisted cracking (HAC) can occur. This phenomenon is not completely understood yet. To better characterise the cracking behaviour, it is important to gain information about the evolution of the 3D crack network. For this purpose samples of lean duplex stainless steel were loaded with hydrogen by means of electrochemical charging and investigated by means of synchrotron refraction CT and SEM fractography after uniaxial tensile loading. Synchrotron refraction CT is an analyser-based imaging (ABI) technique. It uses a Si (111) single crystal as analyser, which is placed into the beam path between sample and detector. According to Bragg’s law only incident x-rays within a narrow range around the Bragg-angle are diffracted from the analyser into the detector. Hence, the analyser acts as an angular filter for the transmitted beam. This filtering allows to turn the refraction and scattering of x-rays into image contrast. Refraction occurs at all interfaces, where the density of the material changes and is more sensitive to density changes than the attenuation. Therefore, it is possible to detect smaller cracks than with classical x-ray imaging techniques, like CT, with comparable spacial resolution. It also visualises the 3D structure of the cracks and gains quantitative information about their morphology and distribution. Since cracks introduced by HAC are usually very small and have a small opening displacement, synchrotron refraction CT is expected to be well suited for imaging this cracking mechanism and can be a valuable tool to characterise the formation and the evolution of a 3D crack network. T2 - WCNDT 2016 CY - München, Germany DA - 13.06.2016 KW - X-ray refraction KW - Computed tomography KW - Hydrogen assisted cracking KW - Duplex stainless steel PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-366481 SN - 978-3-940283-78-8 VL - BB 158 SP - Tu.4.B.3, 1 EP - 9 AN - OPUS4-36648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Absorption and Refraction Techniques: Characterization and Non-Destructive Testing of Additively Manufactured Materials N2 - The combination of tomographic, microstructural data with other experimental techniques and with modeling is paramount, if we want to extract the maximum amount of information on material and component properties. In particular, quantitative image analysis, statistical approaches, direct discretization of tomographic reconstructions represent concrete possibilities to extend the power of the tomographic 3D representation to insights into the material and component performance. This logic thread equally holds for industrial and academic research, and valorizes expensive experiments such as those carried out at synchrotron sources, which cannot be daily repeated. I will show a few examples of possible use of X-ray tomographic data for quantitative assessment of damage evolution and microstructural properties, as well as for non-destructive testing. Examples of micro-structured inhomogeneous materials will be given, such as Composites, Ceramics, Concrete, and Additively manufactured parts. I will also show how X-ray refraction computed tomography (CT) can be highly complementary to classic absorption CT, being sensitive to internal interfaces. Additionally, I will present a new technique in our portfolio, Neutron Diffraction, which is extremely well suited to the study of internal stresses, both residual and under external load. T2 - Kolloquium an dem ‘Laboratoire National de Metrologie et d’Essais CY - LNE’ Paris, France DA - 09.06.2016 KW - Computertomographie KW - Metrologie KW - 3D Mikrostruktur KW - Zerstörungsfreie Prüfung KW - Röntgenrefraktion KW - Additive Fertigung KW - TF Material KW - Analytical Science PY - 2016 AN - OPUS4-38826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Absorbtion and Refraction Techniques: Characterization and Non-Destructive Testing of Additively Manufactured Materials N2 - The combination of tomographic, microstructural data with other experimental techniques and with modeling is paramount, if we want to extract the maximum amount of information on material and component properties. In particular, quantitative image analysis, statistical approaches, direct discretization of tomographic reconstructions represent concrete possibilities to extend the power of the tomographic 3D representation to insights into the material and component performance. This logic thread holds equally for industrial and academic research, and valorizes expensive experiments such as those carried out at synchrotron sources, which cannot be daily repeated. I will show a few examples of possible use of X-ray tomographic data for quantitative assessment of damage evolution and microstructural properties, as well as for non-destructive testing. Examples of micro-structured inhomogeneous materials will be given, such as Composites, Ceramics, Concrete, and Additively manufactured parts. I will also show how X-ray refraction computed tomography (CT) can be highly complementary to classic absorption CT, being sensitive to internal interfaces. T2 - c-Kolloquium an dem FRM II Reaktor CY - Munich, Germany DA - 29.07.2016 KW - Computertomographie KW - Metrologie KW - 3D Mikrostruktur KW - Zerstörungsfreie Prüfung KW - Röntgenrefraktion KW - TF Material KW - Analytical Science PY - 2015 AN - OPUS4-38827 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Artzt, Katia A1 - Haubrich, Jan A1 - Bruno, Giovanni A1 - Requena, Guillermo T1 - An assessment of subsurface residual stress in Selective Laser Melted Ti-6Al-4V parts N2 - In the present study, Ti-6Al-4V bridge-like specimens were manufactured additively by selective laser melting (SLM) under different laser scanning speed conditions in order to compare the effect of process energy density on the residual stress state. Subsurface residual stress analysis was conducted by means of synchrotron diffraction in energy dispersive mode for three conditions: as-built on base plate, released from base plate, and after heat treatment on the base plate. The quantitative residual stress characterization shows a correlation with the qualitative bridge curvature method. Computed tomography (CT) was carried out to ensure that no stress relief took place owing to the presence of porosity. CT allows obtaining spatial and size pores distribution which helps in optimization of the SLM process. High tensile residual stresses were found at the lateral surface for samples in the as-built conditions. We observed that higher laser energy density during fabrication leads to lower residual stresses. Samples in released condition showed redistribution of the stresses due to distortion. A method for the calculation of the stress associated to distortion of the parts after cutting from base plate is proposed. The distortion measurements were used as input for FEM simulations. T2 - Symposium Zerstörungsfreie Materialcharakterisierung. Charakterisierung additiv gefertigter Komponenten CY - Berlin, Germany DA - 28.11.2017 KW - Additive manufacturing KW - Selective laser melting KW - Residual stress KW - Synchrotron X-ray diffraction PY - 2017 AN - OPUS4-43214 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - BAM Characterization on Capabilities in Additive Manufacturing N2 - Quantitative image analysis, statistical approaches, direct discretization of tomographic reconstructions represent concrete possibilities to extend the power of the tomographic 3D representation to insights into the material and component performance. I will show a few examples of possible use of X-ray tomographic data for quantitative assessment of damage evolution and microstructural properties, as well as for non-destructive testing, with particular focus on additively manufactured materials. I will also show how X-ray refraction computed tomography (CT) and Neutron diffraction can be highly complementary to classic absorption CT, being sensitive to internal interfaces and residual stress analysis, respectively. T2 - Treffen des Konsortium AeroMatForAM CY - Köln, Germany DA - 16.03.2017 KW - Neutronenbeugung KW - Eigenspannungen KW - Additive Fertigung KW - Computertomographie KW - Röntgenrefraktion KW - X-ray Refraction KW - Additive Manufacturing KW - Computed Tomography KW - Residual Stress analysis KW - Neutron Diffraction PY - 2017 AN - OPUS4-39657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Léonard, Fabien A1 - Hasenfelder, Uta A1 - Krebs, Holger A1 - Bruno, Giovanni T1 - Assessment of shock tube systems by synchrotron X-ray computed tomography N2 - Shock tube systems are non-electric explosive fuses employed in blasting and demolition applications to trigger the detonation of explosive charges. Their working principle is based on the explosive reaction of a fine explosive powder on the tubing's inner surface, generating a shock wave traveling at a velocity of 2,100 m/s along the length of the tube, without destroying it. One of the key aspects of the manufacturing process of these shock tubes is the size and morphology of the explosive powder grains and their distribution on the inner wall of the tube, in order to propagate the shockwave efficiently and reliably. For the first time, synchrotron X-ray computed tomography has been used to characterize non-destructively the explosive powder grains, typically Al/HMX between 10 and 20 μm in size, in terms of morphology and 3D distribution but also to characterise the presence and location of defects within the shock tube walls. KW - Explosives KW - Nonel KW - Shock wave KW - Blasting KW - Energetic systems PY - 2017 UR - http://www.ndt.net/events/iCT2017/app/content/Paper/61_Leonard.pdf SP - 1 EP - 7 CY - Leuven, Belgium AN - OPUS4-39345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Mueller, Bernd R. A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Hentschel, Manfred T1 - Applications of X-ray refraction to non-destructive characterization of ceramics and composites N2 - X-ray refraction is analogous to visible light deflection by matter, with two main differences: 1- convex objects cause divergence (i.e., the refraction index n is smaller than 1), and 2- deflection angles are very small, from a few seconds to a few minutes of arc (i.e., n is near to 1). Trivially but importantly, deflection of X-rays is also sensitive to the orientation of the object boundaries. These features make X-ray refraction techniques extremely suitable to a) detect defects such as pores and microcracks, and quantify their densities in bulk (light) materials, and b) evaluate porosity and particle properties such as orientation, size, and spatial distribution (by mapping). While X-ray refraction techniques cannot in general image single defects, their detectability is simply limited by the wavelength of the radiation. We will thereby show the application of X-ray refraction 2D mapping (topography) and tomography to different sorts of problems in ceramic science and technology: 1) Sintering of SiC green bodies; 2) Porosity analysis in diesel particulate filter silicates; 3) fiber de-bonding in metal and polymer matrix composites; 4) micro-cracking of glass-precursor -eucryptite. We will see that the use of X-ray refraction analysis yields quantitative results, also directly usable in available models. T2 - FiMPART 2017 CY - Bordeaux, France DA - 09.07.2017 KW - Refraction radiography KW - Ceramics KW - Refraction tomography KW - Composites PY - 2017 AN - OPUS4-41040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Absorption and refraction tomography: Characterization and non-destructive testing of micro-structured materials N2 - The combination of tomographic, microstructural data with other experimental techniques and with modeling is paramount, if we want to extract the maximum amount of information on material and component properties. In particular, quantitative image analysis, statistical approaches, direct discretization of tomographic reconstructions represent concrete possibilities to extend the power of the tomographic 3D representation to insights into the material and component performance. This logic thread equally holds for industrial and academic research, and valorizes expensive experiments such as those carried out at synchrotron sources, which cannot be daily repeated. I will show a few examples of possible use of X-ray tomographic data for quantitative assessment of damage evolution and microstructural properties, as well as for non-destructive testing. Examples of micro-structured inhomogeneous materials will be given, such as Composites, Ceramics, Concrete, and Additively manufactured parts. I will also show how X-ray refraction computed tomography (CT) can be highly complementary to classic absorption CT, being sensitive to internal interfaces. Additionally, I will present a new technique in our portfolio, Neutron Diffraction, which is extremely well suited to the study of internal stresses, both residual and under external load. T2 - Kolloquium ICMCB Bordeaux CY - Bordeaux, France DA - 13.07.2017 KW - Computed tomography KW - X-ray refraction KW - Neutron diffraction KW - Additive manufacturing KW - Ceramics KW - Composites KW - BAM PY - 2017 AN - OPUS4-41041 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Kupsch, Andreas A1 - Mueller, Bernd R. A1 - Lange, Axel T1 - X-ray refraction 2D and 3D techniques N2 - X-ray refraction techniques represent a very promising, yet not so wide-spread, set of X-ray techniques based on refraction effects. They allow determining internal specific surface (surface per unit volume) in a non-destructive fashion, position and orientation sensitive, and with nanometric detectability. While they are limited by the X-ray absorption of the material under investigation, we demonstrate showcases of ceramics and composite materials, where understanding of microstructural features could be achieved in a way unrivalled even by high-resolution techniques such as electron microscopy or computed tomography. T2 - ICTMS 2017 CY - Lund, Sweden DA - 26.06.2017 KW - X-ray refraction KW - Composites KW - Damage KW - Cracks KW - Cearmics PY - 2017 AN - OPUS4-41042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Léonard, Fabien A1 - Bruno, Giovanni T1 - Evaluating porosity in cordierite diesel particulate filter materials: advanced X-ray and new statistical analysis methods N2 - Complex materials (e.g., porous ceramics) need high resolution techniques at multi-scale levels. Microstructure is intimately linked to properties and performance. One technique (or even a few techniques) is not enough. X-ray refraction and CT are very powerful tools. Non-destructive characterisation and quantitative image analysis techniques (2D and 3D) are necessary to understand the anisotropy. T2 - 40th International Conference and Expo on Advanced Ceramics and Composites ( ICACC) CY - Daytona Beach, USA DA - 24.01.2016 KW - X-ray computed tomography KW - X-ray refraction KW - Directional interface variance analysis (DIVA) KW - FFT periodogram PY - 2016 AN - OPUS4-41725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -