TY - CONF A1 - Kiefer, P. A1 - Deubener, J. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. A1 - Balzer, R. T1 - Density, microhardness and elastic moduli of hydrous soda-lime silicate glasses N2 - The effect of structural water on density, elastic constants and microhardness of water-bearing soda-lime-silica glasses of up to 21.5 mol% total water is studied. T2 - 25th International Congress on Glass (ICG2019) CY - Boston, MA, USA DA - 09.06.2019 KW - Elastic constants KW - Soda-lime-silica glass KW - Water content KW - Microhardness PY - 2019 AN - OPUS4-49537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Lausch, Thomas A1 - Schroepfer, Dirk T1 - In-situ Observation of Stress Evolution during High Strength Steel Welding N2 - Residual stresses are crucial when assessing the performance of welded components. The present work deals with the possibilities of transferring the real-life boundary conditions of welding, which influence the residual stress, into the laboratory. The possibilities of a test system with a load capacity of 2 MN specifically developed for online monitoring of stress formation and cracking are shown. Due to the structural design, global process, geometry and material-dependent stresses are induced, which can be quantified in-situ during welding and post weld heat treatment. Examples are presented how the conditions to be found during production are simulated in the laboratory. It is shown how welding residual stresses in high-strength steels are affected by the heat control. Elevated working temperatures significantly increase the tensile residual stresses in the heat affected zone (HAZ). The effect of mechanical stresses resulting from welding on stress relief cracking is demonstrated by the example of a creep resistant steel. Reheat cracks were monitored online during post weld heat treatment. T2 - Visual-JW 2019 & WSE 2019 The 5th International Symposium on Visualization in Joining & Welding Science through Advanced Measurements and Simulation & The 8th International Conference of Welding Science and Engineering CY - Osaka, Japan DA - 21.11.2019 KW - Residual stress KW - Restraint KW - Welding KW - Large-scale test KW - Reheat cracking PY - 2019 AN - OPUS4-49763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kamaraj, Abinaya A1 - Erning, Johann Wilhelm A1 - Reimann, S. A1 - Ahrens, A. T1 - Susceptibility of 304 stainless steel to crevice corrosion in electrochemically active fluids N2 - The susceptibility of AISI 304 stainless steel to crevice corrosion on the effect of contact with electrochemically active fluids was investigated using exposure and stepwise potentiostatic polarisation. Crevice materials made up of 304 SS and Polyether ether ketone (PEEK) forming two kinds of crevices including 304 SS-to-PEEK and 304 SS-to-304 SS were tested. T2 - Corrosion 2019 NACE CY - Nashville, TN, USA DA - 24.03.2019 KW - Desinfection KW - Crevice corrosion KW - ECA PY - 2019 AN - OPUS4-49284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Juds, Carmen T1 - Biocombinatorially selected peptide-polymer conjugates as polypropylene binders N2 - Peptide-polymer bioconjugates combine oligopeptides with synthetic polymer blocks and can be used for various applications in material sciences. In recent years, bioconjugates were applied as compatibilizers and coatings. Biocombinatorial approaches, such as phage display, have been shown to yield strong binding peptides, which exhibit excellent coating properties as peptide-PEO conjugates. Phage display represents a widely exploited strategy to select peptides or proteins that exhibit highly specific affinity to various substrates. Following a phage display experiment, DNA sequencing of binding phage clones is required in order to get the sequence information of the binding peptides. Traditionally, random clone picking followed by Sanger sequencing was applied. However, this method may not necessarily identify the strongest binding clones. Next-generation sequencing made sequencing of whole phage libraries possible, which highly improved the selection of strong binders. Here, we show that the biocombinatorial method of phage display combined with next generation DNA sequencing of whole phage libraries represents a powerful tool for an application in material chemistry. Phage display is used to find specific target binding peptides for polypropylene surfaces (PP). PP binders are of particular interest because thus far gluing or printing on PP is challenging due to its low surface energy. Scripts for sequence data analysis were developed and promising sequences were synthesized as peptide-PEO conjugates. Fluorescence based adsorption experiments on PP surfaces led to the identification of strong binding sequences and a better understanding of the peptide-surface interactions. T2 - 257th National Meeting of the American-Chemical-Society (ACS) CY - Orlando, FL, USA DA - 31.03.2019 KW - Peptides KW - Surfaces KW - Phage Display KW - Peptide Library KW - Screening KW - Glue KW - Paint KW - Polyethylene Glycol KW - PEG KW - Next Generation Sequencing PY - 2019 AN - OPUS4-48837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Grelle, Tobias A1 - Kömmling, Anja A1 - Wolff, Dietmar A1 - Völzke, Holger T1 - Long-term evaluation of sealing systems for radioactive waste packages N2 - The investigation of the long-term performance of sealing systems employed in containers for radioactive waste and spent nuclear fuel is one research focus area for division 3.4 “Safety of Storage Containers” at the Bundesanstalt für Materialforschung und -prüfung (BAM). Our investigations comprise investigations on metallic and elastomeric seals and covers experimental investigations to get a database on the component/material behaviour, work on analytical descriptions and numerical analysis. Our aim is to understand the long-term behaviour of the sealing systems for evaluation of their performance during possible extended interim storage and subsequent transportation. T2 - 3rd Workshop on Safety of Extended Dry Storage of Spent Nuclear Fuel CY - Garching, Germany DA - 05.06.2019 KW - Seal performance KW - Rubber seal KW - Metallic seal KW - Ageing PY - 2019 AN - OPUS4-48224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hübner, Oskar A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Wegner, Karl David A1 - Dhamo, Lorena A1 - Göhde, W. A1 - Resch-Genger, Ute T1 - Luminescence lifetime encoding for flow cytometry with quantum-dot-encoded beads N2 - Spectral encoding of cells or particles and the discrimination of multiple spectral codes are a critical process in flow cytometry (FCM). Typical issues in spectral encoding are, e.g., the spectral overlap of codes, or the increasing complexity of instruments . The exploitation of the photoluminescence lifetime (LT) as an encoding parameter could be used to circumvent both of these issues, as it adds another dimension to the parameter space, or, when used as a stand-alone parameter, requiring only one excitation light source and one detector. While LT encoding was considered already decades ago it is still not implemented as a routine technique in FCM yet, mainly due to the challenge of very few photons being available within the limited transition time of a cell or particle through the laser spot. Recently, we demonstrated LT-FCM based on luminophores with ns LTs in a compact and low-cost flow cytometer. Measurements on polymer microbeads containing luminophores with distinctly different excited state LTs enabled the complete discrimination of three LT codes and five codes in total could be identified. Now, we have extended our approach towards considerably longer LTs by custom-made polymer microbeads loaded with different ratios of InP/ZnS and AgInS2 quantum dots. The use of these materials significantly expands the usable time range for LT encoding to up to several hundred ns. Our studies demonstrate the possibility to further increase the number of viable LT codes for multiplexing in LT-FCM without the need for extensive hardware modifications. T2 - Visions in Cytometry - 29th Annual Conference of the German Society for Cytometry CY - Berlin, Germany DA - 25.07.2019 KW - Multiplexing KW - Lifetime KW - Bead KW - Flow cytometry KW - Fluorescence KW - Quantum dot KW - InP KW - AIS KW - Dye KW - Encoding KW - Barcoding KW - Assay KW - Method PY - 2019 AN - OPUS4-49390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Höhne, Patrick A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Small batch preparation of ready-to-press powder for systematic studies N2 - Efficient studies of scarce or expensive materials require material saving processes. Therefore, a high yield concept for small batch preparation of ready-to-press powder is exemplarily presented for yttria stabilized nano-zirconia (d50 < 50 nm). The concept involves small batch preparation in an ultrasound resonator, dispersant selection based on zeta potential measurements, evaluation of slurry stability using an analytical centrifuge, and preparation of ready-to-press powder by freeze drying. Freeze drying offers key advantages. Process efficiency and high yield above 95 % are independent of sample size. The dried product does not require further mechanical treatment like milling or grinding. Side effects like migration of additives are avoided. An optimized freeze drying process tolerates slurries with moderate stability. Thus, efforts for slurry development can be reduced. Generally, identifying a suitable dispersing agent requires only 3-5 zeta potential measurements. Slurry stability is rechecked using an analytical centrifuge, which also accounts for steric stabilization. An ultrasound resonator is used to disperse the powder without contamination, which becomes critical for small batches. The described route is exemplarily presented for the development of an additive recipe for nano-sized zirconia powder, targeting for good pressing behavior and high green density. Therefore, a variety of binding and lubricating agents were tested. Following the presented route, 80 g zirconia powder were sufficient to conduct a study including slurry development and five sample sets with varying composition, each set comprising five discs (d = 20 mm and h = 2 mm). T2 - 94. DKG Jahrestagung CY - Leoben, Austria DA - 05.05.2019 KW - Fine Powder KW - Slurry KW - Freeze Drying PY - 2019 AN - OPUS4-48293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Quantitative microstructural analysis - VAMAS/TWA 37 N2 - The 44th Meeting of the Versailles Project on Advanced Materials and Standards (VAMAS) Steering Committee has just taken place at NIST in Boulder (CO, USA). BAM participates with significant contributions in Technical Working Areas on nanoparticle and surface chemistry characterization, but also has positioned itself to new global material challenges and trends in the developement of advanced materials and their characterization, such as thermal properties, self-healing materials, and micro- and nanoplastic. T2 - Annual Meeting of the Versailles Project on Advanced Materials and Standards (VAMAS) Steering Committee CY - Boulder, CO, USA DA - 22.05.2019 KW - VAMAS KW - Nanoparticles KW - Microbeam analysis KW - Advanced materials PY - 2019 AN - OPUS4-48184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mansfeld, Ulrich A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Bartzcak, D. T1 - New reference material candidates for traceable size measurement of nonspherical nanoparticles N2 - Size measurement of nanoparticles (NP) becomes a challenging analytical problem when non-spherical shapes must be traceably measured. However, most industrial NPs have irregular shapes and broad size distribution making it often more complex to follow European regulatory to identify a material as a nanomaterial according to which accurate measurement of the smallest dimension and its size Distribution is necessary. The European research project nPSize - Improved traceability chain of nanoparticle size measurements aims to fill this gap by developing potential non-spherical reference nanoparticles, measurement procedures and physical modelling to improve the traceability chain, comparability and compatibility for NP size measurements between different methods. Therefore, new model NP with well-controlled shape has been synthesized and are supposed to be systematically characterized using the traceable methods scanning/transmission electron microscopy, atomic force microscopy and small angle X-ray scattering. Following NP candidates are under investigation with respect to their homogeneity and stability: (i) titania nanoplatelets (10-15 nm thickness x 50-100 nm lateral), (ii) titania bipyramides (~60 nm length x 40 nm width), (iii) titania acicular particles (100 nm length x 15-20 nm width; aspect ratio 5.5/6), (iv) gold nanorods (~10 nm width x 30 nm length), and (v) gold nanocubes (~55 nm x 55 nm x 55 nm). In addition, sample preparation procedures as well as measurement analysis procedures with evaluation of appropriate measurands and descriptors for each material class and method are being developed to support standardization. To underpin the traceability of the size measurement of nonspherical NP, physical modelling of the signals in e.g. electron microscopy techniques will be used and in combination, the implementation of machine learning is aimed to facilitate measurement Analysis procedures, especially regarding the accurate thresholding/segmentation of the NPs. T2 - European Conference on Applications of Surface and Interface Analysis ECASIA 2019 CY - Dresden, Germany DA - 15.09.2019 KW - Nanoparticles KW - Size distribution KW - Electron microscopy KW - Certified reference materials KW - Traceability PY - 2019 AN - OPUS4-49227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mansfeld, Ulrich A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Bartczak, D. T1 - New reference material candidates for traceable size measurement of non-spherical nanoparticles N2 - New model nanoparticles with well-controlled shape were synthesized within the EMPIR project nPSize - Improved traceability chain of nanoparticle size measurements. Their systematic characterization takes place by the traceable methods scanning/transmission electron microscopy, atomic force microscopy and small angle X-ray scattering. Following reference nanoparticle candidates are under investigation with respect to their homogeneity and stability: titania nanoplatelets (10-15 nm x 50-100 nm), titania bipyramides (~60 nm x 40 nm), titania acicular particles (100 nm x 15-20 nm; aspect ratio 5.5/6), gold nanorods (~10 nm x 30 nm), and gold nanocubes (~55 nm x 55 nm x 55 nm). T2 - HyMET Workshop on optical surface analysis methods for nanostructured layers CY - Berlin, Germany DA - 10.10.2019 KW - Nanoparticles KW - Reference materials KW - Traceability KW - Particle size distribution PY - 2019 AN - OPUS4-49285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mansfeld, Ulrich A1 - Hörenz, Christoph A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Bartczak, D. A1 - Goenaga-Infante, H. T1 - Challenges in Traceable Size Measurement of Non-Spherical, Non-Monodisperse Nanoparticles - nPSize N2 - Size measurement of nanoparticles (NP) becomes a challenging analytical problem when non-spherical shapes must be traceably measured. However, most industrial NPs have irregular shapes and broad size distribution making it often more complex to follow European regulatory to identify a material as a nanomaterial according to which accurate measurement of the smallest dimension and its size Distribution is necessary. The European research project nPSize - Improved traceability chain of nanoparticle size measurements aims to fill this gap by developing potential non-spherical reference nanoparticles, measurement procedures and physical modelling to improve the traceability chain, comparability and compatibility for NP size measurements between different methods. Therefore, new model NP with well-controlled shape has been synthesized and are supposed to be systematically characterized using the traceable methods scanning/transmission electron microscopy, atomic force microscopy and small angle X-ray scattering. Following NP candidates are under investigation with respect to their homogeneity and stability: (i) titania nanoplatelets (10-15 nm thickness x 50-100 nm lateral), (ii) titania bipyramides (~60 nm length x 40 nm width), (iii) titania acicular particles (100 nm length x 15-20 nm width; aspect ratio 5.5/6), (iv) gold nanorods (~10 nm width x 30 nm length), and (v) gold nanocubes (~55 nm x 55 nm x 55 nm). In addition, sample preparation procedures as well as measurement analysis procedures with evaluation of appropriate measurands and descriptors for each material class and method are being developed to support standardization. To underpin the traceability of the size measurement of nonspherical NP, physical modelling of the signals in e.g. electron microscopy techniques will be used and in combination, the implementation of machine learning is aimed to facilitate measurement Analysis procedures, especially regarding the accurate thresholding/segmentation of the NPs.zeige mehr T2 - Nanoparticle Reference Materials - Production and Cerification Training Course CY - London, UK DA - 10.12.2019 KW - Nanoparticles KW - Traceability KW - Particle size distribution KW - Electron microscopy KW - Reference materials KW - Non-spherical shape PY - 2019 AN - OPUS4-50040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - High-Quality Experimental Data in Electron Microscopy and Microanalysis – What can, and should we jointly do? N2 - There are different ways how to prove the quality of the results obtained by electron microscopy and related microanalysis techniques, e.g. use of validated standard operation procedures, participation in proficiency testing exercises, use of certified reference materials, etc. International standards are able to provide requirements, specifications, guidelines or characteristics of methods, instruments or samples with the final goal that these can be used consistently in accredited laboratories. In the field of electron microscopy and microbeam analysis standardization and metrology are terms which are encountered rather seldom at major conferences and scientific publications. Nevertheless, spectra formats like EMSA/MSA for spectral-data exchange or tagged image file format (TIFF) for SEM, guidelines for performing quality assurance procedures or for the specification of X-ray spectrometers as well as of certified reference materials (CRMs) in EPMA, or measurement of average grain size by electron backscatter diffraction (EBSD), or guidelines for calibrating image magnification in SEM or TEM are ISO standards already published and used successfully by a large part of the electron microscopy and microbeam analysis community. A main and continuous task of ISO/TC 202 and its subcommittees is to identify and evaluate feasible projects/proposals needed to be developed into new international standards, particularly in respect to recent but established technology, such the silicon drift detector (SDD) EDS one. Another international platform in the frame of which pre-standardization work can be organized is VAMAS (Versailles Project on Advanced Materials and Standards). International collaborative projects involving aim at providing the technical basis for harmonized measurements, testing, specifications, and standards to be further developed at ISO level. One key point of VAMAS activities is constituted by inter-laboratory comparisons for high-quality data. In the field of microbeam analysis, the technical working area (TWA) 37 Quantitative Microstructural Analysis deals with corresponding projects. Good ideas, e.g. on analysis of low-Z materials/elements and at low energies are particularly encouraged by directly contacting the author. Support and already available guidance will be supplied. T2 - Microscopy & Microanalysis 2019 CY - Portland, OR, USA DA - 03.08.2019 KW - Pre-standardisation KW - Inter-laboratory comparison KW - VAMAS KW - ISO KW - Electron microscopy KW - Microanalysis PY - 2019 AN - OPUS4-48672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Surface and Microbeam Analytical Methods @BAM N2 - An overview of the activities in the field of surface and microbeam analysis at BAM-6.1 is given with focus on physico-chemical characterization at the nanoscale. Ideas of potential joint activities are presented: structural and chemical analysis of graphene, deposition techniques for nanoparticles, EBSD on steel for a broader range of methods, instruments and types of steel, soft X-ray Analysis of low-Z materials, analysis of mesoporous thin films, etc. T2 - BAM-IFW Workshop CY - Dresden, Germany DA - 28.03.2019 KW - PC characterisation KW - Nanoscale KW - Nanoparticles PY - 2019 AN - OPUS4-47860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hilgenberg, Kai A1 - Spranger, Felix T1 - Localized laser surface treatments of metals: State of the art and new developments N2 - Localized laser surface treatments are able to produce tailor-made surface properties to fulfill requirements of a variety of technical applications. Especially micrometric surface topologies can be beneficial for optimizing tribological contact situations. Structures with lowered surface features are already utilized for bearings or cylinders of combustion engines. There are also other fields of application, where the potential of protruding surface features is known, e. g. for metal forming tools. A promising approach for a tailored surface treatment working in the microsecond range is the localized dispersing of hard ceramic particles by pulsed laser radiation, the so-called laser implantation. This technique is able to produce micrometric surface structures and to improve simultaneously the wear resistance by creating metal matrix composites. In this talk, the laser implantation technique is described and compared to the state of the art. The potential to adjust the geometry as well as the mechanical properties of laser implanted surfaces is demonstrated by means of microstructural and topographical investigations of different ceramic materials and steel substrates. Finally, results of research projects are presented aiming on the application of such structured surfaces. Their capability to change and optimize friction and wear are demonstrated for fully lubricated contacts, tools for hot sheet metal forming and tools for cold rolling of sheets for automotive applications. T2 - 10th International Conference on Laser Applications (ICLA 10) CY - Cairo, Egypt DA - 23.11.2019 KW - Tool steel KW - Laser implantation KW - Laser surface texturing KW - Laser dispersing PY - 2019 AN - OPUS4-49959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Oliver T1 - Paper: history, manufacture, properties N2 - The lecture traces the origins of paper, the manufacture and the spread from China to the Middle East and Europe. Though technological progress considerably affected each step of the manufacture of paper, the essence of the invention remains unchanged until today. The process of manufacturing handmade paper can be divided into a number of steps: - choosing the raw material (e.g. cellulose from wood, cotton, rags) - beating and grinding the fibres into small pieces - producing a liquid pulp of the desired texture - treating the pulp with various additives - filling the pulp suspension into a paper mould - draining the water - pressing and drying to get the actual sheet - various post-production treatments We will see how the manufacturing process is reflected in the properties of the paper and its degradation. A special attention will be paid to the instrumental analysis for identification of the paper types. Also watermark play an important role in the studies of the manuscripts. A short overview will be offered at the ends of the lecture. T2 - Summer School Manusciences 19 CY - Frejus, France DA - 10.03.2019 KW - Material science KW - Cultural heritage PY - 2019 AN - OPUS4-48140 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Simulational tools in nanoparticle research: Micromagnetics and particle scattering N2 - Simulational tools are applied to investigate the physical properties of nanoparticles. For the description of radioactive gold nanoparticles, particles scattering simulations are performed with the Geant4 monte carlo simulation toolkit. The temperature dependent behaviour of the magnetization dynamics of different magnetic nanoparticles are simulated with the object oriented micormagnetic framework (OOMMF). T2 - NanoBioAp CY - LLanes, Spain DA - 23.05.2019 KW - Monte Carlo KW - Monte-Carlo simulation KW - MCS KW - Nanoparticle KW - AuNP KW - Dosimetry KW - Radioactive NP KW - Microdosimetry KW - Geant4 KW - OOMMF KW - Micromagnetism KW - Simulation KW - Magnetic nanoparticle KW - LLG PY - 2019 AN - OPUS4-48110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hagendorf, C. A1 - Richter, S. A1 - Krause, S. A1 - Bauer, J. A1 - Miclea, P.-T. A1 - Braun, Ulrike A1 - Altmann, Korinna A1 - Turek, M. T1 - Microplastic detection and analysis in water with silicon filter systems N2 - The use of optimized silicon filter systems is presented for the microplastic detection. T2 - International Conference on Sustainable Energy-Water-enviroment Nexus in Desert Climate CY - Doha, Qatar DA - 02.12.2019 KW - Filters KW - Microplastics KW - TED-GC-MS KW - Harmonisation PY - 2019 AN - OPUS4-50006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Zocca, Andrea T1 - Dense Powder Beds for the Additive Manufacturing of Ceramics N2 - Many of the most successful and precise additive manufacturing (AM) technologies are based on the deposition layer-by-layer of a flowable powder. Since the first pioneering work at the end of the 1980th many developments have been introduced, greatly extending the use of different materials, improving the physical properties of the components built and enhancing the accuracy of the process. Still very important issues remain nowadays, hampering a completely autonomous production of parts and even restricting the freedom of design by means of these technologies. One of the major issues is the low density and stability of the parts during the building process, which implies the need of support structures: The powder bed surrounding the part has an essential role, since it should support the structure during building, until it’s ready for removal. Moreover, the microstructure of the powder bed is a template for the microstructure of the part produced. In this context, the use of submicron ceramic powders is still a challenge. Three approaches for the stabilization and densification of powder beds will be presented: The Layerwise Slurry Deposition process LSD, the gas flow assisted powder deposition and the Laser Induced Slipcasting (LIS) of ceramic powder compacts. T2 - 43rd International Conference and Exposition on Advanced Ceramics and Composites (ICACC 2019) CY - Daytona Beach, FL, USA DA - 27.01.2019 KW - Ceramics KW - Additive Manufacturing PY - 2019 AN - OPUS4-49627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens T1 - Powder-based Additive Manufacturing at Micro-Gravity N2 - Are we ready for putting a human footprint on Mars? Obviously, it is possible to send technologically challenging missions to our earth neighbors with a high level of complexity, such as enabling autonomous planetary mobility. As humanity contemplates mounting manned missions to Mars, strategies need to be developed for the design and operation of hospitable environments safely working in space for years. Humans require water and air provided by complicated equipment. Its safe operation is a great challenge and implies being prepared for all eventualities. Instead of foreseeing and preparing for all possible scenarios of machine failures and accidents, it appears logic taking advantage of the flexibility of humans and providing essential equipment for the reaction on critical situations. The supply of spare parts for repair and replacement of lost equipment would be one key pillar of such a strategy. Bearing in mind the absolute distance and flight trajectories for manned missions to Mars, supplying spare parts from Earth is impossible. Thus, in space manufacturing remains the only option for a timely supply. With a high flexibility in design and the ability to manufacture ready to use components directly from a computer aided model, additive manufacturing technologies appear extremely attractive. For metal parts manufacturing the Laser Beam Melting process is the most widely used additive manufacturing process in industrial application. However, envisioning the handling of metal powders in the absence of gravitation is one prerequisite for its successful application in space. A gas flow throughout the powder bed has been successfully applied to compensate for missing gravitational forces in micro gravity experiments. The so-called Gas Flow Assisted Powder Deposition is based on a porous building platform acting as a filter for the fixation of metal particles in a gas flow driven by a pressure difference maintained by a vacuum pump. T2 - 1st Sino-German Workshop on 3D Printing in Space CY - Beijing, China DA - 20.02.2019 KW - Zero-g KW - Additive Manufacturing KW - µ-gravity PY - 2019 AN - OPUS4-49628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens T1 - Powder-based Additive Manufacturing at Micro-Gravity N2 - Are we ready for putting a human footprint on Mars? Obviously, it is possible to send technologically challenging missions to our earth neighbors with a high level of complexity, such as enabling autonomous planetary mobility. As humanity contemplates mounting manned missions to Mars, strategies need to be developed for the design and operation of hospitable environments safely working in space for years. Humans require water and air provided by complicated equipment. Its safe operation is a great challenge and implies being prepared for all eventualities. Instead of foreseeing and preparing for all possible scenarios of machine failures and accidents, it appears logic taking advantage of the flexibility of humans and providing essential equipment for the reaction on critical situations. The supply of spare parts for repair and replacement of lost equipment would be one key pillar of such a strategy. Bearing in mind the absolute distance and flight trajectories for manned missions to Mars, supplying spare parts from Earth is impossible. Thus, in space manufacturing remains the only option for a timely supply. With a high flexibility in design and the ability to manufacture ready to use components directly from a computer aided model, additive manufacturing technologies appear extremely attractive. For metal parts manufacturing the Laser Beam Melting process is the most widely used additive manufacturing process in industrial application. However, envisioning the handling of metal powders in the absence of gravitation is one prerequisite for its successful application in space. A gas flow throughout the powder bed has been successfully applied to compensate for missing gravitational forces in micro gravity experiments. The so-called Gas Flow Assisted Powder Deposition is based on a porous building platform acting as a filter for the fixation of metal particles in a gas flow driven by a pressure difference maintained by a vacuum pump. T2 - 2nd Sino-German Workshop on 3D Printing in Space CY - Berlin, Germany DA - 28.10.2019 KW - µ-gravity KW - Additive Manufacturing KW - Zero-g PY - 2019 AN - OPUS4-49629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griepentrog, Michael T1 - Estimation of measurement uncertainty of instrumented indentation testing N2 - Some critical discussion of the state of the art of uncertainty evaluationin Instrumented Indentation Testing IIT Nowadays the Instrumented Indentation Testing (IIT), in the nano range often named as nano indention, is one of the most commonly used methods to determine the mechanical properties of materials in the micro and nano range. This method is already extensive standardized in ISO 14577 part 1-4. In the past, the application of this standard in testing praxis shows that the established values have an excellent precision.If an uncertainty is calculated, the range of values within which the true value is asserted to lie with some level of confidencewill be known. In part 1 of ISO 14577 [1] two methods for evaluation of the uncertainty in IIT are mentioned: Method 1 for determining uncertainty considers only those uncertainties associated with the overall measurement performance of the testing machine with respect to the reference blocks. Method 2calculates a combined uncertainty from individual contributions. These may be grouped into random and systematic uncertainties. Both methods will be described in detail using examples from the dailyexperimental praxis. The comparabilityof both methods will be critically discussed. Finally, it will be showedhow the calculated uncertaintiescan be used for performancetests and product specifications. Acknowledgement This work was performed under the support of the EMPIR project 17NRM05Advancing measurement uncertainty̶ comprehensiveexamples for key international standards References [1] ISO 14577 part 1 (2017) T2 - KLA Nanomechanical Testers User Workshop CY - Langen, Germany DA - 02.05.2019 KW - Instrumented Indentation Testing KW - IIT KW - nanoindentation KW - mechanical properties KW - uncertainty KW - performance test KW - product specification PY - 2019 AN - OPUS4-48141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grauel, Bettina A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Haase, M. A1 - Homann, C. T1 - Progress report NaYF4:Yb,Er upconversion nanoparticles: determination of energy loss processes for the systematic enhancement of the luminescence efficiency N2 - A report on the progress of the PhD work on upconversion nanoparticles is given, showing lifetimes and quantum yields of single- and co-doped Yb,Er nanocrystals with and without inert shell. T2 - Arbeitsgruppenseminar Prof. Oliver Benson CY - Berlin, Germany DA - 23.10.2019 KW - Upconversion KW - Spectroscopy KW - Nanoparticles KW - Lifetime PY - 2019 AN - OPUS4-49754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gradt, Thomas A1 - Theiler, Géraldine T1 - Influence of cryogenic hydrogen environment on the tribological properties of materials N2 - The presentation gives an overview over the LH2-activities during 20 years of tribological research in cryogenic environments at BAM. T2 - 2019 Hydrogenius & I2CNER Tribology Symposium CY - Fukuoka, Japan DA - 30.01.2019 KW - Friction KW - Wear KW - Hydrogen KW - Cryogenic Engineering KW - Hydrogen Embrittlement PY - 2019 AN - OPUS4-47339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gradt, Thomas T1 - Tribological Research in Germany - Overview and Examples from the Federal Institute for Materials Research and Testing (BAM) N2 - The talk gives a historical introduction and introduces some of the biggest and most important research institutes in Germany dealing with tribology at Universities, scientific societies and companies. Some examples for research projects and focus areas are given. As an example for a research institute with a long history in tribological research the activities of BAM in Berlin are presented. T2 - Joint Tribology Symposium of Kyushu University and Yokohama National University KY7 CY - Fukuoka, Japan DA - 01.02.2019 KW - Friction KW - Lubrication KW - Wear PY - 2019 AN - OPUS4-47345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gollwitzer, Christian A1 - Scholz, Philipp A1 - Ulbricht, Alexander A1 - Joshi, Yogita A1 - Weidner, Steffen T1 - Synchrotron based absorption edge tomography for the analysis of 3D printed polymer MOF N2 - Absorption edge tomography is a method which exploits the sudden change of the attenuation coefficient, when the photon energy crosses the absorption edge of an element. The beamline BAM line at BESSY II, which is operated by the Federal Institute for Materials Research and Testing, can provide a monochromatized beam in a photon energy range from 5 keV up to 80 keV with a bandwidth of 2%. Together with the microtomography setup, this enables differential tomography sensitive to any element with N >= 24 (Cr) by using an appropriate K- or L-edge in this range. Here, a polymer filament embedding metal organic framework (MOF) was prepared and used for 3D printing. Absorption edge tomography at the copper K edge was employed to perform a non-destructive 3D characterization of the microstructure of the embedded MOF. Data fusion was then used to determine the size distribution of the embedded MOF. T2 - iCT 2019 CY - Padua, Italy DA - 12.02.2019 KW - Synchrotron tomography KW - BAMline KW - MOF KW - Absorption edge tomography PY - 2019 AN - OPUS4-47392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghigo, Tea A1 - Rabin, Ira A1 - Buzi, P. T1 - Archaeometric analysis of inks from Coptic Manucripts N2 - Understanding the technological evolution of inks from Coptic Manuscripts. T2 - III International PAThs Conference CY - Rome, University of La Sapienza, Italy DA - 25.02.2019 KW - Archaeometry PY - 2019 AN - OPUS4-48037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghigo, Tea A1 - Rabin, Ira A1 - Buzi, Paola T1 - Archaeometric analysis of Egyptian inks from Late Antiquity N2 - Presentation of the results obtained on a corpus of Egyptian papyri from Late Antiquity T2 - Research Showcase: studying Greco-Roman Egypt CY - University of Basel, Switzerland DA - 26.09.2019 KW - Ink KW - Archaeometry KW - Manuscripts KW - Coptic PY - 2019 AN - OPUS4-49969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghigo, Tea A1 - Rabin, Ira A1 - Buzi, Paola T1 - Archaeometric analisis of Egyptian inks from Late Antiquity N2 - Archaeometric analisis of Egyptian inks from Late Antiquity: presentation of the results obtaine on a curpus of literary and documentary manuscripts. T2 - International congress of papyrology CY - Lecce, Italy DA - 28.07.2019 KW - Coptic KW - Archaeometry KW - Ink KW - Manuscripts PY - 2019 AN - OPUS4-49971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Elert, Anna Maria T1 - Combination of advanced atomic force microscopy methods to investigate mechanical and chemical interphases in epoxy-boehmite nanocomposites N2 - Formation of interphases between inorganic nanofillers and thermoplastic matrices are usually correlated to short-range interactions which does not exceed more than tens of nanometers away from the surface of the filler. Nevertheless, in nanocomposites with thermosetting matrices, the effect of nanofillers on the properties of the matrix is not limited to the immediate vicinities, but a long-range property alteration of the bulk polymer may be observed. The interaction between nanofillers and the polymer can disturb the curing reaction and alters the chemical, physical and mechanical properties of the polymer network in the matrix phase. In our studies, we aim to investigate short and long-range interphases of a nanocomposite system consisting of a thermosetting matrix (DGEBA) filled with an inorganic nanoparticle (boehmite). For this purpose, a combination of atomic force microscopy (AFM)-based approaches is implemented. Scanning kelvin probe microscopy (SKPM) was used to map the compositional contrast and the interphase with different electrical properties than the bulk. The mechanical properties of the interphase were probed by high resolution intermodulation AFM. (ImAFM). Furthermore, infrared spectroscopy AFM (AFM-IR) is used to investigate the chemical structure of the matrix at different distances from the nanoparticle. SKPM and (AFM-IR) measurements both show a long-range (to 10 µm) effect of boehmite on the chemical structure and surface potential of the bulk epoxy, respectively, whereas ImAFM force measurements reveals a short-range mechanical interphase between the filler and the matrix. The AFM-IR demonstrated the existence of unreacted anhydride hardener at the interphase. This indicates the preferential absorption of anhydride on the surface of boehmite. The consequence of such a selective interaction between the inorganic filler and the epoxy components is disturbance of the epoxy-hardener stoichiometric ratio, the curing mechanism. and the alteration of bulk properties of the matrix. T2 - EUROMAT CY - Stockholm, Sweden DA - 01.09.2019 KW - AFM KW - SKPM KW - AFM-IR KW - ImAFM KW - Boehmite PY - 2019 AN - OPUS4-50693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geißler, Daniel A1 - Resch-Genger, Ute T1 - Development of reference materials (WP1) and reference methods (WP2) for the standardisation of concentration measurements of extracellular vesicles N2 - BAM provides leading expertise in preparation, characterisation and application of fluorescent reference standards and biomedical relevant nanomaterials, as well as in traceable, absolute, and quantitative fluorometric measurements of transparent and scattering systems in the ultraviolet, visible, and near infrared spectral region. BAM will prepare solid low-RI particles in WP1, will develop reference methods to determine the fluorescence intensity and RI of reference materials in WP2, and will measure the fluorescence intensity of EVs in biological test samples of WP3. T2 - EMPIR 18HLT01 "MetVesII" Kick-off meeting CY - Delft, The Netherlands DA - 17.06.2019 KW - Reference materials KW - Reference methods KW - Extracellualr vesicles PY - 2019 AN - OPUS4-48813 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geburtig, Anja A1 - Wachtendorf, Volker A1 - Trubiroha, P. T1 - Discussion on Weathering Reference Materials N2 - Weathering reference materials are used to characterize the harshness of an exposure, aiming on either reproducibility of a specific exposure or on the comparability between various kinds of weathering exposure. The materials that are used as weathering reference materials differ in their sensitivities (as well as in interactions and interferences of the latter), conditioned by the different processes which lead to the respective property change. It is also essential to take into account the necessary measurement equipment for the respective property change, in order to allow timely intervention. What are the key issues on choosing a weathering reference material? What can be learned from the weathering reference materials, investigated so far? Possibilities and limitations are discussed on the basis of existing weathering reference materials. Conclusions are drawn, for establishing new weathering reference materials. T2 - 9th European Weathering Symposium CY - Basel, Switzerland DA - 18.09.2019 KW - Plastic KW - Ageing KW - Fragmentation KW - Environment KW - Digital twin PY - 2019 AN - OPUS4-49713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawek, Marcel A1 - Madkour, Sherif A1 - Hertwig, Andreas A1 - Schönhals, Andreas T1 - Growth Kinetics and Molecular Mobility of Irreversibly Adsorbed Layers in Thin Films of P2VP and PVME N2 - In well-annealed thin polymer films, with non-repulsive polymer/substrate interactions, an irreversibly adsorbed layer is formed. These adsorbed layers have shown enormous potential for technological applications. Due to the hard accessibility of these layers, their growth kinetics and molecular dynamics are still not fully understood. Here, the irreversibly adsorbed layers of Poly(2-vinylpyridine) (P2VP) and Poly(vinyl methyl ether) (PVME) thin films are revealed by solvent-leaching experiments. The growth kinetics of these layers is investigated as a function of original film thickness and annealing times. The thickness, topography and quality of the adsorbed layer is determined with Atomic Force Microscopy (AFM) and spectroscopic ellipsometry. Additionally, the molecular mobility of the adsorbed layer is investigated with Broadband Dielectric Spectroscopy (BDS). A recently developed nanostructured capacitor (NSC) is employed to measure the adsorbed layers with a free surface layer depending on annealing and solvent-leaching time. The results are quantitatively compared and discussed with respect to recently published work. T2 - Spring Meeting of German Physical Society CY - Regensburg, Germany DA - 31.03.2019 KW - Adsorbed layer KW - Thin polymeric films PY - 2019 AN - OPUS4-47766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fritzsche, André T1 - Influence of Welding Parameters on Electromagnetic Supported Degassing of Die-Cadted and Wrought Aluminium N2 - Laser beam welding of aluminum die casting is challenging. A large quantity of gases (in particular hydrogen) is absorbed by aluminum during the die-cast manufacturing process and is contained in the base material in solved or bound form. After re-melting by the laser, the gases are released and are present in the melt as pores. Many of these metallurgic pores remain in the weld seam as a result of the high solidification velocities. The natural (Archimedean) buoyancy is not sufficient to remove the pores from the weld pool leading to process instabilities and poor mechanical properties of the weld. Therefore, an electromagnetic (EM) system is used to apply an additional buoyancy component to the pores. The physical mechanism is based on the generation of Lorentz forces, whereby an electromagnetic pressure is introduced into the weld pool. The EM system exploits the difference in electrical conductivity between poorly conducting pores (inclusions) and the comparatively better conducting aluminum melt to increase the resulting buoyancy velocity of the pores. Within the present study, the electromagnetic supported degassing is investigated in dependence on the laser beam power, welding velocity and electromagnetic flux density. By means of a design of experiments a systematic variation of these parameters is carried out for partial penetration laser beam welding of 6 mm thick sheets of wrought aluminum alloy AlMg3 and die-cast aluminum alloy AlSi12(Fe) where the wrought alloy serves as a reference. The proportion of pores in the weld seams is determined using X-ray images, computed tomography (CT-) images and cross-section images. The results prove a significant reduction of the porosity up to 70 % for both materials as a function of the magnetic flux density T2 - 38th International Congress on Applications of Lasers & Electro-Optics CY - Orlando, FL, USA DA - 07.10.2019 KW - AISI D2 KW - Laser implantation KW - Surface texturing KW - TiB2 PY - 2019 AN - OPUS4-50010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Friedrich, Sebastian A1 - Cappella, Brunero T1 - Characterization of lubricants using AFM force-distance curves N2 - Auf dünnen Filmen von Schmiermitteln wurden Kraft-Abstand-Kurven aufgenommen. Die Schmiermittel benetzen die AFM-Spitze, sodass eine Kapillarkraft auftritt. Diese hängt von der Form der Spitze sowie von physikalischen Eigenschaften wie Viskosität und Oberflächenspannung ab, die zusätzlich mit anderen Verfahren bestimmt wurden. So konnte ihr Einfluss auf die Kurvenform untersucht werden. N2 - Force-distance curves have been recorded on thin films of lubricants. The lubricants wet the AFM tip, which causes a capillary force. This force depends on the shape of the tip, as well as on physical properties like viscosity and surface tension, which have been determined additionally with other methods. This way, their influence on the shape of the curves could be analyzed. T2 - 60. Tribologie-Fachtagung der Gesellschaft für Tribologie/GfT CY - Göttingen, Germany DA - 23.09.2019 KW - AFM-Kraft-Abstand-Kurven KW - Schmiermittel KW - Viskosität PY - 2019 AN - OPUS4-49906 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Frei, Vivian A1 - Thiele, Marc A1 - Pirskawetz, Stephan A1 - Meng, Birgit A1 - Rogge, Andreas T1 - Characterizing the Fatigue Behavior of High-Performance Concrete for Wind Energy Structures N2 - Severe mechanical fatigue conditions for worldwide proliferating windfarms are a Major challenge for high-performance concrete in towers, connecting joints and foundations of wind turbines. High-performance concrete offers potential for the application in offshore windfarms, not only regarding its good mechanical, but also chemical resistivity due to low diffusivity in the highly densified microstructure. For a more reliable fatigue assessment, monitoring based on nondestructive testing can be a valuable complement to design rules. Both approaches demand reliable experimental data, information about scalability and the development of standardized testing methods. This article presents results of an ongoing research program of BAM (Bundesanstalt für Materialforschung und -prüfung), which is a part of a joint national project (WinConFat) funded by the German Federal Ministry for Economic Affairs and Energy. The subproject implemented by BAM examines the fatigue behavior in dependence of size and slenderness for varying concrete strength at different stress levels. Besides fatigue strength, nondestructive testing is carried out additionally. Methods used are strain measurement and ultrasonic testing. The change of strain, stiffness and ultrasonic pulse velocity in the fatigue process is discussed. Results disclose a deeper insight into the damage process under cyclic loading of high-performance concrete and contribute to improve nondestructive monitoring. T2 - LORCENIS - Long Lasting Reinforced Concrete for Energy Infrastructue under Severe Operating Conditions CY - Gent, Belgium DA - 10.09.2019 KW - Compressive Cyclic loading KW - Fatigue KW - High-strength concrete KW - Non destructive testing KW - Ultrasonic testing PY - 2019 AN - OPUS4-49474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Frei, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Resistance spot welding under external load for evaluation of LME susceptibility of zinc coated advanced high strength steel sheets N2 - Some zinc coated advanced high strength steels (AHSS), under certain manufacturing conditions, are known to be prone to liquid metal embrittlement (LME) during resistance spot welding. LME is an undesired phenomenon, which can cause both surface and internal cracks in a spot weld, potentially influencing its strength. An effort is made to understand influencing factors of LME better, and evaluate geometry-material combinations regarding their LME susceptibility. Manufacturers benefit from such knowledge because it improves the processing security of the materials. The experimental procedure of welding under external load is performed with samples of multiple AHSS classes with strengths up to 1200 MPa, including dual phase, complex phase and TRIP steels. This way, externally applied tensile load values are determined, which cause liquid metal embrittlement in the samples to occur. In the future, finite element simulation of this procedure gives access to in-situ stress and strain values present during LME formation. The visualization improves the process understanding, while a quantification of local stresses and strains allows an assessment of specific welded geometries. T2 - ESDAD 2019 CY - Dusseldorf, Germany DA - 24.06.2019 KW - RSW KW - LME KW - Advanced high strength steel KW - Testing method KW - Zinc coated steel PY - 2019 AN - OPUS4-49079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Florian, Camilo A1 - Kirner, Sabrina V. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Applications on Surface Functionalization by Laser-Induced Periodic Surface Structures (LIPSS) N2 - In recent years, the understanding on the formation of laser-induced periodic surface structures (LIPSS) has led to an emerging variety of applications that modify the optical, mechanical and chemical properties of many materials. Such structures strongly depend on the used polarization and are formed usually after irradiation with ultrashort linearly polarized laser pulses. Some specific formation mechanisms to explain every situation are still to be uncovered, but the most accepted explanation relies on the interference of the incident laser beam with electromagnetic surface waves that propagate or scatter at the surface of the irradiated materials. This leads to an intensity modulation that is finally responsible for the selective ablation in the form of parallel structures with periodicities ranging from hundreds of nanometers up to some micrometers. The versatility when forming such structures is based on the high reproducibility with different wavelength, pulse duration and repetition rate laser sources, customized micro- and nanometric spatial resolutions and compatibility with industrially relevant processing speeds when combined with fast scanning devices. In this contribution, we review the latest applications in the rapidly emerging field of surface functionalization through LIPSS, including biomimetic functionalities on fluid transport, control of the wetting properties, specific optical responses in technical materials, improvement of tribological performance on metallic surfaces and bacterial and cell growth for medical devices among many others. T2 - 38th International Congress on Applications of Lasers and Electro Optics (ICALEO 2019) CY - Orlando, FL, USA DA - 07.10.2019 KW - Laser-induced periodic surface structures, LIPSS KW - Femtosecond laser ablation KW - Surface functionalization KW - Applications PY - 2019 AN - OPUS4-49473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Florian, Camilo A1 - Undisz, A. A1 - Kirner, Sabrina V. A1 - Spaltmann, Dirk A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Oxidation effects on the functionality and formation of laser-induced periodic surface structures N2 - In the last decades, the formation of laser-induced periodic surface structures (LIPSS) has been widely studied, not only to stablish a general understanding of the main mechanisms present during the irradiation with ultrashort laser pulses, but also to identify the main processing parameters for its fabrication on various technical materials. However, an important and almost always present effect that is typically set aside is the material oxidation during or after the laser processing. Usually, this leads to optical, chemical, structural and mechanical alterations that are seldomly studied in detail. Therefore, in this work we present a study that includes the formation of LIPSS on Ti6Al4V alloy for tribological applications were different oxidations layers are involved. The material characterization using different techniques, such as energy dispersive X-ray analyses (EDX), X-ray photoelectron spectroscopy (XPS), micro Raman spectroscopy (µ-RS), and depth-profiling Auger electron microscopy (AEM), and other techniques, confirms the formation of a non-negligible superficial oxide layer – strongly dependent on the specific processing parameters. We perform tribological experiments on laser irradiated samples oxidized by alternative ways to have a comparison on its friction performance. The obtained results show significant differences that depend directly on the thickness and the quality of the oxidized layer. This may open a fertile research area until now barely explored with clear impact on LIPSS based applications. T2 - 9th International LIPSS Workshop CY - Ljubljana, Slovenia DA - 26.09.2019 KW - Laser-induced periodic surface structures (LIPSS) PY - 2019 AN - OPUS4-49709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fischer, Daniel A1 - Beck, Uwe A1 - Duwe, M. A1 - Schneider, S. T1 - Mueller-matrix imaging ellipsometry of structural anomalies and inhomogenities N2 - In the last years, the implementation of imaging ellipsometry in the variety of optical characterization techniques has shown tremendous potential to analyze the topology of surfaces in the lateral dimension. In the later studies, this contrast-rich surface images were affiliated with changes of the refraction indices, Absorption bands or layer thicknesses. However, it was realized that additional factors like curvature or scattering can have a great Impact on the ellipsometric readout of the analyzed system. In this study, we focus on the systematic evaluation of structural anomalies and inhomogenities of several Basic systems. This includes spherical particles as a model for microscopic curved surfaces in a range of 0.25 to 25 μm in diameter. In the macroscopic regime several conventional convex lenses were analyzed. Additional affords were made to generate microscopic concave model systems by applying nanoindentation with a spherical indentation unit. With this method calottes with a depth of 0.04 to 2 μm and radius of 2.5 μm were made. The macroscopic counterpart is delivered by conventional concave lens systems. For all systems, a variety of different bulk materials was investigated. This includes metal oxides, metals and polymers as well as combinations of each by applying coatings on the bulk materials with different layer thicknesses. To analyze these structural anomalies and inhomogenities properly, Mueller-Matrix imaging ellipsometry is the method of choice to address cross- and depolarization effects that occur due to the curved surfaces. Supplementary methods were used for an independent characterization of the topological properties of all structural anomalies and inhomogenities. This includes AFM and SEM for the microscopic samples (microparticles and nanoindented holes) and white light interferometry for the macroscopic lenses. This study results in a systematic screening of different coated and uncoated material systems with a topology that does not fit into conventional ellipsometry and thus is analyzed by Muller-Matrix imaging ellipsometry. This will help in quality control and is a contribution to the understanding of the polarizing effects of non-ideal Systems analyzed by ellipsometry. T2 - 8th International conference on spectroscopic ellipsometry (ICSE-8) CY - Barcelona, Spain DA - 26.05.2019 KW - Spectroskopic Imaging KW - Mueller-Matrix imaging ellipsometry KW - Structural anomalies KW - Structural inhomogenities PY - 2019 AN - OPUS4-48347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Wille, Frank T1 - Fire reference test for IAEA package thermal testing in a propane gas fire test facility N2 - Packages for the transport of radioactive material shall withstand severe accidents. Therefore, the IAEA Regulations define different test scenarios to cover severe hypothetical accident conditions. One of these tests defined in detail is the thermal test, mainly consisting of a 30 minute fully engulfing 800 °C pool fire or an equally severe fire test. The heat fluxes into the package are of significant importance and depend substantially on the fire characteristics and the surface temperature of the package. In order to investigate the heat fluxes over a wide range of surface temperatures during a propane gas fire test and to get information about local fire impact a fire reference package, representing the outer geometry of a specific type of transport cask for radioactive waste, was designed. A closed steel sheet cylinder with a wall thickness of 10 mm was chosen as fire reference package. The cylinder was filled with refractory insulation material and instrumented with thermocouples distributed all over the cylinder. The local steel sheet temperatures measured allow the determination of local as well as global heat fluxes as a function of time and surface temperature. With this fire reference package three open-air propane gas fire tests were performed at BAM’s open air fire test stand. The flame exposure time period was changed for the different fire tests. Furthermore, the wind conditions changed between and during the tests. Test stand parameters like wind shield location and propane gas volume flow were chosen constant for the three tests. The test results were used to determine the changes of heat flux into the fire reference package in relation to the package surface temperature. This data also allows the calculation of local characteristics of the propane gas fire as there are the flame temperature, the fire convection coefficient and the radiation exchange coefficient in a first approach. The recently conducted tests provide an initial picture of local fire characteristics of the propane gas fire test facility. The test shows that the propane gas fire covers the IAEA-fire over a wide range of surface temperatures with the chosen test stand parameters. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Thermal testing KW - Convection coefficient KW - IAEA fire KW - Propane gas fire test facility PY - 2019 AN - OPUS4-48841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fedelich, Bernard A1 - Feldmann, Titus A1 - Charmi, Amir A1 - Epishin, A. T1 - Simulation of pore shrinkage with crystal plasticity and dislocation transport N2 - Single crystal superalloys usually contain pores of sizes 5-10 micro-m after casting and heat treatment. These pores can be reduced under compression by combined creep and diffusion in a subsequent treatment called Hot Isostatic Pressing (HIP). The paper presents a methodology to simulate pore shrinkage under HIP conditions in two dimensions (2D). At the scale of the pores, which is also the scale of the sub-grains (<50 micro-m) the dislocation sources cannot be assumed to be homogeneously distributed. Thus, the applicability of classical crystal plasticity is questionable. In this case, the transport of dislocations under an applied stress from the location where they are nucleated must be explicitly modelled. This is done by solving the transport equations for the dislocation densities and the elasticity equations in 2D. The dislocations are assumed to be nucleated at Low Angle Boundaries. They glide or climb through the sub-grains with a stress dependent velocity. The transport equations are solved by the Flux-Corrected Transport method, which belongs to the predictor-corrector class of algorithms. In the first step, an artificial diffusion is introduced, which suppresses spurious oscillations of the solution. In a second step, the solution is corrected in such a way that no additional extremes appear and that the extremes do not grow. The algorithm is validated by simulating the transport of simple distributions with a constant velocity field. With the dislocation velocities and the computed dislocation densities, the inelastic shear rate at the slip system level is computed by integrating the Orowan equation. In the 2D-setting, three slip systems are considered. The contributions of these slip systems are summed up to obtain the total inelastic strain rate. Dislocation glide and climb and the coupling of climb with vacancies diffusion are considered. The resolution of the equilibrium equations from the inelastic strains turned out to be prone to numerical instabilities. As an alternative, the stresses are directly computed from the distribution of geometrically necessary dislocations following the method presented in. The resulting boundary value problem is solved by the Least-Square Finite Element method. Examples of simulations are presented for a representative region under creep tension and for a pore shrinking under external pressure. T2 - International Conference on Material Modelling, ICMM 6 CY - Lund, Sweden DA - 26.06.2019 KW - Superalloy KW - Pores KW - Creep KW - Dislocations PY - 2019 AN - OPUS4-48488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fayet, G. A1 - Rotureau, P. A1 - Wehrstedt, Klaus-Dieter A1 - Knorr, Annett T1 - Predictive Methods for Determining the Thermal Decomposition Properties of Hazardous Substances N2 - Due to the fast development and availability of computers, predictive approaches are increasingly used in the evaluation process of hazardous substances complementary to experiments. Their use was recommended as alternative to experimental testing by the REACH regulation to complete the lack of knowledge on properties for existing substances that must be registered before 2018 (upon quantities). Among the proposed predictive approaches, Quantitative Structure Property Relationships (QSPR) are powerful methods to predict macroscopic properties from the only molecular structure of substances. In that context, the HAZPRED project (2015-2018, founded by the SAF€RA consortium) aims to develop theoretical models (e.g. QSPR) and small-scale tests to predict complex physico-chemical properties (e.g. thermal stability, explosivity) of hazardous substances to complete the lack of knowledge on these hazardous substances quickly or to understand their decomposition behaviour better. In particular, this contribution will present the work done in this project on the physical hazards of organic peroxides and self-reactive substances: gathering of existing experimental data, new experimental campaigns, review of existing models and proposition of new estimation methods. T2 - 16th International Symposium on Loss Prevention and Safety Promotion in the Process Industries CY - Delft, The Netherlands DA - 16.06.2019 KW - Self-reactive substances KW - QSPR KW - HAZPRED KW - Organic peroxides PY - 2019 AN - OPUS4-49509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenhagen, Jana T1 - Characterization of co (polyamide)s N2 - Characterization problems of technically relevant copolyamides applying size exclusion chromatography, interaction chromatography and their combination with MALDI-TOF-MS will be discussed. T2 - 23. Kolloquium Massenspektrometrie und synthetische Polymere CY - Berlin, Germany DA - 14.05.2019 KW - LCCC KW - Mass spectrometry of polymers KW - SEC KW - LC / MALDI-TOF-MS coupling PY - 2019 AN - OPUS4-48221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenhagen, Jana A1 - Epping, Ruben T1 - View into the Depths of Copolymer Microstructure N2 - For different kinds of polymers it will be shown how it could be realized to obtain information on small, sometimes isomeric topological heterogeneities by coupling UPLC / ESI-TOF-MS and LC /MALDI-TOF-MS. T2 - DSM, Fall Meeting CY - Breda, The Netherlands DA - 07.11.2019 KW - Microstructure KW - LC-MS KW - Copolymer PY - 2019 AN - OPUS4-49587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenhagen, Jana A1 - Epping, Ruben T1 - View into the depths of copolymer microstructure by a special approach of LC-MS data evaluation N2 - It is a well-known story that copolymers beside their molar mass distribution (MMD) can exhibit a functionality type distribution (FTD), a copolymer composition distribution (CCD), a monomer sequence distribution (MSD) and additionally different topologies within one sample. This is and will remain a challenge for analysts. First a very short overview will be given concerning the common liquid separation techniques for polymers (SEC, LAC, LCCC, GELC) coupled to soft ionization mass spectrometric methods like MALDI and ESI-MS with focus on their limitations. For very broadly distributed samples or chemical very similar species the superposition of different separation mechanisms in chromatography is unavoidable or the separation efficiency cannot be optimized. Different ionization probabilities and species of the same nominal mass with completely different structures are just two problems of mass spec of complex polymer mixtures. Subsequently, different examples will be shown how these limitations in some cases could be outsmarted. First example will be the separation of statistical EO-PO copolymers of different chemical compositions by end group functionality and the quantification of end group fractions over the whole CCD. Here an UP-LCCC / ESI-TOF-MS coupling is applied. Further for different kinds of polymers it will be shown how it could be realized to obtain information on small isobaric/isomeric topological heterogeneities by coupling UP-SEC / ESI-TOF-MS. All results are based on the data processing of reconstructed ion chromatograms of single mass traces of complex ESI-MS spectra. T2 - SCM-9 CY - Amsterdam, The Netherlands DA - 29.01.2019 KW - Reconstructed ion chromatograms KW - Copolymer KW - Microstructure KW - LC x ESI-TOF-MS PY - 2019 AN - OPUS4-47836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falk, Florian A1 - Stephan-Scherb, Christiane A1 - Lehmusto, J. A1 - Pint, B. T1 - The impact of water vapour on high-temperature surface degradation by sulfurous gases of ferritic alloys N2 - Sulfur and water have a fundamental impact on the corrosion rate and potential failure of materials. It is therefore necessary to understand the mechanisms, rates, and potential means of transport, as well as the reactions of these elements with an alloy. This work investigates the effect of water vapor in the initial stages of SO2 corrosion of an ferritic model alloy containing 9 wt% Cr and 0.5 wt% Mn. The exposure experiments were studied at 650°C in situ under laboratory conditions using energy-dispersive x-ray diffraction analysis. Two separate experiments were run, one with a 99.5% Ar + 0.5% SO2 atmosphere and one with a 69.5% Ar + 0.5% SO2 + 30% H2O atmosphere. With a wet atmosphere, the alloy formed a scale with decreasing oxygen content towards the scale–alloy interface. Sulfides were identified above and below a (Fe, Cr)3O4 layer in the inner corrosion zone. In contrast to this, the overall scale growth was slower in a dry SO2 atmosphere. T2 - EUROCORR CY - Barceló Sevilla Renacimiento, Seville, Spain DA - 09.09.2019 KW - Diffraction KW - Sulfidation KW - Early oxidation KW - Corrosion KW - In situ PY - 2019 AN - OPUS4-49213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fabry, Çağtay A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - WelDX - towards a common file format for open science in welding N2 - WelDX is a newly started research project at BAM publicly funded by the German Federal Ministry of Education and Research. Over the course of three years the project aims to build the foundation for a publicly accessible file format and to foster research collaboration in arc welding on a national and international level. The talk will motivate benefits and discuss challenges of using a common file format designed to describe, store and share arc welding research data in the scope of "Open Science". By using common open source software and tools, welding data will be made more accessible and reusable so that new scientific practices may emerge. The proposed file format aims to be easy to use for common welding applications while also offering the possibility to describe complex experiments for state of the art welding research. In addition the talk will illustrate how in the future other facilities and researchers will be able to use experimental arc welding data generated at BAM for their own research, for example to conduct their own data analysis or welding process and thermo-mechanical simulations. T2 - The 72nd IIW Annual Assembly and International Conference 2019 CY - Bratislava, Slovakia DA - 07.07.2019 KW - Welding KW - Research data management KW - Open science KW - Open data KW - Digitalization PY - 2019 AN - OPUS4-49382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fabry, Çağtay A1 - Pittner, Andreas A1 - Rethmeier, Michael T1 - Digitalization and Open Science in Welding Research N2 - The talk will give an overview of past, ongoing and future activities at BAM welding divisions, specifically those regarding prospects and challenges of the ongoing digital transformation and the move to more accessible research data (open science) with concerns to welding research. We will discuss current ways to publish and share research results inside the welding community and highlight approaches and advancements from other scientific fields to improve accessibility and reproducibility. We would also like to discuss the feasibility of integrating open science principles into the current IIW landscape of meetings, publications and education. In Addition we will introduce our upcoming series of workshops organized by BAM focusing on defining and implementing an open source file format specifically designed to publish and exchange high quality welding research data. T2 - The 72nd IIW Annual Assembly and International Conference 2019 CY - Bratislava, Slovakia DA - 07.07.2019 KW - Digitalization KW - Open science KW - Welding KW - Open data KW - Research data management PY - 2019 AN - OPUS4-49381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evsevleev, Sergei A1 - Paciornik, Sidnei A1 - Gollwitzer, Christian A1 - Bruno, Giovanni T1 - Application of deep learning to the segmentation of synchrotron X-ray tomography data of multiphase metal matrix composites N2 - The 3D microstructure of an Al alloy matrix composite with two ceramic reinforcements was investigated by synchrotron X-ray tomography. A deep learning algorithm was used for the segmentation of four different phases. We show that convolutional networks with the U-Net architecture are able to solve complex segmentation tasks with small amount of training data. T2 - International Conference on Tomography of Materials & Structures CY - Cairns, Australia DA - 22.07.2019 KW - Synchrotron X-ray tomography KW - Deep learning KW - Segmentation KW - Metal matrix composite PY - 2019 AN - OPUS4-48606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Evsevleev, Sergei A1 - Mishurova, Tatiana A1 - Sevostianov, Igor A1 - Garcés, Gerardo A1 - Requena, Guillermo A1 - Cabeza, Sandra A1 - Bruno, Giovanni T1 - Load transfer and damage evolution in multiphase Al alloy matrix composites under uniaxial compression N2 - Aluminum alloys are extensively used in the automotive industry. Particularly, squeeze casting production of Al-Si alloys is employed in the conception of metal matrix composites (MMC) for combustion engines. Such materials are of a high interest since they allow combining improved mechanical properties and reduced weight and hence improve efficiency. We investigate two types of MMCs, which can be potentially used for production of combustion engine pistons: 1) a near-eutectic cast AlSi12CuMgNi alloy reinforced with 15%vol. Al2O3 random planar oriented short fibers and 2) the same alloy reinforced with 7%vol. Al2O3 random planar oriented short fibers + 15%vol. SiC particles. Complex 3D microstructure of the samples in as-cast condition, consisting of four and five phases (Al matrix, eutectic Si, intermetallics, Al2O3 fibers and SiC particles) was investigated by synchrotron computed tomography (CT). Advanced methods based on machine learning were applied for segmentation of all phases. This allowed extracting quantitative information such as volume fraction, shape and interconnectivity of every phase. In-situ compression tests during neutron diffraction experiments were used to track the load transfer among phases, while CT on pre-strained samples to monitor and quantify damage. A micromechanical model was developed to simulate the evolution of the internal stress of each phase during uniaxial compression. We showed that in composites with the Al2O3 fiber mat plane perpendicular to the load axis the Al-alloy matrix presents a large hydrostatic stress component, i.e. undergoes compression also in the direction transverse to the external load. This feature holds with and without the addition of SiC ceramic reinforcement and is absent in the case when the Al2O3 fiber mat plane is parallel to the load axis. We show, that the intermetallics play a decisive role at very high loads, when all other reinforcement phases suffer (extensive) damage. The addition of SiC particles does alleviate the load on the Al2O3 fibers, on the eutectic Si, and on the intermetallic phases in both cases of parallel and orthogonal (to the load axis) Al2O3 fiber orientation. Apart from the beneficial addition of ceramic reinforcement, the presence of intermetallic phase and eutectic silicon, forming an interconnected network even at high loads, when single particles break, confers peculiar properties to these multi-phase composites. T2 - The 3rd International Conference on Light Materials CY - Manchester, UK DA - 05.11.2019 KW - Aluminum alloy KW - Metal Matrix Composite KW - Computed tomography KW - Neutron diffraction KW - Stress analysis KW - Load partition PY - 2019 AN - OPUS4-49640 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -