TY - CONF A1 - Das, Chayanika A1 - Witt, Julia A1 - Kastanias, Eleni A1 - Özcan Sandikcioglu, Özlem T1 - Graphene-polymer nanocomposite coatings for corrosion protection of Mg-alloys N2 - Mg is a very promising material for lightweight construction and biomedical applications. However, the applicability of Mg and its alloys is hindered by its high corrosion susceptibility. Moreover, due to the toxicity of most inorganic conversion coating systems, the development of novel pre-treatment strategies for technical alloys are of vital importance. The aim of this study is to develop polymeric bilayer thin films for corrosion protection of Mg-alloys. As polymer matrix, poly(4-vinyl pyridine) (P4VP) was selected due to its semiconducting properties and protonic conductivity. In contrast to ICPs with electronic conductivity, the pH-dependant, reversible protonation/de-protonation capability of the P4VP has been utilized to synthesize environment-responsive coatings. Polyacrylicacid (PAA) was tested as crosslinking layers to improve interfacial interactions between the polymeric layers. The macroscopic corrosion properties of the bilayer coatings were investigated by means of electrochemical methods such as linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) in corrosive media simulating technical and biomedical applications. The presentation summarizes our recent results on the synthesis and characterization of this novel coating system with a special focus on their interfacial stability and corrosion protection properties. T2 - E-MRS 2019 Spring Meeting CY - Nice, France DA - 27.05.2019 KW - Polymer bilayer coatings KW - Graphene polymer nanocomposite KW - Corrosion inhibition KW - Magnesium alloy PY - 2019 AN - OPUS4-49848 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Das, Chayanika A1 - Witt, Julia A1 - Kastanias, Eleni A1 - Özcan Sandikcioglu, Özlem T1 - Graphene polymer nanocomposite coatings for corrosion inhibition of mg alloys N2 - Mg is a very promising material for lightweight construction and biomedical applications. However, the applicability of Mg and its alloys is hindered by its high corrosion susceptibility. Moreover, due to the toxicity of most inorganic conversion coating systems, the development of novel pre-treatment strategies for technical alloys are of vital importance. Recently, the application of intrinsically conducting polymers (ICPs) have been introduced as an alternative approach for corrosion protection of Mg alloys. ICPs with electronic conductivity are known to be able to passivate small defects, however they fail in the presence of large defects due to fast coating reduction and increased cation transport if macroscopically extended percolation networks exist. The aim of this study is to develop graphene-polymer nanocomposite thin films for corrosion protection of Mg-alloys. As polymer matrix, poly(4-vinyl pyridine) (P4VP) was selected due to its semiconducting properties and protonic conductivity. In contrast to ICPs with electronic conductivity, the pH-dependant, reversible protonation/de-protonation capability of the P4VP has been utilized to synthesize environment-responsive coatings. The presentation summarizes our recent results on the synthesis and characterization of this novel coating system with a special focus on their interfacial stability and corrosion protection properties. T2 - Eurocorr 2019 CY - Seville, Spain DA - 09.09.2019 KW - Polymer bilayer coatings KW - Ggraphene polymer nanocomposite KW - Corrosion inhibition KW - Magnesium alloy PY - 2019 AN - OPUS4-49849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Henning, L. M. A1 - Simon, U. A1 - Gurlo, A. A1 - Smales, Glen Jacob A1 - Bekheet, M. F. T1 - Grafting and stabilization of ordered mesoporous silica COK-12 with graphene oxide for enhanced removal of methylene blue JF - RSC Advances N2 - Large-pore ordered mesoporous silica (OMS) COK-12, analogous to the well-known SBA-15, but synthesized in a more environmentally friendly way and exhibiting a shorter plate-like structure, was grafted with different amounts of graphene oxide (GO) for the first time in an inexpensive and rapid process, that was successfully upscaled. Samples were examined with nitrogen sorption analysis, SAXS, Raman spectroscopy, XPS, and zeta potential analysis. Adsorption experiments with the cationic dye methylene blue (MB) were conducted on the grafted materials and on pure COK-12, taking into account the influence of initial dye concentration (30–600 mg L-1), adsorbent dosage (0.2–14 g L-1), contact time (0.3–300 min), solution pH (4 10), and influence of salts and temperature (0–1 M NaCl, 80 C) to simulate industrial dye effluent. The adsorption process was found to be represented best by the Langmuir isotherm model, i.e., adsorption is a monolayer process. The calculated maximum Adsorption capacities were found to be 20.2 and 197.5 mg g-1 at dosages of 5 and 0.5 g L-1 for pure COK-12 and COK-12 grafted with 50 wt% GO, respectively, at pH 5.65 and MB concentration of 100 mg L-1. Adsorption kinetics were found to follow the pseudo-second order model, i.e., chemisorption is the rate controlling step. The adsorption performances could be well preserved at simulated dye effluent. Desorption was found to be most effective with hydrochloric acid. The COK-12 grafted with GO presented in this work shows superior adsorption properties in comparison to other grafted OMS materials. In addition, grafting with GO remarkably improved the stability of COK-12 in aqueous solution. KW - COK-12 KW - Mesoporous Silica KW - Graphene Oxide KW - Large-pore PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-497788 UR - https://pubs.rsc.org/en/content/articlehtml/2019/ra/c9ra05541j DO - https://doi.org/10.1039/c9ra05541j VL - 9 IS - 62 SP - 36271 EP - 36284 PB - Royal Society of Chemistry AN - OPUS4-49778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina T1 - Glass transition and glassy dynamics of thin polymer films and polymer nanocomposites N2 - Polymers at interfaces play a major role in a broad variety of applications ranging from engineering purposes (for instance polymer based nanocomposites) to high tech implications (for instance light emitting diodes). Here the glass transition and glassy dynamics is considered for epoxy-based nanocomposite with Layered Double Hydroxide nanofiller and for thin films of a misicble polymer blend of PVME/PS with thicknesses down to 7 nm. The materials are investigated by spectroscopic techniques (broadband and specific heat spectroscopy), as well as by fast scanning calorimetry and small- and wide-angle X-ray scattering. T2 - Seminarvortrag Columbia University CY - New York, USA DA - 11.03.2019 KW - Nanocomposites KW - Rigid amorphous fraction KW - Thin films KW - Interfaces PY - 2019 AN - OPUS4-47565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Donskyi, Ievgen A1 - Azab, W. A1 - Cuellar-Camach, J.L. A1 - Guday, G. A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Osterrieder, K. A1 - Adeli, M. A1 - Haag, R. T1 - Functionalized nanographene sheets with high antiviral activity through synergistic electrostatic and hydrophobic interactions JF - Nanoscale N2 - As resistance to traditional drugs emerges for treatment of Virus infections, the need for new methods for virus inhibition increases. Graphene derivatives with large surface areas have shown strong activity against different viruses. However, the inability of current synthetic protocols to accurately manipulate the structure of graphene sheets in order to control their antiviral activity remains a major challenge. In this work, a series of graphene derivatives with defined polyglycerol sulfate and fatty amine functionalities have been synthesized and their interactions with herpes simplex Virus type 1 (HSV-1) are investigated. While electrostatic interactions between polyglycerol sulfate and virus particles trigger the binding of graphene to virus, alkyl chains induce a high antiviral activity by secondary hydrophobic interactions. Among graphene sheets with a broad range of alkyl chains, (C3–C18), the C12-functionalized sheets showed the highest antiviral activity, indicating the optimum synergistic effect between electrostatic and hydrophobic interactions, but this derivative was toxic against the Vero cell line. In contrast, sheets functionalized with C6- and C9-alkyl chains showed low toxicity against Vero cells and a synergistic Inhibition of HSV-1. This study shows that antiviral agents against HSV-1 can be obtained by controlled and stepwise functionalization of graphene sheets and may be developed into antiviral agents for future biomedical applications. KW - Functionalized nanographene KW - X-ray Photoelectron Spectroscopy (XPS) KW - NEXAFS KW - Antiviral activity PY - 2019 DO - https://doi.org/10.1039/c9nr05273a SN - 2040-3364 VL - 11 IS - 34 SP - 15804 EP - 15809 PB - The Royal Society of Chemistry AN - OPUS4-48807 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brandl, F. A1 - Lederle, F. A1 - Härter, C. A1 - Thünemann, Andreas A1 - Beuermann, S. T1 - From gaseous vinylidene fluoride to electroactive poly(vinylidene fluoride) – Inducing β-phase by formation of block copolymers and composite materials N2 - Polymeric core-shell particles were synthesized in a semi-batch emulsion polymerization process. The shell of the particles consist of PVDF with a high amount of beta-phase. Small-angle X-ray scattering (SAXS) was used to quantify the size of the cores of the particles and the thickness of the shell. T2 - Macromolecular Colloquium Freiburg CY - Freiburg, Germany DA - 20.02.2019 KW - Small-angle x-ray scattering KW - SAXS KW - Nanoparticle KW - Polymer PY - 2019 AN - OPUS4-47467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina T1 - Flash DSC investigations on nanocomposites and electrospun fibers containing nanoparticles N2 - It was found for inorganic/polymer nanocomposites that a so-called Rigid Amorphous Phase (RAF) is formed in the interfacial region by adsorption of polymer segments onto the nanoparticles. The segmental dynamics of RAF is expected to be altered, as compared to the pure matrix, which might percolate into the entire system, affecting the overall nanocomposite properties. Here, the structure and molecular mobility of epoxy-based PNCs with different nanofillers (layered double hydroxide and boehmite) was studied by a combination of calorimetric and X-Ray scattering techniques. Temperature modulated DSC (TMDSC) showed that depending on the nanofiller, RAF can reach up to 40 wt % of the system or, on the contrary, the overall mobility of the matrix might increase due to the presence of particles. Such contrasting results, including the high amount of RAF, which was never shown before for epoxy-based PNCs, emphasize the importance of interfaces. Additionally, glass transition and glassy dynamics were investigated by a novel technique, Flash DSC (heating rates up to 10 kK/s) employed for the first time to a thermosetting system and electrospun fibers, which did not result in their degradation. It was used to study both the vitrification kinetics and glassy dynamics of the PNCs, for instance further confirming the presence of RAF and its impact on the overall material properties. T2 - 4th Mettler Toledo Flash DSC conference CY - Zurich, Switzerland DA - 25.11.2019 KW - Flash DSC KW - Nanocomposites KW - Rigid amorphous fraction KW - TMDSC KW - BDS KW - Boehmite KW - Electrospun fibers PY - 2019 AN - OPUS4-50067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mitzkus, Anja A1 - Sahre, Mario A1 - Basedau, Frank A1 - Hofman, Detlef A1 - Beck, Uwe T1 - Fiber Bragg Gratings for In-Situ Stress Monitoring of Electrochemical Deposition JF - Journal of The Electrochemical Society N2 - The in-situ monitoring of electrochemical deposition (ECD) processes is still a challenge regarding the measurement of the effective temperature of the substrate and the formation of mechanical stress in the layer under given plating conditions. Monitoring problems can be solved by applying a pre-coated fiber Bragg grating (FBG) to the electrolytic process as the shift of the Bragg wavelength is affected by both the temperature of the electrolyte near the substrate and the stress formation in the growing layer. The experimental FBG set-up and the quantitative determination of temperature- and stress-related strain is described for a nickel-iron electrolyte. KW - Fiber Bragg grating (FBG) KW - Electrochemical deposition (ECD) KW - Optical fibers PY - 2019 DO - https://doi.org/10.1149/2.0111906jes SN - 0013-4651 VL - 166 IS - 6 SP - B312 EP - B315 PB - Electrochemical Society CY - Pennington, NJ AN - OPUS4-47738 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Florian, Camilo A1 - Kirner, Sabrina V. A1 - Krüger, Jörg T1 - Femtosecond laser-induced periodic surface structures: from light localization to applications N2 - This presentation reviews the current state in the field of Laser-induced Periodic Surface Structures (LIPSS). These surface nanostructures are a universal phenomenon and can be generated on almost any material by irradiation with intense linearly polarized laser radiation. LIPSS are formed in a “self-ordered” way and are often accompanying material processing applications. They can be produced following a single-step process and enable surface functionalization through the adaption of optical, mechanical and chemical surface properties. Their structural sizes typically range from several micrometers down to less than 100 nanometers exhibiting a clear correlation with the polarization direction of the laser radiation. Various types of surface structures are classified, relevant control parameters are identified, and their material specific formation mechanisms are analyzed for different types of inorganic solids, i.e., metals, semiconductors, and dielectrics, through time-resolved optical experiments and theoretical simulations. Finally, technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed. T2 - International Conference on Advanced Laser Technologies (ALT'19) CY - Prague, Czech Republic DA - 15.09.2019 KW - Laser-induced periodic surface structures, LIPSS KW - Femtosecond laser KW - Surface functionalization KW - Electromagnetic scattering PY - 2019 AN - OPUS4-49098 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob T1 - Experimenting on MAUS N2 - Initial results, findings and experience after 1.5 years of using the Multi-scale Analyser for Ultrafine Structures (MAUS), a bespoke wide-range SAXS instrument for the nanostructure quantification of demanding materials science samples. T2 - S4SAS Conference 2019 CY - Diamond Light Source, Didcot, UK DA - 06.06.2019 KW - X-ray scattering KW - SAXS KW - Nanostructure quantification KW - Nanocharacterisation PY - 2019 AN - OPUS4-48193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard T1 - Everything SAXS N2 - Introduction keynote for the "Small Angle Scattering Training School 2019", introducing a wide range of aspects around small-angle scattering. T2 - Small Angle Scattering Training School 2019 CY - Diamond Light Source, Didcot, UK DA - 04.06.2019 KW - X-ray scattering KW - Nanostructure KW - Introduction KW - Practical aspects PY - 2019 AN - OPUS4-48191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griepentrog, Michael T1 - Estimation of measurement uncertainty of instrumented indentation testing N2 - Some critical discussion of the state of the art of uncertainty evaluationin Instrumented Indentation Testing IIT Nowadays the Instrumented Indentation Testing (IIT), in the nano range often named as nano indention, is one of the most commonly used methods to determine the mechanical properties of materials in the micro and nano range. This method is already extensive standardized in ISO 14577 part 1-4. In the past, the application of this standard in testing praxis shows that the established values have an excellent precision.If an uncertainty is calculated, the range of values within which the true value is asserted to lie with some level of confidencewill be known. In part 1 of ISO 14577 [1] two methods for evaluation of the uncertainty in IIT are mentioned: Method 1 for determining uncertainty considers only those uncertainties associated with the overall measurement performance of the testing machine with respect to the reference blocks. Method 2calculates a combined uncertainty from individual contributions. These may be grouped into random and systematic uncertainties. Both methods will be described in detail using examples from the dailyexperimental praxis. The comparabilityof both methods will be critically discussed. Finally, it will be showedhow the calculated uncertaintiescan be used for performancetests and product specifications. Acknowledgement This work was performed under the support of the EMPIR project 17NRM05Advancing measurement uncertainty̶ comprehensiveexamples for key international standards References [1] ISO 14577 part 1 (2017) T2 - KLA Nanomechanical Testers User Workshop CY - Langen, Germany DA - 02.05.2019 KW - Instrumented Indentation Testing KW - IIT KW - nanoindentation KW - mechanical properties KW - uncertainty KW - performance test KW - product specification PY - 2019 AN - OPUS4-48141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khandarhaeva, S. A1 - Fedotenko, T. A1 - Pakhomova, A. A1 - Gromilov, S. A1 - Dubrovinsky, L. A1 - Dubrovinskaia, N. A1 - Yusenko, Kirill T1 - Equations of state of rhodium, iridium and their alloys up to 70 GPa JF - Journal of Alloys and Compounds N2 - Knowledge of the compressional and thermal behaviour of metals and alloys is of a high fundamental and applied value. In this work, we studied the behaviour of Ir, Rh, and their fcc-structured alloys, Ir0.42Rh0.58 and Ir0.26Os0.05Pt0.31Rh0.23Ru0.15, up to 70 GPa using the diamond anvil cell technique with synchrotron X-ray diffraction. We found that all these materials are structurally stable upon room-temperature hydrostatic compression in the whole pressure interval, as well as upon heating to 2273 K both at ambient and high pressure. Rh, Ir0.42Rh0.58 and Ir0.26Os0.05Pt0.31Rh0.23Ru0.15 were investigated under static compression for the first time. According to our data, the compressibility of Ir, Rh, fcc–Ir0.42Rh0.58, and fcc Ir0.26Os0.05Pt0.31Rh0.23Ru0.15, can be described with the 3rd order Birch-Murnaghan equation of state with the following parameters: V0 = 14.14(6) Å3·atom−1, B0 = 341(10) GPa, and B0' = 4.7(3); V0 = 13.73(7) Å3·atom−1, B0 = 301(9) GPa, and B0' = 3.1(2); V0 = 13.90(8) Å3·atom−1, B0 = 317(17) GPa, and B0' = 6.0(5); V0 = 14.16(9) Å3·atom−1, B0 = 300(22) GPa, B0' = 6(1), where V0 is the unit cell volume, B0 and B0' – are the bulk modulus and its pressure derivative. KW - EOS KW - Rh-Ir alloys KW - High-entropy alloys KW - High-pressure PY - 2019 DO - https://doi.org/10.1016/j.jallcom.2019.02.206 VL - 788 SP - 212 EP - 218 PB - Elsevier B.V. AN - OPUS4-47404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steinhoff, U. A1 - Hodoroaba, Vasile-Dan T1 - EMPIR Erläuterung der Fördermaßnahme und Beispiele aus der Nanotechnologie N2 - Das EMPIR-Förderprogramm wird kurz erläutert und laufende Projekte aus der Nanotechnologie werden vorgestellt. Der Schwerpunkt liegt auf Standardisierungsprojekten, die gemeinsam mit ISO/TC 229 'Nanotechnologies' und CEN/TC 352 'Nanotechnologies' zu neuen Normen führen sollten. Als Beispiel für laufende Nanotechnologie-Projekte mit Koordination aus Deutschland werden MagNaStand (PTB) und nPSize (BAM) gegeben. T2 - Treffen des Normungsausschusses NA 062-08-17 AA Nanotechnologien CY - KIT, Karlsruhe, Germany DA - 07.03.2019 KW - EMPIR KW - Nanoparticles KW - Reference materials KW - Particle size distribution KW - Traceability KW - Standardisation PY - 2019 AN - OPUS4-47859 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Krüger, Jörg T1 - Emission von Röntgenstrahlung bei der UKP-Laser-Materialbearbeitung N2 - Der Vortrag stellt Untersuchungen im Rahmen eines BMBF-geförderten Vorhabens zur unerwünschten Emission von Röntgenstahlung bei der Materialbearbeitung mit ultrakurzen Laserpulsen vor. T2 - 7. OptoNet Laserstammtisch “Ultrakurzpulslaser” CY - Jena, Germany DA - 12.03.2019 KW - Laserschutz KW - Materialbearbeitung KW - Röntgenemission KW - Sekundärstrahlung KW - Ultrakurze Laserpulse PY - 2019 AN - OPUS4-47569 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frielinghaus, H. A1 - Butler, P. D. A1 - Pauw, Brian Richard A1 - Rennie, A. R. T1 - Eleventh canSAS Meeting: International Cooperation and Collaboration in Small-Angle Scattering JF - Synchrotron Radiation News N2 - The eleventh canSAS workshop was held in Freising, Germany, July 8–10, 2019. These international meetings, promoting collective action for nomadic small-angle scatterers, have been taking place since 1998 and act as forums to catalyze cooperation amongst the SAS community in order to provide better facilities and equipment, combined with reliable data interpretation and analysis. The meeting attracted over 60 participants from major neutron and X-ray laboratories, as well as manufacturers of SAXS equipment, and users from academia and industry. There was also a wide geographical spread with participants from Australia, Asia, and North America joining European colleagues. T2 - canSAS XI CY - Freising, Germany DA - 08.07-2019 KW - Small angle scattering KW - Conference KW - Standardisation PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-498192 DO - https://doi.org/10.1080/08940886.2019.1680215 SN - 0894-0886 SN - 1931-7344 VL - 32 IS - 6 SP - 48 EP - 49 PB - Taylor & Francis CY - Abingdon, UK AN - OPUS4-49819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hampel, Marco A1 - Schenderlein, Matthias A1 - Schary, Christian A1 - Dimper, Matthias A1 - Özcan Sandikcioglu, Özlem T1 - Efficient detection of localized corrosion processes on stainless steel by means of scanning electrochemical microscopy (SECM) using a multi-electrode approach JF - Electrochemistry Communications N2 - High resolution analysis of corrosion processes on stainless steels is a challenging task. The application of local electrochemical techniques such as scanning electrochemical microscopy (SECM) has opened new possibilities for the detection of corrosion products and activity on metallic surfaces. However, due to its stochastic nature, the analysis of pitting corrosion requires being at the right place at the right time. Scanning over large areas at a high resolution not only leads to long scan durations but also leaves many short-lived processes undetected. In this paper we present the combined automated operation of SECM and wire multi-electrodes connected to a multi-electrode analyzer (MMA). The inter-electrode currents between 25 wire electrodes connected via zero resistance ammeters (ZRA) are measured by the MMA at open circuit potential (OCP) and the electrodes reporting anodic currents are detected automatically to be analyzed by means of SECM. The results demonstrate the successful application of this methodology for the detection of unstable and stable pitting processes on 304 stainless steel in a corrosive aqueous environment. KW - Scanning electrochemical microscope (SECM) KW - Localised corrosion KW - Corrosion monitoring PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-478646 DO - https://doi.org/10.1016/j.elecom.2019.02.019 VL - 101 SP - 52 EP - 55 PB - Elsevier B.V. AN - OPUS4-47864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem A1 - Wurzler, Nina A1 - Hampel, Marco A1 - Sobol, Oded A1 - Schütter, Jan David T1 - Effekt der Vorkonditionierung und Umweltparameter auf die Anheftung und Biofilmbildung N2 - Aktuelle Ergebnisse des Fachbereiches auf dem Gebiet MIC. T2 - Treffen der GfKORR/DECHEMA Fachgruppe MikroMatz CY - Berlin, Germany DA - 09.04.2019 KW - MIC KW - Korrosion KW - Korrosionsüberwachung KW - Biofilmbildung PY - 2019 AN - OPUS4-50292 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schütter, Jan A1 - Pietsch, Franziska A1 - Schreiber, Frank A1 - Koerdt, Andrea A1 - Özcan Sandikcioglu, Özlem T1 - Effect of surface topography and chemistry on the attachment of bacteria on solid surfaces N2 - Microbiologically induced corrosion due to bacterial biofilms causes several problems in industrial systems, technical applications and in medicine. Prior to the formation of a biofilm on a substrate, planktonic cells attach on the surface. Hence, the properties of the surface play a key role in biofilm formation and are of great importance for the development of strategies to prevent bacterial attachment and biofilm formation. This project aims at clarifying to which extent surface micro-/nanostructuring and chemical functionalization affects bacterial attachment and whether a synergistic combination of the two can be used to control bacterial adhesion. To answer these questions, model surfaces with regular patterns of 5-10 micrometers in size have been prepared, which provide distinct zones differing in terms of their chemistry or nano-roughness. This was achieved by micro contact printing of self-assembled monolayers with different functional groups and deposition of patterned ZnO nanorod arrays for studying the effect of surface chemistry and morphology, respectively. Typical contrasts studied were combinations of positively/negatively charged, hydrophobic/hydrophilic or flat/rough. The attachment behavior of bacteria on tailored surfaces were studied in a flow chamber as a function of time. The strain Pseudomonas fluorescens SBW25 was chosen as a model organism. DNA-intercalating dyes such as Syto9 have a high affinity to adsorb on ZnO nanorods. To overcome this limitation a genetic modification was performed by introducing a gene which expresses a green fluorescent protein in P. fluorescens SBW25 enabling the quantitative evaluation of the flow chamber studies by means of fluorescence microscopy. Further analysis of the attachment behavior was performed by means of scanning electron microscopy. The presentation will summarize the results of our systematic study on the role of individual parameters on bacterial attachment and highlight synergistic combinations, showing an inhibition or enhancing effect. As the investigations with model substrates enable a precise control of the surface parameters, this approach can be applied to different microorganisms and material systems to achieve a correlative description of bacterial adhesion on solid surfaces. T2 - Eurocorr2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Microbial KW - Corrosion KW - MIC KW - Nanorods PY - 2019 AN - OPUS4-49730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, Daniel A1 - Griepentrog, Michael A1 - Beck, Uwe A1 - Duwe, M. A1 - Quast, J.-H. A1 - Schneider, S. T1 - Effect of curvature of spherical microscopic indentations on the ellipsometric readout JF - Journal of Vacuum Science & Technology B 37 N2 - The authors describe and interpret curvature-related changes to the ellipsometric readout. As model system for a concave curvature, a set of three spherical microscopic indents in silicon (100) of different sizes was prepared by instrumented indentation testing using a spherical indenter. For reference, these samples were characterized by AFM to reveal the topography of each structure. The concavelike indents were analyzed by Mueller-Matrix imaging ellipsometry to extract lateral intensity images of 12 elements of the Mueller-Matrix. As a result of the detailed analysis of the image elements m22, m23, and m14, it was possible to correlate intensity changes and symmetry properties to depolarization and cross polarization induced by the edge threshold and the curved surface of the indent. KW - Spectroskopic Imaging KW - Mueller-Matrix imaging ellipsometry KW - Structural anomalies KW - Structural inhomogenities PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-498105 DO - https://doi.org/10.1116/1.5122252 VL - 37 IS - 6 SP - 062906-1 EP - 062906-5 PB - American Vacuum Society AN - OPUS4-49810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wurzler, Nina A1 - Wagner, Ralph A1 - Schutter, Jan David A1 - Das, Chayanika A1 - Dimper, Matthias A1 - An, Biwen A1 - Koerdt, Andrea A1 - Lützenkirchen-Hecht, Dirk A1 - Özcan Sandikcioglu, Özlem T1 - Effect of cultivation conditions on the electrochemical activity of metal reducing bacteria (mrb) on stainless steel surfaces N2 - Investigation of the electrochemical activity of two cultures grown with and without abundance of Fe(III) and their different ability to reduce and therefore dissolve iron oxides in steel and model iron thin films. T2 - Eurocorr2019 CY - Sevilla, Spain DA - 09.09.2019 KW - X-ray spectroscopic techniques KW - Microbiologically influenced corrosion KW - MIC KW - XANES KW - Metal reducing bacteria KW - In situ PY - 2019 AN - OPUS4-49692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - B, Yang A1 - Chua, Y. Z. A1 - Szymoniak, Paulina A1 - Carta, M A1 - Malpass-Evans, R A1 - McKeown, N A1 - Harrison, W A1 - Budd, P A1 - Schick, C A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Effect of backbone rigidity on the glass transition of polymers of in-trinsic microporosity probed by fast scanning calorimetry JF - ACS Macro letters N2 - Polymers of Intrinsic Microporosity (PIMs) of high performance have developed as materials with a wide application range in gas separation and other energy-related fields. Further optimization and long-term behavior of devices with PIMs require an understanding of the structure-property relationships including physical aging. In this context the glass transi-tion plays a central role, but with conventional thermal analysis a glass transition is usually not detectable for PIMs be-fore their thermal decomposition. Fast scanning calorimetry provides evidence of the glass transition for a series of PIMs, as the time scales responsible for thermal degradation and for the glass transition are decoupled by employing ultrafast heating rates of tens of thousands K s-1. The investigated PIMs were chosen considering the chain rigidity. The estimated glass transition temperatures follow the order of the rigidity of the backbone of the PIMs. KW - Polymers of intrinsic microporosity KW - Fast scanning calormetry PY - 2019 DO - https://doi.org/10.1021/acsmacrolett.9b00482 SN - 2161-1653 VL - 8 IS - 8 SP - 1022 EP - 1028 PB - ACS Publications AN - OPUS4-48617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Li, Z. A1 - Wang, D.-Y. A1 - Schoenhals, Andreas T1 - Dielectric and flash DSC investigations on an epoxy based nanocomposite system with MgAl layered double hydroxide as nanofiller JF - Thermochimica Acta N2 - Nanocomposites based on MgAL layered double hydroxides (LDH) and an epoxy resin were prepared and investigated by a combination of complementary methods. As epoxy resin Bisphenol A diglycidyl ether (DGEBA) was used with Diethylenetriamine as curing agent. The LDH was modified with taurine, which acts as an additional crosslinking agent due to its amine groups. The epoxy resin was cured in a presence of the nanofiller, which was added to the system in various concentrations. X-ray scattering, by combination of SAXS and WAXS was used to characterize the morphology of the obtained nanocomposites. These investigations show that the filler is distributed in the matrix as small stacks of ca. 10 layers. The molecular dynamics of the system, as probe for structure, was investigated by broadband dielectric spectroscopy. In addition to the - and -relaxation (dynamic glass transition), characteristic for the unfilled materials, a further process was found which was assigned to localized fluctuations of segments physically adsorbed or chemically bonded to the nanoparticles. The dielectric -relaxation is shifted to higher temperatures for the nanocomposites in comparison to the pure material but depends weakly on the content of nanoparticles. Further, for the first time Flash DSC was employed to a thermosetting system to investigate the glass transition behavior of the nanocomposites. The heating rates were converted in to relaxation rates. For low concentrations of the nanofiller the thermal data overlap more or less with that of the pure epoxy. For higher concentrations the thermal data are shifted significantly to higher temperatures. This is discussed in terms the cooperativity approach to the glass transition. KW - Nanocomposites KW - Broadband dielectric spectroscopy KW - Flash DSC PY - 2019 DO - https://doi.org/10.1016/j.tca.2019.01.010 SN - 0040-6031 VL - 677 SP - 151 EP - 161 PB - Elsevier AN - OPUS4-48218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fortini, Renata A1 - Sturm, Heinz A1 - Meyer-Plath, A. A1 - Kehren, D. T1 - Development of a method for measuring the flexural rigidity of nanofibres N2 - Toxicological studies have shown that some types of carbon nanotubes may provoke asbestos-like effects including chronic inflammation and lung cancer. Inhaled carbon nanotubes may reach the deep lung tissue. Alveolar macrophages are responsible to remove such foreign objects from the alveoli in a process called phagocytosis. If a macrophage fails to uptake a nanotube completely, cell lesions may give rise to inflammation. It is currently assumed that short, flexible and long as well as granularly agglomerated (tangled) nanofibres are clearable by macrophages, whereas biodurable long and rigid nanotubes may persist in lung tissue. The flexural rigidity of nanofibres is therefore believed to be an important material property that governs fibre toxicity and needs to be investigated. The present work aims at determining the rigidity of nanofibres by detecting their resonance frequencies using a Dynamic Scanning Electron Microscope (DySEM) setup. By depositing and fixing a nanofibre to an oscillating support, it can be excited to vibrations and treated as a cantilevered beam. This way, its elastic modulus can be determined via Euler-Bernoulli’s beam theory. Multi-walled carbon nanotubes (MWCNTs) were deposited on high frequency piezoelectric quartz crystals mounted on a scanning electron microscope (SEM) holder. When introduced into the SEM chamber and connected to a frequency-sweeping waveform generator, the quartz crystal actuates the deposited fibre. A lock-in amplified processes the secondary electron detector signal resulting from the electron beam modulated by the vibrating nanofibre. Whenever a fibre resonance is detected, the SEM image of the fibre is stored to identify the fibre oscillation mode. The found resonance frequencies and modes allow determining the elastic modulus accordingly. Since the frequency spacing of resonances is predicted by Euler-Bernoulli, the mode number can be identified and elastic modulus values be averaged. A significant number of individual MWCNTs were classified according to their level of rigidity. The applicability and reliability of the method will be discussed. T2 - Microscopy Conference CY - Berlin, Germany DA - 01.09.2019 KW - Carbon nanotubes KW - Rigidity KW - Resonance frequency KW - Nanofibers KW - Bending modulus PY - 2019 AN - OPUS4-49198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fortini, Renata A1 - Sturm, Heinz A1 - Meyer-Plath, Asmus A1 - Kehren, Dominic T1 - Development of a method for measuring the flexural rigidity of nanofibres N2 - Toxicological studies have shown that some types of carbon nanotubes may provoke asbestos-like effects including chronic inflammation and lung cancer. Inhaled carbon nanotubes may reach the deep lung tissue. Alveolar macrophages are responsible to remove such foreign objects from the alveoli in a process called phagocytosis. If a macrophage fails to uptake a nanotube completely, cell lesions may give rise to inflammation. It is currently assumed that short, flexible and long as well as granularly agglomerated (tangled) nanofibres are clearable by macrophages, whereas biodurable long and rigid nanotubes may persist in lung tissue. The flexural rigidity of nanofibres is therefore believed to be an important material property that governs fibre toxicity and needs to be investigated. The present work aims at determining the rigidity of nanofibres by detecting their resonance frequencies using a Dynamic Scanning Electron Microscope (DySEM) setup. By depositing and fixing a nanofibre to an oscillating support, it can be excited to vibrations and treated as a cantilevered beam. This way, its elastic modulus can be determined via Euler-Bernoulli’s beam theory. Multi-walled carbon nanotubes (MWCNTs) were deposited on high frequency piezoelectric quartz crystals mounted on a scanning electron microscope (SEM) holder. When introduced into the SEM chamber and connected to a frequency-sweeping waveform generator, the quartz crystal actuates the deposited fibre. A lock-in amplified processes the secondary electron detector signal resulting from the electron beam modulated by the vibrating nanofibre. Whenever a fibre resonance is detected, the SEM image of the fibre is stored to identify the fibre oscillation mode. The found resonance frequencies and modes allow determining the elastic modulus accordingly. Since the frequency spacing of resonances is predicted by Euler-Bernoulli, the mode number can be identified and elastic modulus values be averaged. A significant number of individual MWCNTs were classified according to their level of rigidity. The applicability and reliability of the method will be discussed. T2 - EUROMAT CY - Stockholm, Sweden DA - 01.09.2019 KW - Carbon nanotubes KW - Rigidity KW - Resonance frequency KW - Nanofibers KW - Bending modulus PY - 2019 AN - OPUS4-49197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fortini, Renata A1 - Sturm, Heinz A1 - Meyer-Plath, Asmus A1 - Kehren, Dominic T1 - Development of a method for measuring the flexural rigidity of nanofibers N2 - Toxicological studies have shown that some types of carbon nanotubes may provoke asbestos-like effects including chronic inflammation and lung cancer. Inhaled carbon nanotubes may reach the deep lung tissue. Alveolar macrophages are responsible to remove such foreign objects from the alveoli in a process called phagocytosis. If a macrophage fails to uptake a nanotube completely, cell lesions give rise to inflammation. It is currently assumed that short, long and flexible, and granularly agglomerated (tangled) nanofibres are clearable by macrophages, whereas biodurable long and rigid nanotubes persist in the lung tissue. The flexural rigidity of nanofibres is therefore believed to an important material property that governs fibre toxicity and needs to be investigated. The present work aims at determining the rigidity of nanofibres by detecting their resonance frequencies using a Dynamic Scanning Electron Microscope (DySEM) setup. By depositing and fixing a nanofibre to an oscillating support, it can be excited to vibrations and treated as a cantilevered beam. This way, its elastic modulus can be determined via Euler-Bernoulli’s beam theory. Multi-walled carbon nanotubes (MWCNTs) were deposited on high frequency piezoelectric quartz crystals mounted on a scanning electron microscope (SEM) holder. When introduced into the SEM chamber and connected to a frequency-sweeping waveform generator, the quartz crystal actuates the deposited fibre. A lock-in amplified processes the secondary electron detector signal resulting from the electron beam modulated by the vibrating nanofibre. Whenever a fibre resonance is detected, the SEM image of the fibre is stored to identify the fibre oscillation mode. The found resonance frequencies and modes allow determining the elastic modulus according. Since the frequency spacing of resonances is predicted by Euler-Bernoulli, the mode number can be checked and elastic modulus values be averaged. A significant number of MWCNTs have been classified according to their level of rigidity. The applicability and reliability of the method will be discussed. T2 - International Conference on Multifunctional, Hybrid and Nanomaterials CY - Sitges, Spain DA - 11.03.2019 KW - Carbon nanotubes KW - Rigidity KW - Resonance KW - Nanofibers KW - Bending modulus PY - 2019 AN - OPUS4-49196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scholz, Philipp A1 - Panne, Ulrich A1 - Wachtendorf, Volker A1 - Weidner, Steffen T1 - Degradation of polyurethanes in various environments – Effects on molecular mass and crosslinking N2 - The increasing application of polyurethanes (PU) in safety relevant sectors (fire protection, insulation, medicine technique) requires detailed knowledge of the stability and reliability of these materials. Different climate factors are supposed to induce diverse and overlapping degradation reactions. The knowledge of these degradation mechanisms is necessary for an estimation of the period of application depending on usage of the material. An essential property of a polymeric system is represented by the molecular weight. Since a change of the molecular weight is a measure for the chemical stability of a polymer, size-exclusion chromatography (SEC) was used to monitor changes of the molecular weight of thermoplastic polyether- and polyester urethane (TPU) exposed to thermal, hydrolytic and photo-oxidative (UV) degradation conditions for several days. Thermal treatments were performed at elevated temperatures (100 - 200 °C) under oxidative (air) as well as non-oxidative (nitrogen) conditions to evaluate the specific influence of oxygen on the degradation. At higher temperatures (≥ 175 °C) a fast decrease of the molecular masses of both PU accompanied by a high degree of crosslinking was found. At lower temperatures (≤ 150 °C) the polymers remained widely unaffected by thermal degradation within the investigated degradation interval of up to two weeks, which was already known from FTIR spectroscopy[1]. In contrast to that, UV treatment at 25 °C at less than 10 % rel. humidity (RH) resulted in a fast crosslinking, whereas the molecular masses of both PU decreased slower than during the thermal treatments. The depth of penetration of the UV radiation was determined using 3D printed PU samples with different thicknesses. Hydrolysis based degradation effects were less significant. Only slight molecular mass changes were detected at temperatures ≤ 80 °C within a time span of 14 days, while no crosslinking could be measured. Considering the degradation results at the investigated exposure parameters, it could be shown that ester-based PU in general exhibits a significant higher stability compared to ether-based materials. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2019 KW - Polyurethane KW - Thermal degradation KW - UV degradation KW - Molecular masses KW - Crosslinking PY - 2019 AN - OPUS4-47957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholz, Philipp A1 - Wachtendorf, Volker A1 - Panne, Ulrich A1 - Weidner, Steffen ED - Scholz, Philipp T1 - Degradation of MDI-based polyether and polyester-polyurethanes in various environments - Effects on molecular mass and crosslinking JF - Polymer Testing N2 - Size-exclusion chromatography (SEC) was used to monitor changes of the molecular masses of thermoplastic polyether – and polyester urethane (TPU) exposed to thermal, hydrolytic, and photo-oxidative (UV) Degradation conditions for several days. The thermal treatment was performed at elevated temperatures (100–200 °C) under oxidative (air) as well as non-oxidative (nitrogen) conditions to evaluate the specific influence of oxygen on the degradation. At higher temperatures (≥175 °C) a fast decrease of the molecular masses of both PU accompanied by a high degree of crosslinking was found. At lower temperatures (≤150 °C) the polymers remained widely unaffected by thermal degradation within the investigated degradation interval of up to two weeks. Surprisingly, the influence of oxygen (air) was found to be less distinct. In contrast to that, UV treatment at 25 °C at less than 10% rel. humidity (RH) resulted in a fast crosslinking, whereas the molecular masses of both PU decreased slower than for thermal treatments. The depth of penetration of the UV radiation was estimated using 3D printed PU samples with different thicknesses. Hydrolysis based degradation effects were less significant. Only slight molecular mass changes were detected at temperatures ≤80 °C within a time span of 14 days, while no crosslinking could be measured. Considering the degradation results at the investigated exposure parameters, it could be shown that esterbased PU in general exhibits a significant higher stability compared to ether-based materials. KW - Polyurethane KW - Thermal degradation KW - UV degradation KW - Molecular masses KW - Crosslinking PY - 2019 UR - https://www.sciencedirect.com/science/article/pii/S0142941819302363 DO - https://doi.org/10.1016/j.polymertesting.2019.04.028 SN - 0142-9418 VL - 77 SP - 105881, 1 EP - 12 PB - Elsevier CY - Amsterdam AN - OPUS4-48619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bärmann, F A1 - Dittmann, Daniel A1 - Braun, Ulrike A1 - Jonas, U. A1 - Fuchs, S. T1 - Degradation analysis of polypropylene in the presence of phosphorus and sulfur containing additives - TGA-FTIR N2 - Polyolefins as polypropylene are widely used in packaging, automotive, consumer goods, construction, infrastructure, agricultural film and other film and sheet applications. Due to their molecular structure, polyolefins inherently burn well. The wide and growing usage implements that fire retardancy of polyolefin products is necessary and gains more attention. Sulfurous additives with synergistic flame retarding effects were shown in polymers like polystyrene and polyolefins by Bellin et al. and Fuchs et al. earlier. For polystyrene compounds, Braun et al. revealed that thermal degradation in the presence of phosphorus and sulfurous additives changes massively. The total release, the composition, and the onset temperature of evolved decomposition products changes. For polypropylene, mixtures containing triphenyl phosphate (TPP), sulfur (S8) and poly(tertbutylphenol) disulphide (PBDS) (Table 1) were prepared and investigated via thermogravimetric analysis coupled to Fourier transformed infrared spectroscopy (TGA-FTIR). T2 - FRPM 2019 CY - Turku, Finland DA - 26.06.2019 KW - TGA-FTIR KW - Polypropylene KW - Phosphorus KW - Sulfur PY - 2019 AN - OPUS4-49391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Cyclic poly(lactide)s via the ROPPOC method catalyzed by alkyl- or aryltin chlorides JF - Journal of Polymer Science, Polymer Chemistry N2 - A comparison of tributyltin chloride, dibutyltin dichloride,and butyltin trichloride as catalysts of ring-opening polymerizations(ROPs) of l-lactides at 160°C in bulk reveals increasing reactivity in the above order, but only the least reactive catalysts, Bu3SnCl, yield a uniform reaction product, namely cyclic poly(L-lactide)s with weight average molecular weights (Mw ́s) in the range of 40,000–80,000. A comparison of dimethyltin , dibutyltin , and diphenyltin dichlorides resulted in the following order of reactivity: Me2SnCl2