TY - CONF A1 - Liehr, Sascha A1 - Breithaupt, Mathias A1 - Krebber, Katerina T1 - Distributed Humidity Sensing in PMMA Polymer Optical Fibers N2 - The distributed measurement of relative humidity is a sought-after capability for a wide range of applications in civil engineering and structural health monitoring. We show that polymethyl methacrylate (PMMA) optical fi-bers can be employed as a sensor medium to conduct distributed humidity measurement by analyzing Rayleigh backscattering traces obtained by OTDR. We make use of the effect that water penetrates the fiber core and directly influences the local fiber attenuation and Rayleigh backscatter coefficient. We conducted distributed backscattering analysis for two different pulse wavelengths: 500 nm and 650 nm. The 650 nm results are susceptible to both, attenuation changes and backscatter changes, whereas backscatter results at 500 nm are not affected by humidity-induced attenuation and only exhibit a change of Rayleigh backscattered power as a function of humidity. The combined measurement and analysis of both parameters at these two wavelengths has the advantage that cross-sensitivities on backscatter change and attenuation, such as strain and tempera-ture changes, could be separated from the humidity response of the fiber. We present laboratory results for a humidity range between 30% and 90% for both pulse wavelengths: including step responses, humidity cycles and hysteresis analysis. In addition to the attenuation and backscatter coefficient dependence, we also analyze optical runtime changes as a function of humidity. POFs have the advantage that they can be directly embed-ded into materials such as concrete or soil to measure water content or localize water ingress. Standard step-index PMMA POFs can be used as a distributed relative humidity sensor up to 200 m distance. T2 - The 28th International Conference on Plastic Optical Fibers CY - Yokohama, Japan DA - 20.11.2019 KW - Distributed humidity sensor KW - PMMA KW - Rayleigh scattering KW - Polymer optical fiber KW - Distributed sensor KW - Optical fiber sensor KW - OTDR PY - 2019 AN - OPUS4-49868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Li, Wei T1 - Fatigue on carbon fiber reinforced composite under thermal cycling: Progress in the microscopic experiment N2 - Fiber-reinforced-polymers (FRPs) are in current research focus in the lightweight construction industry, because of their extraordinary characteristics (stiffness and strength-to-density relation). The structure of polymer matrix and the interaction with reinforcement are crucial for optimization of the mechanical and thermal properties of FRPs. Due to the macromolecular chain structure, the mechanical properties of a polymer strongly vary with temperature: Below the glass transition, the chain segments of a polymer are “frozen”. Regarding fracture, the total changed energy during fracture if only dissipates for the generation of the new surfaces. However, in the region of the glass transition, the polymer chain segments start to get “unfrozen”, and the energy is not only required for generating new surfaces, but also for irreversibly deformation. This irreversible deformation is affected by the global temperature and the local temperature near the crack tip, which is affected by the local strain rate and crack propagation velocity. Hence, in this research project, the irreversible deformation of neat and reinforced polymers will be controlled by changing the global temperature as well as the local temperature. With using different fracture experiments, the amount of energy required for creating new surfaces and for the irreversible deformation will be separated. In this presentation, I summarized of the first 15 months the whole project. In this period, the basic crack propagation theory for neat polymers is established and the special fracture experiment sample is prepared and tested at room temperature. In addition, the model of the specimen is first established. T2 - Doktorandenseminar von Abteilung 5 CY - Berlin, Germany DA - 25.01.2019 KW - Crack Propagation KW - Polymer PY - 2019 AN - OPUS4-48473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Schiller, B.N A1 - Beck, M. A1 - Bettge, Dirk T1 - On the corrosion behaviour of CO2 injection pipe steels: Role of cement N2 - Carbon Capture and Storage (CCS) is identified as an excellent technology to reach the target of CO2 reduction. However, the safety issue and cost-effectiveness hinder the future of CCS. For the reliability and safety issues of injection wells, the corrosion resistance of the materials used needs to be determined. In this study, representative low-cost materials including carbon steel 1.8977 and low alloyed steel 1.7225 were investigated in simulated pore water at 333 K and under CO2 saturation condition to represent the worst-case scenario: CO2 diffusion and aquifer fluid penetration. These simulated pore waters were made from relevant cement powder to mimic the realistic casing-cement interface. Electrochemical studies were carried out using the pore water made of cement powder dissolved in water in comparison with those dissolved in synthetic aquifer fluid, to reveal the effect of cement as well as formation water on the steel performance. Two commercially available types of cement were investigated: Dyckerhoff Variodur® and Wollastonite. Variodur® is a cement containing high performance binder with ultra-fine blast furnace slag which can be used to produce high acid resistance concrete. On the other hand, Wollastonite is an emerging natural material mainly made of CaSiO3 which can be hardened by converting to CaCO3 during CO2 injection. The results showed the pH-reducing effect of CO2 on the simulated pore water/aquifer (from more than 10 to less than 5) leading to the active corrosion process that happened on both 1.8977 and 1.7225. Electrochemical characterization showed negative free corrosion potential and polarisation curves without passive behaviors. The tested coupons suffered from pitting corrosion, which was confirmed by surface analysis. Interestingly, basing on the pit depth measurements from the tested coupons and the hardness of cement powder, it is suggested that Variodur® performed better than Wollastonite in both aspects. The electrochemical data was compared to that resulted from exposure tests to give a recommendation on material selection for bore-hole construction. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Carbon capture KW - Utilization, and storage (CCUS) technology KW - Corrosion KW - Carbon steel KW - Mortel KW - Crevice corrosion PY - 2019 AN - OPUS4-49105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lausch, Thomas A1 - Kromm, Arne A1 - Schroepfer, Dirk A1 - Kannengießer, Thomas A1 - Schaupp, Thomas T1 - Influence of welding stresses on relaxation cracking during heat treatment of a creep-resistant 13CrMoV steel N2 - Over the past years economic and environmental considerations have led to a markedly increased demand for efficiency and flexibility in petrochemical plants. The operational temperatures and pressures required today can only be achieved by using new creep-resistant grades of steel. The modified 13CrMoV9-10 vanadium steel shows a good resistance against creep and compressed hydrogen and has been in use for the construction of petrochemical reactors since the mid-1990s. Nevertheless, processing of this type of steel requires extreme care during the welding procedure. This is due to its low toughness and high strength in the welded state when not post weld heat treated combined with increased susceptibility to cracking during stress relaxation. Previous research into crack formation in creep-resistant steels has largely focused on thermal and metallurgical factors; however, little knowledge has been gathered regarding the influence of the welding procedure on crack formation during post weld heat treatment considering real-life manufacturing conditions. In this work, the influence of heat control on the mechanical properties has been investigated by simulating the real-life manufacturing conditions prevailing during the construction of petrochemical reactors using a special 3-D testing facility. The stresses resulting from preheating, welding, dehydrogenation heat treatment and the final post weld heat treatment were measured during experiments under varied heat control. In all experiments stress relief cracks formed during post weld heat treatment could be observed. The total crack lengths correlated with the stresses due to welding. The application of a special acoustic emission analysis indicated that the cracks formed during post weld heat treatment in a temperature range between 300 °C and 500 °C. In comparison to small scale samples welded without additional shrinkage restraint, the toughness of the restrained welds was significantly decreased. SEM and TEM analyses of all samples revealed accelerated aging due to early precipitation of special carbides during post weld heat treatment under component relevant restraint. T2 - IIW Intermediate Meeting: Commission II-A CY - Miami, FL, USA DA - 12.03.2019 KW - Welding KW - Creep-resistant steel KW - Post weld heat treatment KW - Stress relief cracking PY - 2019 AN - OPUS4-47610 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Langklotz, U. A1 - Babutzka, Martin A1 - Burkert, Andreas A1 - Schneider, M. T1 - FT-IR spectroscopy of corrosion products formed on zinc under atmospheric conditions N2 - Zinc materials are of high importance in the field of corrosion protection. For example, almost half of the annual production of zinc is used as anti-corrosive layer for steel components, particularly under atmospheric conditions. The corrosion protection is frequently ascribed to zinc carbonate species with low solubility which form on the metal surface under atmospheric conditions. Due to the technological importance and wide use of zinc materials, its corrosion behavior and the formation of reaction products has been intensively investigated over decades. Assuming atmospheric corrosion conditions, an initial native passive film of few nanometers thickness forms spontaneously. It consists of zinc oxide and hydroxide, transforming into various species in dependence of the surrounding atmospheric conditions. This study focusses on the investigation of corrosion product layers on massive titanium-zinc sheets, formed during short- and mid-term exposure experiments by Fourier-transformed infrared spectroscopy. This method enables the investigation of extremely thin native passive films which form during the initial hours of exposure. Furthermore, aged surface layers are analyzed which were formed by transformation of initial passive layers over the time of several weeks. The spectroscopic investigations are complemented by scanning electron microscopy (SEM/EDX) in order to obtain information on the chemical composition and morphology of the corrosion products. The combination of both methods offers a comprehensive view on the processes occurring in the early stages of zinc corrosion. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Zinc coatings KW - FT-IR KW - Layer formation PY - 2019 AN - OPUS4-49132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Küttenbaum, Stefan A1 - Taffe, A. A1 - Braml, T. A1 - Maack, Stefan T1 - Non-Destructive Testing: A valuable source of information for reliability assessments N2 - The reassessment of bridges is becoming increasingly important. The basic requirement for analyses of structural safety is reliable knowledge about individual structures. This paper introduces the new approach to evaluate the quality of measured data gained from non-destructive testing (NDT) to provide reliable, objective, and relevant information about existing bridges. The purpose is to relate this validated knowledge to probabilistic analyses. Bridging the gap between NDT and numerical reassessments indicates reduced numerical uncertainties and residual service time extensions. This paper deals with an application of this approach using measurement data collected by ultrasonic technique at a prestressed concrete bridge. T2 - IABSE Symposium 2019 CY - Guimarães, Portugal DA - 27.03.2019 KW - NDT KW - Measurement KW - Structural safety KW - Concrete bridges KW - Eexisting structures PY - 2019 AN - OPUS4-47714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Comparison of different test methods for lifetime prediction of O-ring seals N2 - Elastomeric O-ring seals are used in a wide range of applications due to their excellent elasticity. However, like all polymers, elastomers degrade under the influence of e.g. time, temperature, oxygen, radiation and mechanical stress. Especially in applications where a replacement of seals after a certain time is hard or almost impossible, it is important to know the seal lifetime. Therefore, an extensive ageing programme with elastomers made of EPDM, HNBR and other materials was started with the aim of determining suitable methods for accelerated ageing and lifetime prediction. In order to determine the lifetime of polymeric parts, the time-temperature superposition principle is commonly used to shift property changes obtained by accelerated ageing at higher temperatures to lower temperatures. If the shift factors yield a straight line in an Arrhenius diagram, a corresponding activation energy can be determined. However, we have found that the shift factors and thus the predicted lifetime depends on the test method that yielded the shifted data. For example, the shift factor between 125 °C and 150 °C ageing temperature was roughly the same (5/5/4.5 respectively) for hardness, density and maximum of loss factor tan  measured on HNBR, but different for elongation at break (8) and compression set (2.2, excluding DLO-affected data). A possible explanation might be that while the different oxidation reactions proceed with a fixed activation energy, they have differing impact on the measured properties. For example, hardness is lowered by chain scission reactions, and increases by crosslinking reactions during ageing. As usually both chain scission and crosslinking reactions occur during ageing, the measured hardness increase reflects only the net effect of both reaction types. On the other hand, compression set is influenced additively by both reaction types: chain scission leads to an increase of the remaining deformation, as broken chains lose their recovery potential, and crosslinking reactions during ageing fix the compressed geometry, which also leads to less recovery. Thus, compression set reflects the total number of changes in the network and shows degradation effects much faster, which results in lower shift factors and lower activation energy. This phenomenon was observed for EPDM as well. In order to verify our hypotheses and to gain further insights, temperature-dependent oxygen consumption measurements are currently being performed and results will be presented at the conference. The shift factors and activation energy determined by oxygen consumption measurements are expected to be close to the values for compression set. T2 - Polymer Degradation Discussion Group Conference CY - Malta DA - 01.09.2019 KW - Compression set KW - Time-temperature superposition KW - Arrhenius KW - HNBR KW - EPDM KW - FKM KW - Activation energy PY - 2019 AN - OPUS4-48907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Aging of elastomer seals for nuclear waste containers – Methods and lifetime prediction N2 - At BAM, which is a federal institute for materials research and testing in Germany, it is one of our tasks to evaluate the safety of casks designed for transport and/or storage of radioactive material. This includes assessment of elastomeric seals applied in the casks. One of the aims is to identify a suitable method for estimating the service lifetime of the seals with regard to the requirements for long-term safety (40 years and more) of the containers. Therefore, we started an accelerated ageing programme with selected rubbers often used for seals (HNBR, EPDM and FKM) which are aged at four different temperatures (75 °C, 100 °C, 125 °C and 150 °C) for up to five years. In order to assess sealability, O-rings were aged in compression by 25 % (corresponding to the compression during service) between plates as well as in flanges that allow leakage rate measurements. For comparison, uncompressed O-rings were aged as well. In order to understand the underlying ageing mechanisms in each material, material properties such as hardness, density and tensile properties were examined. Additionally, compression set (CS), which represents the recovery behaviour of a seal after release from compression, is measured. For obtaining results closely related to practical conditions, O-rings with a full-scale cord diameter of 10 mm were aged. However, this set-up can lead to heterogeneous ageing caused by diffusion-limited oxidation (DLO) effects especially for HNBR, resulting in distorted bulk properties such as compression set. However, if DLO-affected data is excluded, extrapolations of CS data are possible using time-temperature shifts. For selecting an appropriate end-of-lifetime criterion, leakage rate measurements were performed, since leakage rate is the only characteristic directly correlated to the performance of the sealing system. A significant increase in leakage rate was considered as the end of the lifetime. However, the O-rings remained leak tight under static conditions even though material properties had already degraded strongly. For this reason, a modified, more demanding leakage test involving a fast small decompression of the seal was developed that allowed determining a more conservative end-of-lifetime criterion with a safety margin for EPDM seals. FKM, which is a very heat and oxidation resistant material, exhibited only little degradation, even though it had the smallest activation energy. T2 - Polymers in nuclear applications CY - Espoo, Finland DA - 27.11.2019 KW - rubber KW - leakage KW - degradation KW - HNBR KW - EPDM KW - FKM PY - 2019 UR - https://www.energiforsk.se/media/27280/agingseals_kommling_bam.pdf AN - OPUS4-49918 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska A1 - Hodoroaba, Vasile-Dan T1 - Nano Powder - a Challenge for Granulometry N2 - If the particle size decreases, the ratio of surface area to volume increases considerably. This provides benefits for all surface-driven processes that run faster or at lower temperatures than larger particles. However, handling and characterization of the nanopowders are much more difficult. Particularly polydisperse powders with irregular shape, as grinding products, represent a challenge. Granulometry in the submicron and nanoscale often leads to incorrect results without knowledge of particle morphology. This presentation demonstrates potentials of using the volume-specific surface area (SV or VSSA) in the granulometric characterization of nanopowders, for instance, correlations between the volume-specific surface area and the median particle size are discussed considering the particle morphology and the model of the logarithmic normal distribution. Moreover, the presentation deals with the optimal dispersion of nanopowders during sample preparation. Indirect ultrasound device with defined cooling was developed to prevent both contamination by sonotrode abrasion and sample changes by heat. Successful granulometric characterization of nanopowders demands both improved dispersion technology and very often an effective combination of two or more measurement methods. T2 - Jahrestagung der Deutschen Keramischen Gesellschaft CY - Leoben, Austria DA - 06.05.2019 KW - Nano screening KW - VSSA KW - Nano particle KW - Particle size PY - 2019 AN - OPUS4-47976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Jörg A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Bonse, Jörn T1 - X-ray emission during ultrashort pulse laser processing N2 - The industrial use of ultrashort laser pulses has made considerable progress in recent years. The reasons for this lie in the availability of high average powers at pulse repetition rates in the several 100 kHz range. The advantages of using ultrashort laser pulses in terms of processing precision can thus be fully exploited. However, high laser intensities on the workpiece can also lead to the generation of unwanted X-rays. Even if the emitted X-ray dose per pulse is low, the accumulated X-ray dose can become significant for high-repetition-rate laser systems so that X-ray exposure safety limits must be considered. The X-ray emission during ultrashort pulse laser processing was investigated for a pulse duration of 925 fs at 1030 nm wavelength and 400 kHz repetition rate. Industrially relevant materials such as steel, aluminum and glass were treated. Tungsten served as reference. X-ray spectra were recorded, and X-ray dose measurements were performed for laser treatment in air. For laser intensities > 2 × 10^13 W/cm2, X-ray doses exceeding the regulatory exposure limits for members of the public were found. Suitable X-ray protection strategies are proposed. T2 - SPIE Photonics West CY - San Francisco, USA DA - 02.02.2019 KW - Laser-induced X-ray emission KW - Ultrashort laser material interaction KW - Radiation protection PY - 2019 AN - OPUS4-47361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Lausch, T. A1 - Schröpfer, Dirk A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Influence of welding stresses on relaxation cracking during heat treatment of a creep-resistant 13CrMoV steel N2 - Over the past years economic and environmental considerations have led to a markedly increased demand for efficiency and flexibility in petrochemical plants. The operational temperatures and pressures required today can only be achieved by using new creep-resistant grades of steel. The modified 13CrMoV9-10 vanadium steel shows a good resistance against creep and compressed hydrogen and has been in use for the construction of petrochemical reactors since the mid-1990s. Nevertheless, processing of this type of steel requires extreme care during the welding procedure. This is due to its low toughness and high strength in the welded state when not post weld heat treated combined with increased susceptibility to cracking during stress relaxation. Previous research into crack formation in creep-resistant steels has largely focused on thermal and metallurgical factors; however, little knowledge has been gathered regarding the influence of the welding procedure on crack formation during post weld heat treatment considering real-life manufacturing conditions. The influence of heat control on the mechanical properties has been investigated by simulating the welding and subsequent post weld heat treatment operations during the construction of petrochemical reactors using a special 3-D testing facility on the laboratory scale. This work is subdivided in two parts. In part I of this study the stresses resulting from preheating, welding, dehydrogenation heat treatment and the final post weld heat treatment were analyzed during experiments under varied heat control. In all experiments stress relief cracks formed during post weld heat treatment could be observed. The total crack lengths correlated with the welding induced stresses. Part II of this work is dedicated to the characterization of the cracks and the microstructure. The application of a special acoustic emission analysis indicated that the cracks formed in a temperature range between 300 °C and 500 °C during the post weld heat treatment. In comparison to small scale specimens welded without additional shrinkage restraint, the toughness of the restrained welds was significantly decreased. SEM and TEM analyses of all samples revealed accelerated aging due to early precipitation of special carbides during post weld heat treatment under component relevant restraint. T2 - IIW Annual Assembly CY - Bratislava, Slovakia DA - 08.07.2019 KW - Welding KW - Creep-resistant steel KW - Post weld heat treatment KW - Stress relief cracking PY - 2019 AN - OPUS4-48580 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Online-Observation of Martensite Formation by combined use of Synchrotron Diffraction and Dilatometry N2 - Welding residual stress engineering by means of an adjusted martensite phase transformation would be highly attractive as detrimental tensile residual stresses may be prevented already during welding without time and cost intensive post processing. The present study shows a synchrotron diffraction analysis of a martensitic steel subjected to thermo-mechanical load cycles. Experiments were conducted regarding the microstructural strain response during the austenite to martensite transformation. The strains are a function of the temperature and the specific loads applied during cooling. The relation between the transformation plasticity of the material, the amount of martensite formed and the arising strains can thus be assessed. The lattice plane specific strains were compared to experimental findings from (macro) dilatation tests. It is shown that the microscopic material behavior differs remarkably from the one observed on the macroscopic scale, what leads to characteristic residual stresses in the material. T2 - Visual-JW 2019 & WSE 2019 The 5th International Symposium on Visualization in Joining & Welding Science through Advanced Measurements and Simulation & The 8th International Conference of Welding Science and Engineering CY - Osaka, Japan DA - 21.11.2019 KW - Martensite KW - Synchrotron KW - Dilatometry KW - Residual stress KW - Phase transformation PY - 2019 AN - OPUS4-49768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Schaupp, Thomas A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Effect of weld penetration on hydrogen-assisted cracking in welding of high-strength structural steels T1 - Einfluss von Schweißprozess und Einbrandverhalten auf die Kaltrissbildung hochfester Feinkornbaustähle N2 - In the present study, the susceptibility to HAC of the HSLA steel S960QL with same type of filler material was investigated. For that purpose, both Conv. A and Mod. SA were used with same weld heat input at different deposition rates. For assessment of the HAC susceptibility, the externally loaded Implant-test [ ] was used. Both conducted test series with Conv. A and Mod. SA showed similar crack critical stress of about 280 MPa. Below this value, no delayed fracture appeared. The welds with Mod. SA showed higher hydrogen concentrations. The fracture occurred in the heat-affected zone (HAZ) or in the weld metal (WM). But in all specimens, cracks initiated at the notch root of the spiral notch of the implants within the coarse-grained HAZ. However, the test series with Mod. SA showed a significant extension of the time-to-failure of several hours compared to tests carried out with Conv. A, see Fig. 1a. The reason is the deeper weld penetration in case of Mod. SA (Fig. 1b and Fig. 1c), which causes longer diffusion path for hydrogen. The fracture topography of the ruptured implant specimens with Conv. A was typical ductile in specimen center and quasi-cleavage like at the edge of the specimens. When using Mod. SA, the topography changed to primarily quasi-cleavage fracture topography with shares of intergranular fracture and secondary crack appearance. T2 - Sitzung des NA 092-00-05 GA „Gemeinschaftsarbeitsausschuss NAS/NMP: Zerstörende Prüfung von Schweißverbindungen (DVS AG Q 4/Q 4.1)“ CY - Magdeburg, Germany DA - 13.03.2019 KW - Hydrogen-assisted cracking KW - Welding KW - High-strength steel PY - 2019 AN - OPUS4-47591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Kleinbub, Sherin A1 - Herrmann, Annett T1 - Investigation of methanogen-induced microbiologically influenced corrosion (Mi-MIC) using simulated marine environments under flowing conditions N2 - Microbiologically influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) in oil and gas facilities. SRM act upon the metal by the re-activeness of hydrogen sulfide (HS-), and by withdrawal of the available electrons in electrical contact with the metal (EMIC). Methanogenic archaea (MA) can also cause MIC (Mi-MIC). Several MAs were identified to be corrosive by using elemental iron as the sole electron donor for methanogenesis, including Methanobacterium­-affliated IM1 and Methanococcus maripaludis Mic1c10. Currently, low corrosion rates were reported for MA, possibly due to the formation of siderite (4Fe + 5HCO3- + 5H+ ® 4FeCO3 + CH4 + 3H2O). Since MA do not produce HS-, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. To investigate the corrosion potential of MA, we studied the EMIC methanogenic strains (IM1 and Mic1c10) individually or part of a syntrophic co-culture with SRM. Corrosion studies were conducted using an in-house developed flow-through system to simulate fluctuating environmental conditions. Results indicate that the rates of iron corrosion by MA (up to 0.4 mm/yr) are higher to that caused by the marine SRM Desulfovibrio alaskensis (0.15 mm/yr) and the co-culture (0.1 mm/yr). Scanning electron microscopy (SEM) images of the metal incubated with MA showed severe pitting corrosion. Genomic analysis of the EMIC MA was conducted to provide an insight on the possible cellular mechanisms that could be involved. Furthermore, low concentrations of MA-targeting biocides will be applied to EMIC MA in static and flow conditions to gain insights for possible mitigation strategies. Such knowledge and deeper understanding also from an electrokinetic point of view may not only provide further models in microbial electrophysiology, but also contribute to mitigation strategies in MIC. T2 - 7th International Symposium on Applied Microbiology and Molecular Biology in Oil Systems CY - Halifax, Canada DA - 18.06.2019 KW - MIC KW - Microbiologically influenced corrosion KW - Methanogens KW - SRB KW - Corrosion KW - Metalls PY - 2019 AN - OPUS4-48392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Kleinbub, Sherin T1 - Investigation of methanogen-induced microbiologically influenced corrosion (Mi-MIC) using simulated marine environments under flowing conditions N2 - Microbially influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) which act upon the metal by the reactiveness of hydrogen sulfide, and by withdrawal of the available electrons in electrical contact with the metal. Methanogenic archaea can also cause MIC by directly withdrawing electrons from the iron surface for methanogenesis. However, the mechanistic details and kinetics of the overall process are poorly understood. Precipitation of siderite, a by-product of methanogenesis, (4Fe + 5HCO3 + 5H+  4FeCO3 + CH4 + 3H2O) can lead to an insulating layer on the metal surface and lower the corrosion rate. Still, the extent of FeCO3 precipitation may be significantly influenced by environmental conditions such as pH and advective processes. T2 - Dechema CY - Frankfurt a. M., Germany DA - 13.05.2019 KW - MIC KW - Corrosion KW - Methanogens KW - Corrosion product PY - 2019 AN - OPUS4-47982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Kleinbub, Sherin A1 - Herrmann, Annett T1 - Investigation of methanogen-induced microbiologically influenced corrosion (Mi-MIC) using simulated marine environments under flowing conditions N2 - Microbiologically influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) in offshore industries, such as the oil and gas pipelines, due to the high concentrations of sulfate in the seawater. SRM act upon the metal by the reactiveness of hydrogen sulfide (HS-), and by withdrawal of the available electrons (Fe --> Fe2+ + 2e-; E° = -0.47 V) in electrical contact with the metal (EMIC). However, methanogenic archaea can also cause MIC. Because they do not produce HS-, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. To investigate the corrosion potential of methanogens, we studied the EMIC methanogenic strains isolated from marine sediments (Methanobacterium-affiliated strain IM1) and crude oil tanks (Methanococcus maripaludis Mic1c10), in an in-house developed flow-through cell to simulate a fluctuating environment. A co-culture of M. maripaludis and D. alaskensis was also established to study the effect of syntrophic growth on metal corrosion that may occur in industrial pipelines. Results indicate that the rates of iron corrosion due to coupled methanogenesis (up to 0.4 mm/yr) are higher to that caused by the marine SRM Desulfovibrio alaskensis (0.15 mm/yr). Surface analyses of the metal showed severe pitting with high methane production. Genomic analysis of the EMIC methanogen M. maripaludis Mic1c10 will provide an insight on the mechanisms of MIC. Such knowledge and deeper understanding also from an electrokinetic point of view may not only provide further models in microbial electrophysiology, but also contribute to mitigation strategies in MIC T2 - Einladung zum Kolloquium HZDR – Helmholtz-Zentrum Dresden-Rossendorf CY - Dresden, Germany DA - 24.09.2019 KW - Corrosion KW - MIC KW - Archaea KW - Methanogens KW - Environmental Simulation PY - 2019 AN - OPUS4-49403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Kleinbub, Sherin A1 - Herrmann, Annett T1 - Investigation of methanogen-induced microbiologically influenced corrosion (Mi-MIC) using simulated marine environments under flowing conditions N2 - Microbiologically influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) in offshore industries, such as the oil and gas pipelines, due to the high concentrations of sulfate in the seawater. SRM act upon the metal by the reactiveness of hydrogen sulfide (HS-), and by withdrawal of the available electrons (Fe --> Fe2+ + 2e-; E° = -0.47 V) in electrical contact with the metal (EMIC). However, methanogenic archaea can also cause MIC. Because they do not produce HS-, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. To investigate the corrosion potential of methanogens, we studied the EMIC methanogenic strains isolated from marine sediments (Methanobacterium-affiliated strain IM1) and crude oil tanks (Methanococcus maripaludis Mic1c10), in an in-house developed flow-through cell to simulate a fluctuating environment. A co-culture of M. maripaludis and D. alaskensis was also established to study the effect of syntrophic growth on metal corrosion that may occur in industrial pipelines. Results indicate that the rates of iron corrosion due to coupled methanogenesis (up to 0.4 mm/yr) are higher to that caused by the marine SRM Desulfovibrio alaskensis (0.15 mm/yr). Surface analyses of the metal showed severe pitting with high methane production. Genomic analysis of the EMIC methanogen M. maripaludis Mic1c10 will provide an insight on the mechanisms of MIC. Such knowledge and deeper understanding also from an electrokinetic point of view may not only provide further models in microbial electrophysiology, but also contribute to mitigation strategies in MIC T2 - Archaea Meeting-Schmitten VAAM Fachgruppe CY - Schmitten, Germany DA - 12.09.2019 KW - Corrosion KW - MIC KW - Archaea KW - Methanogens KW - Environmental Simulation PY - 2019 AN - OPUS4-49405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Kleinbub, Sherin A1 - Hermann, Annett T1 - Investigation of methanogen-induced microbiologically influenced corrosion (Mi-MIC) using simulated marine environments under flowing conditions N2 - Microbiologically influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) in offshore industries, such as the oil and gas pipelines, due to the high concentrations of sulfate in the seawater. SRM act upon the metal by the reactiveness of hydrogen sulfide (HS-), and by withdrawal of the available electrons (Fe --> Fe2+ + 2e-; E° = -0.47 V) in electrical contact with the metal (EMIC). However, methanogenic archaea can also cause MIC. Because they do not produce HS-, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. To investigate the corrosion potential of methanogens, we studied the EMIC methanogenic strains isolated from marine sediments (Methanobacterium-affiliated strain IM1) and crude oil tanks (Methanococcus maripaludis Mic1c10), in an in-house developed flow-through cell to simulate a fluctuating environment. A co-culture of M. maripaludis and D. alaskensis was also established to study the effect of syntrophic growth on metal corrosion that may occur in industrial pipelines. Results indicate that the rates of iron corrosion due to coupled methanogenesis (up to 0.4 mm/yr) are higher to that caused by the marine SRM Desulfovibrio alaskensis (0.15 mm/yr). Surface analyses of the metal showed severe pitting with high methane production. Genomic analysis of the EMIC methanogen M. maripaludis Mic1c10 will provide an insight on the mechanisms of MIC. Such knowledge and deeper understanding also from an electrokinetic point of view may not only provide further models in microbial electrophysiology, but also contribute to mitigation strategies in MIC. T2 - VAAM- Annual Conference 2019 of the Association for General and Applied Microbiology CY - Mainz, Germany DA - 17.03.2019 KW - HI-Tension KW - MIC KW - Methanogens KW - Corrosion KW - Sulfate reducing bacteria PY - 2019 AN - OPUS4-47739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Kleinbub, Sherin A1 - Herrmann, Annett T1 - Investigation of methanogen-induced microbiologically influenced corrosion (Mi-MIC) using simulated marine environments under flowing conditions N2 - Microbiologically influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) in offshore industries, such as the oil and gas pipelines, due to the high concentrations of sulfate in the seawater. SRM act upon the metal by the reactiveness of hydrogen sulfide (HS-), and by withdrawal of the available electrons (Fe --> Fe2+ + 2e-; E° = -0.47 V) in electrical contact with the metal (EMIC). However, methanogenic archaea can also cause MIC. Because they do not produce HS-, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. To investigate the corrosion potential of methanogens, we studied the EMIC methanogenic strains isolated from marine sediments (Methanobacterium-affiliated strain IM1) and crude oil tanks (Methanococcus maripaludis Mic1c10), in an in-house developed flow-through cell to simulate a fluctuating environment. A co-culture of M. maripaludis and D. alaskensis was also established to study the effect of syntrophic growth on metal corrosion that may occur in industrial pipelines. Results indicate that the rates of iron corrosion due to coupled methanogenesis (up to 0.4 mm/yr) are higher to that caused by the marine SRM Desulfovibrio alaskensis (0.15 mm/yr). Surface analyses of the metal showed severe pitting with high methane production. Genomic analysis of the EMIC methanogen M. maripaludis Mic1c10 will provide an insight on the mechanisms of MIC. Such knowledge and deeper understanding also from an electrokinetic point of view may not only provide further models in microbial electrophysiology, but also contribute to mitigation strategies in MIC.zeige weniger T2 - Dechema CY - Berlin, Germany DA - 09.04.2019 KW - Corrosion KW - Corrosion products KW - Methanogens KW - Sulfate reducing bacteria KW - Flow-system KW - Environmental simulation PY - 2019 AN - OPUS4-47853 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koch, Claudia T1 - Standardization for emerging technologies - Additive manufacturing case study N2 - This was a short presentation on the role of Standards and standardization for the development and diffusion of an emerging technology - using additive manufacturing as an example. T2 - 6th Annual Meeting of the Indo-German Working Group on Quality Infrastructure CY - Berlin, Germany DA - 17.01.2019 KW - 3D-Printing KW - Additive Manufacturing KW - Emerging technologies KW - Standardization KW - Standards KW - Technological innovation PY - 2019 AN - OPUS4-47397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kiefer, P. A1 - Deubener, J. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. A1 - Balzer, R. T1 - Density, microhardness and elastic moduli of hydrous soda-lime silicate glasses N2 - The effect of structural water on density, elastic constants and microhardness of water-bearing soda-lime-silica glasses of up to 21.5 mol% total water is studied. T2 - 25th International Congress on Glass (ICG2019) CY - Boston, MA, USA DA - 09.06.2019 KW - Elastic constants KW - Soda-lime-silica glass KW - Water content KW - Microhardness PY - 2019 AN - OPUS4-49537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Lausch, Thomas A1 - Schroepfer, Dirk T1 - In-situ Observation of Stress Evolution during High Strength Steel Welding N2 - Residual stresses are crucial when assessing the performance of welded components. The present work deals with the possibilities of transferring the real-life boundary conditions of welding, which influence the residual stress, into the laboratory. The possibilities of a test system with a load capacity of 2 MN specifically developed for online monitoring of stress formation and cracking are shown. Due to the structural design, global process, geometry and material-dependent stresses are induced, which can be quantified in-situ during welding and post weld heat treatment. Examples are presented how the conditions to be found during production are simulated in the laboratory. It is shown how welding residual stresses in high-strength steels are affected by the heat control. Elevated working temperatures significantly increase the tensile residual stresses in the heat affected zone (HAZ). The effect of mechanical stresses resulting from welding on stress relief cracking is demonstrated by the example of a creep resistant steel. Reheat cracks were monitored online during post weld heat treatment. T2 - Visual-JW 2019 & WSE 2019 The 5th International Symposium on Visualization in Joining & Welding Science through Advanced Measurements and Simulation & The 8th International Conference of Welding Science and Engineering CY - Osaka, Japan DA - 21.11.2019 KW - Residual stress KW - Restraint KW - Welding KW - Large-scale test KW - Reheat cracking PY - 2019 AN - OPUS4-49763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kamaraj, Abinaya A1 - Erning, Johann Wilhelm A1 - Reimann, S. A1 - Ahrens, A. T1 - Susceptibility of 304 stainless steel to crevice corrosion in electrochemically active fluids N2 - The susceptibility of AISI 304 stainless steel to crevice corrosion on the effect of contact with electrochemically active fluids was investigated using exposure and stepwise potentiostatic polarisation. Crevice materials made up of 304 SS and Polyether ether ketone (PEEK) forming two kinds of crevices including 304 SS-to-PEEK and 304 SS-to-304 SS were tested. T2 - Corrosion 2019 NACE CY - Nashville, TN, USA DA - 24.03.2019 KW - Desinfection KW - Crevice corrosion KW - ECA PY - 2019 AN - OPUS4-49284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Juds, Carmen T1 - Biocombinatorially selected peptide-polymer conjugates as polypropylene binders N2 - Peptide-polymer bioconjugates combine oligopeptides with synthetic polymer blocks and can be used for various applications in material sciences. In recent years, bioconjugates were applied as compatibilizers and coatings. Biocombinatorial approaches, such as phage display, have been shown to yield strong binding peptides, which exhibit excellent coating properties as peptide-PEO conjugates. Phage display represents a widely exploited strategy to select peptides or proteins that exhibit highly specific affinity to various substrates. Following a phage display experiment, DNA sequencing of binding phage clones is required in order to get the sequence information of the binding peptides. Traditionally, random clone picking followed by Sanger sequencing was applied. However, this method may not necessarily identify the strongest binding clones. Next-generation sequencing made sequencing of whole phage libraries possible, which highly improved the selection of strong binders. Here, we show that the biocombinatorial method of phage display combined with next generation DNA sequencing of whole phage libraries represents a powerful tool for an application in material chemistry. Phage display is used to find specific target binding peptides for polypropylene surfaces (PP). PP binders are of particular interest because thus far gluing or printing on PP is challenging due to its low surface energy. Scripts for sequence data analysis were developed and promising sequences were synthesized as peptide-PEO conjugates. Fluorescence based adsorption experiments on PP surfaces led to the identification of strong binding sequences and a better understanding of the peptide-surface interactions. T2 - 257th National Meeting of the American-Chemical-Society (ACS) CY - Orlando, FL, USA DA - 31.03.2019 KW - Peptides KW - Surfaces KW - Phage Display KW - Peptide Library KW - Screening KW - Glue KW - Paint KW - Polyethylene Glycol KW - PEG KW - Next Generation Sequencing PY - 2019 AN - OPUS4-48837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Grelle, Tobias A1 - Kömmling, Anja A1 - Wolff, Dietmar A1 - Völzke, Holger T1 - Long-term evaluation of sealing systems for radioactive waste packages N2 - The investigation of the long-term performance of sealing systems employed in containers for radioactive waste and spent nuclear fuel is one research focus area for division 3.4 “Safety of Storage Containers” at the Bundesanstalt für Materialforschung und -prüfung (BAM). Our investigations comprise investigations on metallic and elastomeric seals and covers experimental investigations to get a database on the component/material behaviour, work on analytical descriptions and numerical analysis. Our aim is to understand the long-term behaviour of the sealing systems for evaluation of their performance during possible extended interim storage and subsequent transportation. T2 - 3rd Workshop on Safety of Extended Dry Storage of Spent Nuclear Fuel CY - Garching, Germany DA - 05.06.2019 KW - Seal performance KW - Rubber seal KW - Metallic seal KW - Ageing PY - 2019 AN - OPUS4-48224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hübner, Oskar A1 - Kage, Daniel A1 - Hoffmann, Katrin A1 - Wegner, Karl David A1 - Dhamo, Lorena A1 - Göhde, W. A1 - Resch-Genger, Ute T1 - Luminescence lifetime encoding for flow cytometry with quantum-dot-encoded beads N2 - Spectral encoding of cells or particles and the discrimination of multiple spectral codes are a critical process in flow cytometry (FCM). Typical issues in spectral encoding are, e.g., the spectral overlap of codes, or the increasing complexity of instruments . The exploitation of the photoluminescence lifetime (LT) as an encoding parameter could be used to circumvent both of these issues, as it adds another dimension to the parameter space, or, when used as a stand-alone parameter, requiring only one excitation light source and one detector. While LT encoding was considered already decades ago it is still not implemented as a routine technique in FCM yet, mainly due to the challenge of very few photons being available within the limited transition time of a cell or particle through the laser spot. Recently, we demonstrated LT-FCM based on luminophores with ns LTs in a compact and low-cost flow cytometer. Measurements on polymer microbeads containing luminophores with distinctly different excited state LTs enabled the complete discrimination of three LT codes and five codes in total could be identified. Now, we have extended our approach towards considerably longer LTs by custom-made polymer microbeads loaded with different ratios of InP/ZnS and AgInS2 quantum dots. The use of these materials significantly expands the usable time range for LT encoding to up to several hundred ns. Our studies demonstrate the possibility to further increase the number of viable LT codes for multiplexing in LT-FCM without the need for extensive hardware modifications. T2 - Visions in Cytometry - 29th Annual Conference of the German Society for Cytometry CY - Berlin, Germany DA - 25.07.2019 KW - Multiplexing KW - Lifetime KW - Bead KW - Flow cytometry KW - Fluorescence KW - Quantum dot KW - InP KW - AIS KW - Dye KW - Encoding KW - Barcoding KW - Assay KW - Method PY - 2019 AN - OPUS4-49390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Höhne, Patrick A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Small batch preparation of ready-to-press powder for systematic studies N2 - Efficient studies of scarce or expensive materials require material saving processes. Therefore, a high yield concept for small batch preparation of ready-to-press powder is exemplarily presented for yttria stabilized nano-zirconia (d50 < 50 nm). The concept involves small batch preparation in an ultrasound resonator, dispersant selection based on zeta potential measurements, evaluation of slurry stability using an analytical centrifuge, and preparation of ready-to-press powder by freeze drying. Freeze drying offers key advantages. Process efficiency and high yield above 95 % are independent of sample size. The dried product does not require further mechanical treatment like milling or grinding. Side effects like migration of additives are avoided. An optimized freeze drying process tolerates slurries with moderate stability. Thus, efforts for slurry development can be reduced. Generally, identifying a suitable dispersing agent requires only 3-5 zeta potential measurements. Slurry stability is rechecked using an analytical centrifuge, which also accounts for steric stabilization. An ultrasound resonator is used to disperse the powder without contamination, which becomes critical for small batches. The described route is exemplarily presented for the development of an additive recipe for nano-sized zirconia powder, targeting for good pressing behavior and high green density. Therefore, a variety of binding and lubricating agents were tested. Following the presented route, 80 g zirconia powder were sufficient to conduct a study including slurry development and five sample sets with varying composition, each set comprising five discs (d = 20 mm and h = 2 mm). T2 - 94. DKG Jahrestagung CY - Leoben, Austria DA - 05.05.2019 KW - Fine Powder KW - Slurry KW - Freeze Drying PY - 2019 AN - OPUS4-48293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Quantitative microstructural analysis - VAMAS/TWA 37 N2 - The 44th Meeting of the Versailles Project on Advanced Materials and Standards (VAMAS) Steering Committee has just taken place at NIST in Boulder (CO, USA). BAM participates with significant contributions in Technical Working Areas on nanoparticle and surface chemistry characterization, but also has positioned itself to new global material challenges and trends in the developement of advanced materials and their characterization, such as thermal properties, self-healing materials, and micro- and nanoplastic. T2 - Annual Meeting of the Versailles Project on Advanced Materials and Standards (VAMAS) Steering Committee CY - Boulder, CO, USA DA - 22.05.2019 KW - VAMAS KW - Nanoparticles KW - Microbeam analysis KW - Advanced materials PY - 2019 AN - OPUS4-48184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mansfeld, Ulrich A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Bartzcak, D. T1 - New reference material candidates for traceable size measurement of nonspherical nanoparticles N2 - Size measurement of nanoparticles (NP) becomes a challenging analytical problem when non-spherical shapes must be traceably measured. However, most industrial NPs have irregular shapes and broad size distribution making it often more complex to follow European regulatory to identify a material as a nanomaterial according to which accurate measurement of the smallest dimension and its size Distribution is necessary. The European research project nPSize - Improved traceability chain of nanoparticle size measurements aims to fill this gap by developing potential non-spherical reference nanoparticles, measurement procedures and physical modelling to improve the traceability chain, comparability and compatibility for NP size measurements between different methods. Therefore, new model NP with well-controlled shape has been synthesized and are supposed to be systematically characterized using the traceable methods scanning/transmission electron microscopy, atomic force microscopy and small angle X-ray scattering. Following NP candidates are under investigation with respect to their homogeneity and stability: (i) titania nanoplatelets (10-15 nm thickness x 50-100 nm lateral), (ii) titania bipyramides (~60 nm length x 40 nm width), (iii) titania acicular particles (100 nm length x 15-20 nm width; aspect ratio 5.5/6), (iv) gold nanorods (~10 nm width x 30 nm length), and (v) gold nanocubes (~55 nm x 55 nm x 55 nm). In addition, sample preparation procedures as well as measurement analysis procedures with evaluation of appropriate measurands and descriptors for each material class and method are being developed to support standardization. To underpin the traceability of the size measurement of nonspherical NP, physical modelling of the signals in e.g. electron microscopy techniques will be used and in combination, the implementation of machine learning is aimed to facilitate measurement Analysis procedures, especially regarding the accurate thresholding/segmentation of the NPs. T2 - European Conference on Applications of Surface and Interface Analysis ECASIA 2019 CY - Dresden, Germany DA - 15.09.2019 KW - Nanoparticles KW - Size distribution KW - Electron microscopy KW - Certified reference materials KW - Traceability PY - 2019 AN - OPUS4-49227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mansfeld, Ulrich A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Bartczak, D. T1 - New reference material candidates for traceable size measurement of non-spherical nanoparticles N2 - New model nanoparticles with well-controlled shape were synthesized within the EMPIR project nPSize - Improved traceability chain of nanoparticle size measurements. Their systematic characterization takes place by the traceable methods scanning/transmission electron microscopy, atomic force microscopy and small angle X-ray scattering. Following reference nanoparticle candidates are under investigation with respect to their homogeneity and stability: titania nanoplatelets (10-15 nm x 50-100 nm), titania bipyramides (~60 nm x 40 nm), titania acicular particles (100 nm x 15-20 nm; aspect ratio 5.5/6), gold nanorods (~10 nm x 30 nm), and gold nanocubes (~55 nm x 55 nm x 55 nm). T2 - HyMET Workshop on optical surface analysis methods for nanostructured layers CY - Berlin, Germany DA - 10.10.2019 KW - Nanoparticles KW - Reference materials KW - Traceability KW - Particle size distribution PY - 2019 AN - OPUS4-49285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mansfeld, Ulrich A1 - Hörenz, Christoph A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Bartczak, D. A1 - Goenaga-Infante, H. T1 - Challenges in Traceable Size Measurement of Non-Spherical, Non-Monodisperse Nanoparticles - nPSize N2 - Size measurement of nanoparticles (NP) becomes a challenging analytical problem when non-spherical shapes must be traceably measured. However, most industrial NPs have irregular shapes and broad size distribution making it often more complex to follow European regulatory to identify a material as a nanomaterial according to which accurate measurement of the smallest dimension and its size Distribution is necessary. The European research project nPSize - Improved traceability chain of nanoparticle size measurements aims to fill this gap by developing potential non-spherical reference nanoparticles, measurement procedures and physical modelling to improve the traceability chain, comparability and compatibility for NP size measurements between different methods. Therefore, new model NP with well-controlled shape has been synthesized and are supposed to be systematically characterized using the traceable methods scanning/transmission electron microscopy, atomic force microscopy and small angle X-ray scattering. Following NP candidates are under investigation with respect to their homogeneity and stability: (i) titania nanoplatelets (10-15 nm thickness x 50-100 nm lateral), (ii) titania bipyramides (~60 nm length x 40 nm width), (iii) titania acicular particles (100 nm length x 15-20 nm width; aspect ratio 5.5/6), (iv) gold nanorods (~10 nm width x 30 nm length), and (v) gold nanocubes (~55 nm x 55 nm x 55 nm). In addition, sample preparation procedures as well as measurement analysis procedures with evaluation of appropriate measurands and descriptors for each material class and method are being developed to support standardization. To underpin the traceability of the size measurement of nonspherical NP, physical modelling of the signals in e.g. electron microscopy techniques will be used and in combination, the implementation of machine learning is aimed to facilitate measurement Analysis procedures, especially regarding the accurate thresholding/segmentation of the NPs.zeige mehr T2 - Nanoparticle Reference Materials - Production and Cerification Training Course CY - London, UK DA - 10.12.2019 KW - Nanoparticles KW - Traceability KW - Particle size distribution KW - Electron microscopy KW - Reference materials KW - Non-spherical shape PY - 2019 AN - OPUS4-50040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - High-Quality Experimental Data in Electron Microscopy and Microanalysis – What can, and should we jointly do? N2 - There are different ways how to prove the quality of the results obtained by electron microscopy and related microanalysis techniques, e.g. use of validated standard operation procedures, participation in proficiency testing exercises, use of certified reference materials, etc. International standards are able to provide requirements, specifications, guidelines or characteristics of methods, instruments or samples with the final goal that these can be used consistently in accredited laboratories. In the field of electron microscopy and microbeam analysis standardization and metrology are terms which are encountered rather seldom at major conferences and scientific publications. Nevertheless, spectra formats like EMSA/MSA for spectral-data exchange or tagged image file format (TIFF) for SEM, guidelines for performing quality assurance procedures or for the specification of X-ray spectrometers as well as of certified reference materials (CRMs) in EPMA, or measurement of average grain size by electron backscatter diffraction (EBSD), or guidelines for calibrating image magnification in SEM or TEM are ISO standards already published and used successfully by a large part of the electron microscopy and microbeam analysis community. A main and continuous task of ISO/TC 202 and its subcommittees is to identify and evaluate feasible projects/proposals needed to be developed into new international standards, particularly in respect to recent but established technology, such the silicon drift detector (SDD) EDS one. Another international platform in the frame of which pre-standardization work can be organized is VAMAS (Versailles Project on Advanced Materials and Standards). International collaborative projects involving aim at providing the technical basis for harmonized measurements, testing, specifications, and standards to be further developed at ISO level. One key point of VAMAS activities is constituted by inter-laboratory comparisons for high-quality data. In the field of microbeam analysis, the technical working area (TWA) 37 Quantitative Microstructural Analysis deals with corresponding projects. Good ideas, e.g. on analysis of low-Z materials/elements and at low energies are particularly encouraged by directly contacting the author. Support and already available guidance will be supplied. T2 - Microscopy & Microanalysis 2019 CY - Portland, OR, USA DA - 03.08.2019 KW - Pre-standardisation KW - Inter-laboratory comparison KW - VAMAS KW - ISO KW - Electron microscopy KW - Microanalysis PY - 2019 AN - OPUS4-48672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Surface and Microbeam Analytical Methods @BAM N2 - An overview of the activities in the field of surface and microbeam analysis at BAM-6.1 is given with focus on physico-chemical characterization at the nanoscale. Ideas of potential joint activities are presented: structural and chemical analysis of graphene, deposition techniques for nanoparticles, EBSD on steel for a broader range of methods, instruments and types of steel, soft X-ray Analysis of low-Z materials, analysis of mesoporous thin films, etc. T2 - BAM-IFW Workshop CY - Dresden, Germany DA - 28.03.2019 KW - PC characterisation KW - Nanoscale KW - Nanoparticles PY - 2019 AN - OPUS4-47860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hilgenberg, Kai A1 - Spranger, Felix T1 - Localized laser surface treatments of metals: State of the art and new developments N2 - Localized laser surface treatments are able to produce tailor-made surface properties to fulfill requirements of a variety of technical applications. Especially micrometric surface topologies can be beneficial for optimizing tribological contact situations. Structures with lowered surface features are already utilized for bearings or cylinders of combustion engines. There are also other fields of application, where the potential of protruding surface features is known, e. g. for metal forming tools. A promising approach for a tailored surface treatment working in the microsecond range is the localized dispersing of hard ceramic particles by pulsed laser radiation, the so-called laser implantation. This technique is able to produce micrometric surface structures and to improve simultaneously the wear resistance by creating metal matrix composites. In this talk, the laser implantation technique is described and compared to the state of the art. The potential to adjust the geometry as well as the mechanical properties of laser implanted surfaces is demonstrated by means of microstructural and topographical investigations of different ceramic materials and steel substrates. Finally, results of research projects are presented aiming on the application of such structured surfaces. Their capability to change and optimize friction and wear are demonstrated for fully lubricated contacts, tools for hot sheet metal forming and tools for cold rolling of sheets for automotive applications. T2 - 10th International Conference on Laser Applications (ICLA 10) CY - Cairo, Egypt DA - 23.11.2019 KW - Tool steel KW - Laser implantation KW - Laser surface texturing KW - Laser dispersing PY - 2019 AN - OPUS4-49959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Oliver T1 - Paper: history, manufacture, properties N2 - The lecture traces the origins of paper, the manufacture and the spread from China to the Middle East and Europe. Though technological progress considerably affected each step of the manufacture of paper, the essence of the invention remains unchanged until today. The process of manufacturing handmade paper can be divided into a number of steps: - choosing the raw material (e.g. cellulose from wood, cotton, rags) - beating and grinding the fibres into small pieces - producing a liquid pulp of the desired texture - treating the pulp with various additives - filling the pulp suspension into a paper mould - draining the water - pressing and drying to get the actual sheet - various post-production treatments We will see how the manufacturing process is reflected in the properties of the paper and its degradation. A special attention will be paid to the instrumental analysis for identification of the paper types. Also watermark play an important role in the studies of the manuscripts. A short overview will be offered at the ends of the lecture. T2 - Summer School Manusciences 19 CY - Frejus, France DA - 10.03.2019 KW - Material science KW - Cultural heritage PY - 2019 AN - OPUS4-48140 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Simulational tools in nanoparticle research: Micromagnetics and particle scattering N2 - Simulational tools are applied to investigate the physical properties of nanoparticles. For the description of radioactive gold nanoparticles, particles scattering simulations are performed with the Geant4 monte carlo simulation toolkit. The temperature dependent behaviour of the magnetization dynamics of different magnetic nanoparticles are simulated with the object oriented micormagnetic framework (OOMMF). T2 - NanoBioAp CY - LLanes, Spain DA - 23.05.2019 KW - Monte Carlo KW - Monte-Carlo simulation KW - MCS KW - Nanoparticle KW - AuNP KW - Dosimetry KW - Radioactive NP KW - Microdosimetry KW - Geant4 KW - OOMMF KW - Micromagnetism KW - Simulation KW - Magnetic nanoparticle KW - LLG PY - 2019 AN - OPUS4-48110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hagendorf, C. A1 - Richter, S. A1 - Krause, S. A1 - Bauer, J. A1 - Miclea, P.-T. A1 - Braun, Ulrike A1 - Altmann, Korinna A1 - Turek, M. T1 - Microplastic detection and analysis in water with silicon filter systems N2 - The use of optimized silicon filter systems is presented for the microplastic detection. T2 - International Conference on Sustainable Energy-Water-enviroment Nexus in Desert Climate CY - Doha, Qatar DA - 02.12.2019 KW - Filters KW - Microplastics KW - TED-GC-MS KW - Harmonisation PY - 2019 AN - OPUS4-50006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens A1 - Zocca, Andrea T1 - Dense Powder Beds for the Additive Manufacturing of Ceramics N2 - Many of the most successful and precise additive manufacturing (AM) technologies are based on the deposition layer-by-layer of a flowable powder. Since the first pioneering work at the end of the 1980th many developments have been introduced, greatly extending the use of different materials, improving the physical properties of the components built and enhancing the accuracy of the process. Still very important issues remain nowadays, hampering a completely autonomous production of parts and even restricting the freedom of design by means of these technologies. One of the major issues is the low density and stability of the parts during the building process, which implies the need of support structures: The powder bed surrounding the part has an essential role, since it should support the structure during building, until it’s ready for removal. Moreover, the microstructure of the powder bed is a template for the microstructure of the part produced. In this context, the use of submicron ceramic powders is still a challenge. Three approaches for the stabilization and densification of powder beds will be presented: The Layerwise Slurry Deposition process LSD, the gas flow assisted powder deposition and the Laser Induced Slipcasting (LIS) of ceramic powder compacts. T2 - 43rd International Conference and Exposition on Advanced Ceramics and Composites (ICACC 2019) CY - Daytona Beach, FL, USA DA - 27.01.2019 KW - Ceramics KW - Additive Manufacturing PY - 2019 AN - OPUS4-49627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens T1 - Powder-based Additive Manufacturing at Micro-Gravity N2 - Are we ready for putting a human footprint on Mars? Obviously, it is possible to send technologically challenging missions to our earth neighbors with a high level of complexity, such as enabling autonomous planetary mobility. As humanity contemplates mounting manned missions to Mars, strategies need to be developed for the design and operation of hospitable environments safely working in space for years. Humans require water and air provided by complicated equipment. Its safe operation is a great challenge and implies being prepared for all eventualities. Instead of foreseeing and preparing for all possible scenarios of machine failures and accidents, it appears logic taking advantage of the flexibility of humans and providing essential equipment for the reaction on critical situations. The supply of spare parts for repair and replacement of lost equipment would be one key pillar of such a strategy. Bearing in mind the absolute distance and flight trajectories for manned missions to Mars, supplying spare parts from Earth is impossible. Thus, in space manufacturing remains the only option for a timely supply. With a high flexibility in design and the ability to manufacture ready to use components directly from a computer aided model, additive manufacturing technologies appear extremely attractive. For metal parts manufacturing the Laser Beam Melting process is the most widely used additive manufacturing process in industrial application. However, envisioning the handling of metal powders in the absence of gravitation is one prerequisite for its successful application in space. A gas flow throughout the powder bed has been successfully applied to compensate for missing gravitational forces in micro gravity experiments. The so-called Gas Flow Assisted Powder Deposition is based on a porous building platform acting as a filter for the fixation of metal particles in a gas flow driven by a pressure difference maintained by a vacuum pump. T2 - 1st Sino-German Workshop on 3D Printing in Space CY - Beijing, China DA - 20.02.2019 KW - Zero-g KW - Additive Manufacturing KW - µ-gravity PY - 2019 AN - OPUS4-49628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Günster, Jens T1 - Powder-based Additive Manufacturing at Micro-Gravity N2 - Are we ready for putting a human footprint on Mars? Obviously, it is possible to send technologically challenging missions to our earth neighbors with a high level of complexity, such as enabling autonomous planetary mobility. As humanity contemplates mounting manned missions to Mars, strategies need to be developed for the design and operation of hospitable environments safely working in space for years. Humans require water and air provided by complicated equipment. Its safe operation is a great challenge and implies being prepared for all eventualities. Instead of foreseeing and preparing for all possible scenarios of machine failures and accidents, it appears logic taking advantage of the flexibility of humans and providing essential equipment for the reaction on critical situations. The supply of spare parts for repair and replacement of lost equipment would be one key pillar of such a strategy. Bearing in mind the absolute distance and flight trajectories for manned missions to Mars, supplying spare parts from Earth is impossible. Thus, in space manufacturing remains the only option for a timely supply. With a high flexibility in design and the ability to manufacture ready to use components directly from a computer aided model, additive manufacturing technologies appear extremely attractive. For metal parts manufacturing the Laser Beam Melting process is the most widely used additive manufacturing process in industrial application. However, envisioning the handling of metal powders in the absence of gravitation is one prerequisite for its successful application in space. A gas flow throughout the powder bed has been successfully applied to compensate for missing gravitational forces in micro gravity experiments. The so-called Gas Flow Assisted Powder Deposition is based on a porous building platform acting as a filter for the fixation of metal particles in a gas flow driven by a pressure difference maintained by a vacuum pump. T2 - 2nd Sino-German Workshop on 3D Printing in Space CY - Berlin, Germany DA - 28.10.2019 KW - µ-gravity KW - Additive Manufacturing KW - Zero-g PY - 2019 AN - OPUS4-49629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griepentrog, Michael T1 - Estimation of measurement uncertainty of instrumented indentation testing N2 - Some critical discussion of the state of the art of uncertainty evaluationin Instrumented Indentation Testing IIT Nowadays the Instrumented Indentation Testing (IIT), in the nano range often named as nano indention, is one of the most commonly used methods to determine the mechanical properties of materials in the micro and nano range. This method is already extensive standardized in ISO 14577 part 1-4. In the past, the application of this standard in testing praxis shows that the established values have an excellent precision.If an uncertainty is calculated, the range of values within which the true value is asserted to lie with some level of confidencewill be known. In part 1 of ISO 14577 [1] two methods for evaluation of the uncertainty in IIT are mentioned: Method 1 for determining uncertainty considers only those uncertainties associated with the overall measurement performance of the testing machine with respect to the reference blocks. Method 2calculates a combined uncertainty from individual contributions. These may be grouped into random and systematic uncertainties. Both methods will be described in detail using examples from the dailyexperimental praxis. The comparabilityof both methods will be critically discussed. Finally, it will be showedhow the calculated uncertaintiescan be used for performancetests and product specifications. Acknowledgement This work was performed under the support of the EMPIR project 17NRM05Advancing measurement uncertainty̶ comprehensiveexamples for key international standards References [1] ISO 14577 part 1 (2017) T2 - KLA Nanomechanical Testers User Workshop CY - Langen, Germany DA - 02.05.2019 KW - Instrumented Indentation Testing KW - IIT KW - nanoindentation KW - mechanical properties KW - uncertainty KW - performance test KW - product specification PY - 2019 AN - OPUS4-48141 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grauel, Bettina A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Haase, M. A1 - Homann, C. T1 - Progress report NaYF4:Yb,Er upconversion nanoparticles: determination of energy loss processes for the systematic enhancement of the luminescence efficiency N2 - A report on the progress of the PhD work on upconversion nanoparticles is given, showing lifetimes and quantum yields of single- and co-doped Yb,Er nanocrystals with and without inert shell. T2 - Arbeitsgruppenseminar Prof. Oliver Benson CY - Berlin, Germany DA - 23.10.2019 KW - Upconversion KW - Spectroscopy KW - Nanoparticles KW - Lifetime PY - 2019 AN - OPUS4-49754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gradt, Thomas A1 - Theiler, Géraldine T1 - Influence of cryogenic hydrogen environment on the tribological properties of materials N2 - The presentation gives an overview over the LH2-activities during 20 years of tribological research in cryogenic environments at BAM. T2 - 2019 Hydrogenius & I2CNER Tribology Symposium CY - Fukuoka, Japan DA - 30.01.2019 KW - Friction KW - Wear KW - Hydrogen KW - Cryogenic Engineering KW - Hydrogen Embrittlement PY - 2019 AN - OPUS4-47339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gradt, Thomas T1 - Tribological Research in Germany - Overview and Examples from the Federal Institute for Materials Research and Testing (BAM) N2 - The talk gives a historical introduction and introduces some of the biggest and most important research institutes in Germany dealing with tribology at Universities, scientific societies and companies. Some examples for research projects and focus areas are given. As an example for a research institute with a long history in tribological research the activities of BAM in Berlin are presented. T2 - Joint Tribology Symposium of Kyushu University and Yokohama National University KY7 CY - Fukuoka, Japan DA - 01.02.2019 KW - Friction KW - Lubrication KW - Wear PY - 2019 AN - OPUS4-47345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gollwitzer, Christian A1 - Scholz, Philipp A1 - Ulbricht, Alexander A1 - Joshi, Yogita A1 - Weidner, Steffen T1 - Synchrotron based absorption edge tomography for the analysis of 3D printed polymer MOF N2 - Absorption edge tomography is a method which exploits the sudden change of the attenuation coefficient, when the photon energy crosses the absorption edge of an element. The beamline BAM line at BESSY II, which is operated by the Federal Institute for Materials Research and Testing, can provide a monochromatized beam in a photon energy range from 5 keV up to 80 keV with a bandwidth of 2%. Together with the microtomography setup, this enables differential tomography sensitive to any element with N >= 24 (Cr) by using an appropriate K- or L-edge in this range. Here, a polymer filament embedding metal organic framework (MOF) was prepared and used for 3D printing. Absorption edge tomography at the copper K edge was employed to perform a non-destructive 3D characterization of the microstructure of the embedded MOF. Data fusion was then used to determine the size distribution of the embedded MOF. T2 - iCT 2019 CY - Padua, Italy DA - 12.02.2019 KW - Synchrotron tomography KW - BAMline KW - MOF KW - Absorption edge tomography PY - 2019 AN - OPUS4-47392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghigo, Tea A1 - Rabin, Ira A1 - Buzi, P. T1 - Archaeometric analysis of inks from Coptic Manucripts N2 - Understanding the technological evolution of inks from Coptic Manuscripts. T2 - III International PAThs Conference CY - Rome, University of La Sapienza, Italy DA - 25.02.2019 KW - Archaeometry PY - 2019 AN - OPUS4-48037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghigo, Tea A1 - Rabin, Ira A1 - Buzi, Paola T1 - Archaeometric analysis of Egyptian inks from Late Antiquity N2 - Presentation of the results obtained on a corpus of Egyptian papyri from Late Antiquity T2 - Research Showcase: studying Greco-Roman Egypt CY - University of Basel, Switzerland DA - 26.09.2019 KW - Ink KW - Archaeometry KW - Manuscripts KW - Coptic PY - 2019 AN - OPUS4-49969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghigo, Tea A1 - Rabin, Ira A1 - Buzi, Paola T1 - Archaeometric analisis of Egyptian inks from Late Antiquity N2 - Archaeometric analisis of Egyptian inks from Late Antiquity: presentation of the results obtaine on a curpus of literary and documentary manuscripts. T2 - International congress of papyrology CY - Lecce, Italy DA - 28.07.2019 KW - Coptic KW - Archaeometry KW - Ink KW - Manuscripts PY - 2019 AN - OPUS4-49971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Elert, Anna Maria T1 - Combination of advanced atomic force microscopy methods to investigate mechanical and chemical interphases in epoxy-boehmite nanocomposites N2 - Formation of interphases between inorganic nanofillers and thermoplastic matrices are usually correlated to short-range interactions which does not exceed more than tens of nanometers away from the surface of the filler. Nevertheless, in nanocomposites with thermosetting matrices, the effect of nanofillers on the properties of the matrix is not limited to the immediate vicinities, but a long-range property alteration of the bulk polymer may be observed. The interaction between nanofillers and the polymer can disturb the curing reaction and alters the chemical, physical and mechanical properties of the polymer network in the matrix phase. In our studies, we aim to investigate short and long-range interphases of a nanocomposite system consisting of a thermosetting matrix (DGEBA) filled with an inorganic nanoparticle (boehmite). For this purpose, a combination of atomic force microscopy (AFM)-based approaches is implemented. Scanning kelvin probe microscopy (SKPM) was used to map the compositional contrast and the interphase with different electrical properties than the bulk. The mechanical properties of the interphase were probed by high resolution intermodulation AFM. (ImAFM). Furthermore, infrared spectroscopy AFM (AFM-IR) is used to investigate the chemical structure of the matrix at different distances from the nanoparticle. SKPM and (AFM-IR) measurements both show a long-range (to 10 µm) effect of boehmite on the chemical structure and surface potential of the bulk epoxy, respectively, whereas ImAFM force measurements reveals a short-range mechanical interphase between the filler and the matrix. The AFM-IR demonstrated the existence of unreacted anhydride hardener at the interphase. This indicates the preferential absorption of anhydride on the surface of boehmite. The consequence of such a selective interaction between the inorganic filler and the epoxy components is disturbance of the epoxy-hardener stoichiometric ratio, the curing mechanism. and the alteration of bulk properties of the matrix. T2 - EUROMAT CY - Stockholm, Sweden DA - 01.09.2019 KW - AFM KW - SKPM KW - AFM-IR KW - ImAFM KW - Boehmite PY - 2019 AN - OPUS4-50693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geißler, Daniel A1 - Resch-Genger, Ute T1 - Development of reference materials (WP1) and reference methods (WP2) for the standardisation of concentration measurements of extracellular vesicles N2 - BAM provides leading expertise in preparation, characterisation and application of fluorescent reference standards and biomedical relevant nanomaterials, as well as in traceable, absolute, and quantitative fluorometric measurements of transparent and scattering systems in the ultraviolet, visible, and near infrared spectral region. BAM will prepare solid low-RI particles in WP1, will develop reference methods to determine the fluorescence intensity and RI of reference materials in WP2, and will measure the fluorescence intensity of EVs in biological test samples of WP3. T2 - EMPIR 18HLT01 "MetVesII" Kick-off meeting CY - Delft, The Netherlands DA - 17.06.2019 KW - Reference materials KW - Reference methods KW - Extracellualr vesicles PY - 2019 AN - OPUS4-48813 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -