TY - CONF A1 - Kleinbub, Sherin A1 - An, Biwen Annie A1 - Heidrich, Gabriele A1 - Özcan Sandikcioglu, Özlem A1 - Schenderlein, Matthias A1 - Dommisch, H. A1 - Wagner, D. A1 - Koerdt, Andrea T1 - Investigation of the corrosion potential by oral microorganisms related to periodontitis and peri-implantitis N2 - Since the early 19th century microorganisms were studied on their capabilities of causing microbiologically influenced corrosion (MIC) of metals. The most studied ones are sulfate-reducing bacteria (SRB), but others can corrode metals as well, e.g. acid-producing bacteria or methanogenic archaea (MA). However, these studies were mostly focused on metals related to the petroleum industry but metals for other industries, e.g. dentistry, are also susceptible to corrosion. The inert Titanium (Ti) is often used as an implant material, but it is a base metal. The formation of a passivating oxide layer allows Ti to be corrosion resistant at normal conditions. Nonetheless, scanning electron microscope images on dental implants from patients with acute peri-implantitis showed clear signs of corrosion. Currently, the corrosion mechanism of dental implants is unknown, but many indications suggest that oral microorganisms, including MA (Methanobrevibacter oralis) and SRB (Desulfomicrobium orale), could be involved. To determine if MA or SRB can corrode Ti (pure Ti or Ti-6Al-4V alloy), corrosion rate, methane and sulfide concentrations were analyzed. Electrical potential measurements using in-house developed electrochemical cells indicated a potential change on Ti in the presence of a corrosive MA strain compared to an abiotic control. Microbial composition comparison will be analyzed using samples from dental pockets of 150 infected patients by considering the quality of the implant and 50 healthy people by means of amplicon sequencing. Enrichments and isolation of pure cultures from the dentals samples are also examined for their corrosion behavior. Overall, this is the first study investigating the susceptibility of dental implant material to corrosion using human related MA. T2 - Annual Conference of the Association for General and Applied Microbiology CY - Mainz, Germany DA - 17.03.2019 KW - Methanogens KW - Microbiologically Influrenced Corrosion (MIC) KW - Biofilm PY - 2019 AN - OPUS4-47600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - X-ray emission during ultrashort pulse laser processing N2 - The industrial use of ultrashort laser pulses has made considerable progress in recent years. The reasons for this lie in the availability of high average powers at pulse repetition rates in the several 100 kHz range. The advantages of using ultrashort laser pulses in terms of processing precision can thus be fully exploited. However, high laser intensities on the workpiece can also lead to the generation of unwanted X-rays. Even if the emitted X-ray dose per pulse is low, the accumulated X-ray dose can become significant for high-repetition-rate laser systems so that X-ray exposure safety limits must be considered. The X-ray emission during ultrashort pulse laser processing was investigated for a pulse duration of 925 fs at 1030 nm wavelength and 400 kHz repetition rate. Industrially relevant materials such as steel,aluminum and glass were treated. Tungsten served as reference. X-ray spectra were recorded, and X-ray dose measurements were performed for laser treatment in air. For laser intensities > 2 × 10^13 W/cm2, X-ray doses exceeding the regulatory exposure limits for members of the public were found. Suitable X-ray protection strategies are proposed. T2 - SPIE Photonics West CY - San Francisco, USA DA - 02.02.2019 KW - Laser-induced X-ray emission KW - Ultrashort laser material interaction KW - Radiation protection PY - 2019 SN - 978-1-5106-2459-7 DO - https://doi.org/10.1117/12.2516165 SN - 0277-786X SN - 1996-756X VL - 10908 SP - 1090802-1 EP - 1090802-7 PB - SPIE - The international society for optics and photonics CY - Bellingham, WA, USA AN - OPUS4-47510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Hielscher-Hofinger, Stefan A1 - Lange, Thorid A1 - Hidde, Gundula A1 - Lerche, D. A1 - Rietz, U. T1 - CAT-Technologie zur Bestimmung der Klebfestigkeit N2 - Der Vortrag widmet sich der „ CAT-TECHNOLOGIE ZUR BESTIMMUNG DER KLEBFESTIGKEIT“ und beschreibt die Punkte „Motivation –CAT-Technologie (Centrifugal Adhesion Testing), Klebfestigkeit ( Materialscreening verschiedener Werkstoffklassen, Klebstoffscreening fürV2A gegenV2A als Referenz, Klebstoffscreening für Niedrigenergie-Polymere und Oberfächenmodifizierung von Niedrigenergie-Polymeren) und Verbundfestigkeit (“Stirnabzug vs. Zug-Scher-Prüfung an CFK) im Einzelnen. T2 - 17. Praxisseminar KLEBEN CY - IWF Jena, Germany DA - 30.01.2019 KW - CAT-Technologie KW - Klebfestigkeit KW - Verbundfestigkeit KW - Niedrigenergie-Polymeren PY - 2019 AN - OPUS4-47466 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Jörg A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Bonse, Jörn T1 - Röntgenemission bei der UKP-Laser-Materialbearbeitung N2 - Der Vortrag stellt Untersuchungen im Rahmen eines BMBF-geförderten Vorhabens zur unerwünschten Röntgenemission bei der Materialbearbeitung mit ultrakurzen Laserpulsen vor. T2 - Seminar LEF - Laser in der Elektronikproduktion & Feinwerktechnik CY - Fürth, Germany DA - 26.02.2019 KW - Ultrakurze Laserpulse KW - Materialbearbeitung KW - Sekundärstrahlung KW - Röntgenemission KW - Laserschutz PY - 2019 AN - OPUS4-47468 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Schönhals, Andreas T1 - Rigid amorphous phase in polymer nanocomposites as revealed by dielectric relaxation spectroscopy and fast scanning calorimetry N2 - For inorganic/polymer nanocomposites a so-called Rigid Amorphous Phase (RAF) is formed in the interfacial region by adsorption of polymer segments onto the nanoparticles. The segmental dynamics of RAF is expected to be altered, as compared to the pure matrix, which might percolate into the entire system, affecting the overall nanocomposite properties. A combination of two relaxation spectroscopy techniques (Broadband Dielectric Spectroscopy (BDS) and Specific Heat Spectroscopy (SHS) in a form of Temperature Modulated DSC (TMDSC)) as well as Fast Scanning Calorimetry (FSC) was employed to investigate the structure and molecular mobility of nanocomposites based on Epoxy and Layered Doubled Hydroxides with different nanoparticle content. First, BDS investigations proved the existence of a process, which is present only for nanocomposites, assigned to the dynamics of polymer segments within RAF. Second, the amount of RAF was quantified by analyzing the change of specific heat capacity step of nanocomposites, comparing to the pure material. Thirdly, the glass transition of nanocomposites was studied with FSC, applying high heating rates (500-10 000 K/s). Considering that all techniques probe essentially the same molecular process, an activation plot was constructed, delivering a complete picture of the molecular mobility and structure of the polymer nanocomposites including RAF. T2 - American Physical Society (APS) March Meeting 2019 CY - Boston, MA, USA DA - 04.03.2019 KW - Nanocomposites KW - Rigid amorphous fraction PY - 2019 AN - OPUS4-47564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Krüger, Jörg T1 - Emission von Röntgenstrahlung bei der UKP-Laser-Materialbearbeitung N2 - Der Vortrag stellt Untersuchungen im Rahmen eines BMBF-geförderten Vorhabens zur unerwünschten Emission von Röntgenstahlung bei der Materialbearbeitung mit ultrakurzen Laserpulsen vor. T2 - 7. OptoNet Laserstammtisch “Ultrakurzpulslaser” CY - Jena, Germany DA - 12.03.2019 KW - Laserschutz KW - Materialbearbeitung KW - Röntgenemission KW - Sekundärstrahlung KW - Ultrakurze Laserpulse PY - 2019 AN - OPUS4-47569 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans A1 - Weidner, Steffen A1 - Scheliga, Felix T1 - Ring-Expansion Polymerization (REP) of L-lactide with cyclic Tin(II) Bisphenoxides N2 - Five new cyclic catalysts were prepared by a new synthetic method from tin(II)-2-ethyhexanoate and silylated catechols, silylated 2,2´dihydroxybiphenyl or silylated 1,1´-bisnaphthol. These catalysts were compared with regard to their usefulness as catalysts for the ring expansion polymerization (REP) of L-lactide in bulk at 160 °C, and with two different tin(IV) derivatives of 1,1´binaphthol. Best results were obtained using seven-membered cyclic tin(II)bisphenoxides, which yielded colorless cyclic poly(l-lactide)s free of racemization with weight average molecular weights (Mw) up to 305 000 g mol-1. Furthermore, these catalysts were active even at a lactide/catalyst ratio of 20 000/1. Our new results were superior to those obtained from all other previously published catalysts yielding cyclic poly(L-lactide). The seven-membered cycles also proved to be more active than tin(II) 2-ethylhexanoate with and without the addition of alcohol. KW - Lactide KW - Cyclization KW - Ring-expansion polymerization KW - Tin(II)octanoate KW - MALDI-TOF MS PY - 2019 DO - https://doi.org/10.1016/j.eurpolymj.2019.04.024 SN - 0014-3057 SN - 1873-1945 VL - 116 SP - 256 EP - 264 PB - Elsevier Ltd. AN - OPUS4-47794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Schönhals, Andreas T1 - Rigid Amorphous Phase in Epoxy-based Nanocomposites as Revealed by Dielectric Spectroscopy and Fast Scanning Calorimetry N2 - For inorganic/polymer nanocomposites a so-called Rigid Amorphous Phase (RAF) is formed in the interfacial region by adsorption of polymer segments onto the nanoparticles. The segmental dynamics of RAF is expected to be altered, as compared to the pure matrix, which might percolate to the entire system, affecting the overall nanocomposite properties. A combination of two relaxation spectroscopy techniques (Broadband Dielectric Spectroscopy (BDS) and Temperature Modulated DSC (TMDSC)) as well as Fast Scanning Calorimetry (FSC) was employed to investigate the structure and molecular mobility of nanocomposites based on Epoxy and Layered Doubled Hydroxides with different nanoparticle content. First, BDS investigations proved the existence of a process, which is present only for nanocomposites, assigned to the dynamics of polymer segments within RAF. Second, the amount of RAF was quantified by analyzing the change of specific heat capacity step of nanocomposites, comparing to the pure material. Thirdly, the glass transition of nanocomposites was studied with FSC, applying high heating rates (0.5-10 kK/s). Considering that all techniques probe essentially the same molecular process, an activation plot was constructed, delivering a complete picture of the molecular mobility and structure of the polymer nanocomposites including RAF. T2 - DPG-Frühjahrstagung 2019 CY - Regensburg, Germany DA - 01.04.2019 KW - Rigid amorphous fraction KW - Nanocomposites PY - 2019 AN - OPUS4-47762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Szymoniak, Paulina A1 - Schönhals, Andreas A1 - Madkour, Sherif T1 - Multiple Glassy Dynamics of an Asymmetric PVME/PS Blend Investigated by Broadband Dielectric and Specific Heat Spectroscopy N2 - Over the past decades research on the molecular dynamics of miscible polymer blends is of topical interest in the literature, to understand the segmental mobility of individual components, as it is affected by blending. In general, miscible polymer blends exhibit a complex dynamic behavior. For an A/B blend the relaxation times of component A and component B are affected by the spatial local compositional heterogeneity, present in binary systems on a microscopic level, regardless of the macroscopic homogeneity. Here, a combination of broadband dielectric and specific heat spectroscopy was employed to study the dynamically asymmetric PVME/PS blend with seven different compositions, focusing on samples with high PS contents. Considering that PS is dielectrically invisible, BDS is a powerful technique to study the response of PVME, as it is affected by PS segments. Here, three separate relaxation processes were found by dielectric investigations, related to confined or constrained PVME segments due to the spatial local compositional heterogeneities, which is in contrary to the previous literature findings [1]. Moreover, the dielectric data was compared with results obtained by specific heat spectroscopy, where a fourth relaxation process was found, due to the cooperative fluctuations of PVME and PS. [1] Colmenero, J., Arbe, A. Soft Matter, 2007, 3, 1474. T2 - DPG-Frühjahrstagung 2019 CY - Regensburg, Germany DA - 01.04.2019 KW - Specific heat spectroscopy KW - Polymer blends KW - Dielectric spectroscopy PY - 2019 AN - OPUS4-47764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nikitin, D. A1 - Madkour, Sherif A1 - Pleskunov, P A1 - Tafiichuk, R A1 - Shelemin, A A1 - Hanus, J A1 - Gordeev, I A1 - Sysolyatina, E A1 - Ermolaeva, S A1 - Titov, V A1 - Schönhals, Andreas A1 - Choukourov, A T1 - Cu nanoparticles constrain segmental dynamics of crosslinked polyethers: a trade -off between non-fouling and antibacterial properties N2 - Copper has a strong bactericidal effect against multi-drug resistant pathogens and polyethers are known for their resistance to biofilm formation. Herein, we combined Cu nanoparticles (NPs) and a polyether Plasma polymer in the form of nanocomposite thin films and studied whether both effects can be coupled. Cu NPs were produced by magnetron sputtering via the aggregation in a cool buffer gas whereasolyether layers were synthesized by Plasma-Assisted Vapor Phase Deposition with poly(ethylene oxide) (PEO) used as a precursor. In situ specific heat spectroscopy and XPS analysis revealed the formation of a modified polymer layer around the NPs which propagates on the scale of a few nanometers from the Cu NP/polymer interface and then transforms into a bulk polymer phase. The chemical composition of the modified layer is found to be ether-deficient due to the catalytic influence of copper whereas the bulk polymer Phase exhibits the chemical composition close to the original PEO. Two cooperative glass transition phenomena are revealed that belong to the modified polymer layer and the bulk phase. The former is characterized by constrained mobility of polymer segments which manifests itself via a 30 K increase of dynamic glass transition temperature. Furthermore, the modified layer is characterized by the heterogeneous structure which results in higher fragility of this layer as compared to the bulk phase. The Cu NPs/polyether thin films exhibit reduced Protein adsorption; however, the constrained segmental dynamics leads to the Deterioration of the non-fouling properties for ultra-thin polyether coatings. The films are found to have a bactericidal effect against multi-drug resistant Gram-positive Methicillin-Resistant Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa. KW - Nanocomposites KW - Specific heat spectroscopy PY - 2019 DO - https://doi.org/10.1039/c8sm02413h VL - 15 IS - 13 SP - 2884 EP - 2896 PB - RSC AN - OPUS4-47765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Schönhals, Andreas A1 - Böhning, Martin T1 - Molecular Mobility and Charge Transport in Polymers of Intrinsic Microporosity (PIMs) as Revealed by Dielectric Spectroscopy N2 - Polymeric membranes represent a low-cost, energy efficient solution for gas separation. Recently polymers of intrinsic microporosity (PIMs) have emerged as prestigious membrane materials featuring a large concentration of pores smaller than 1 nm, a BET surface area larger than 700 m2/g and high gas permeability and selectivity. Unusual chain structure combining rigid segments with sites of contortion gives rise to the intrinsic microporosity. However, this novel class of glassy polymers are prone to pronounced physical aging. The initial microporous structures approach a denser state via local small scale fluctuataions, leading to a dramatic reduction in the gas permeabilities. For the first time, dielectric relaxation spectroscopy with state-of-the-art high-resolution analyzers was employed to investigate three representative PIMs with a systematic change in chain rigidity: PIM-EA-TB 〉 PIM-1 〉 PIM-MDPH-TB. The molecular mobility, the charge transport and their response upon heating (aging) in the polymers were measured in a broad temperature range through isothermal frequency scans during different heating / cooling cycles. Multiple dielectric processes following Arrhenius behavior were observed for the investigated polymers. Local fluctuations, Maxwell-Wagner-Sillars (MWS) polarization and structural relaxation phenomena were discussed and attempted to be correlated with the structural features of PIMs. Moreover, all PIMs showed conductivity in the glassy state. The significant increase in the conductivity with increasing temperature far below the glass transition temperature of PIMs is explained in terms of the loosely packed microporous structure and the formation of local intermolecular agglomerates due to interaction of π-electrons in aromatic moieties of the polymer backbone. T2 - American Chemical Society (ACS) National Meeting & Expo 2019 CY - Orlando, FL, USA DA - 31.03.2019 KW - Dielectric spectroscopy KW - Polymeric membrane KW - Polymers of intrinsic microporosity PY - 2019 AN - OPUS4-47805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Chua, Y. Z. A1 - Yang, B. A1 - Schick, C. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Probing the glass transition temperature of polymers of intrinsic microporosity (PIMs) by fast scanning calorimeter N2 - High performance polymers of intrinsic microporosity (PIMs) have emerged as novel materials with broad applications from gas separation to electronic devices. Sufficiently rigid, even contorted polymer chains show only limited molecular mobility, therefore undergo inefficient packing and give rise to intrinsic microporosity with pore size generally smaller than 1 nm and BET surface areas larger than 700 m2/g. Further performance optimization and long-term stability of devices incorporating PIMs rely on our understanding of structure-processing-property relationships and physical aging, in which glass transition plays a key role. Up to now no glass transition temperature (Tg) of PIMs could be detected with conventional thermal analysis techniques before degradation. Decoupling the time scales responsible for the glass transition and the thermal decomposition is a reliable strategy to overcome this. This was achieved by employing fast scanning calorimetry (FSC) based on a chip sensor, which is capable to heat and cool a small sample (ng-range) with ultrafast rates of several ten thousand K/s. FSC provides definitive evidence of glass transition of a series of PIMs with a special consideration on the chain rigidity. The determined glass transition temperature of these PIMs follows the order of the rigidity of their backbone structures. FSC provides the first clear-cut experimental evidence of the glass transition of PIM-EA-TB with a Tg of 663 K, PIM-1 of 644 K and PIM-DMDPH-TB of 630 K at a heating rate of 1Χ104 K/s. Local fluctuations are featured in glass transition of highly rigid PIMs. As conformational changes are prevented by the backbone rigidity, the glass transition must rather be assigned to local small scale fluctuations. T2 - American Chemical Society (ACS) National Meeting & Expo 2019 CY - Orlando, FL, USA DA - 31.03.2019 KW - Glass transition KW - Polymers of intrinsic microporosity KW - Fast scanning calorimeter PY - 2019 AN - OPUS4-47806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yildirim, Arda A1 - Bühlmeyer, A. A1 - Hayashi, S. A1 - Haenle, J. C. A1 - Sentker, K. A1 - Huber, P. A1 - Laschat, S. A1 - Schönhals, Andreas T1 - Molecular Dynamics of Dipole Functionalized Triphenylene-based Discotics N2 - In this study, the molecular dynamics of a series of dipole functionalized triphenylene-based discotics, forming a columnar mesophase, were investigated by broadband dielectric spectroscopy (BDS). In addition to conductivity and localized dynamics, glassy dynamics were also observed. At higher temperatures an α1-processes and at low temperatures an α2 processes were detected having a completely different temperature dependence of its relaxation times. Different molecular assignments of α1- and α2-processes are suggested. The phase behavior of the material was explored under helium purge down to 100 K by differential scanning calorimetry (DSC). Besides the phase transition temperatures and enthalpies, one or two thermal glass transitions were found for all the materials. Moreover, the glassy dynamics were further investigated by Flash DSC, which is a chip-based calorimetry technique allowing for fast heating and cooling rates as high as 10000K/s. T2 - Spring Meeting of German Physical Society CY - Regensburg, Germany DA - 01.04.2019 KW - Liquid Crystals PY - 2019 AN - OPUS4-47827 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mitzkus, Anja A1 - Sahre, Mario A1 - Basedau, Frank A1 - Hofman, Detlef A1 - Beck, Uwe T1 - Fiber Bragg Gratings for In-Situ Stress Monitoring of Electrochemical Deposition N2 - The in-situ monitoring of electrochemical deposition (ECD) processes is still a challenge regarding the measurement of the effective temperature of the substrate and the formation of mechanical stress in the layer under given plating conditions. Monitoring problems can be solved by applying a pre-coated fiber Bragg grating (FBG) to the electrolytic process as the shift of the Bragg wavelength is affected by both the temperature of the electrolyte near the substrate and the stress formation in the growing layer. The experimental FBG set-up and the quantitative determination of temperature- and stress-related strain is described for a nickel-iron electrolyte. KW - Fiber Bragg grating (FBG) KW - Electrochemical deposition (ECD) KW - Optical fibers PY - 2019 DO - https://doi.org/10.1149/2.0111906jes SN - 0013-4651 VL - 166 IS - 6 SP - B312 EP - B315 PB - Electrochemical Society CY - Pennington, NJ AN - OPUS4-47738 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Pentzien, Simone A1 - Krüger, Jörg T1 - X-Ray Emission during Laser Processing with Ultrashort Laser Pulses N2 - Ultrashort laser pulse micromachining features a high precision. By increasing the repetition rate of the applied laser to several 100 kHz, laser processing becomes quick and cost-effective and make this method attractive for industrial applications. Upon exceeding a critical laser intensity, hard X-ray radiation is generated as a side effect. Even if the emitted X-ray dose per pulse is low, the accumulated X-ray dose becomes significant for high-repetition-rate laser systems so that radiation safety must be considered. T2 - 5th UKP-Workshop: Ultrafast Laser Technology CY - Aachen, Germany DA - 10.04.2019 KW - Laser-induced X-ray emission KW - Radiation protection KW - Ultrashort laser material interaction PY - 2019 AN - OPUS4-47788 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Acosta-Zepeda, C. A1 - Saavedra, P. A1 - Bonse, Jörn A1 - Haro-Poniatowski, E. T1 - Modeling of silicon surface topographies induced by single nanosecond laser pulse induced melt-flows N2 - Irradiation with a single nanosecond laser pulse in the melting regime can result in a characteristic change in the surface morphology of crystalline silicon. This has been verified experimentally in a variety of situations, where dimple-shaped surface topographies are produced. In this work, the dimple height, depth, and width are modeled following and extending in a more rigorous manner the approach of Wood and Giles [Phys. Rev. B 23, 2923–2942 (1981)] and that of Schwarz-Selinger and coworkers [Phys. Rev. B 64, 155323 (2001)], upon varying the laser irradiation parameters such as peak energy density, pulse duration, and wavelength. This is achieved with numerical simulations of one-dimensional heat flow as input to the analytical fluid-flow equations. KW - Nanosecond laser KW - Melting KW - Silicon KW - Fluid-flow PY - 2019 DO - https://doi.org/10.1063/1.5053918 SN - 0021-8979 SN - 1089-7550 VL - 125 IS - 17 SP - 175101-1 EP - 175101-9 PB - AIP Publishing CY - Melville, USA AN - OPUS4-47927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steinhoff, U. A1 - Hodoroaba, Vasile-Dan T1 - EMPIR Erläuterung der Fördermaßnahme und Beispiele aus der Nanotechnologie N2 - Das EMPIR-Förderprogramm wird kurz erläutert und laufende Projekte aus der Nanotechnologie werden vorgestellt. Der Schwerpunkt liegt auf Standardisierungsprojekten, die gemeinsam mit ISO/TC 229 'Nanotechnologies' und CEN/TC 352 'Nanotechnologies' zu neuen Normen führen sollten. Als Beispiel für laufende Nanotechnologie-Projekte mit Koordination aus Deutschland werden MagNaStand (PTB) und nPSize (BAM) gegeben. T2 - Treffen des Normungsausschusses NA 062-08-17 AA Nanotechnologien CY - KIT, Karlsruhe, Germany DA - 07.03.2019 KW - EMPIR KW - Nanoparticles KW - Reference materials KW - Particle size distribution KW - Traceability KW - Standardisation PY - 2019 AN - OPUS4-47859 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Surface and Microbeam Analytical Methods @BAM N2 - An overview of the activities in the field of surface and microbeam analysis at BAM-6.1 is given with focus on physico-chemical characterization at the nanoscale. Ideas of potential joint activities are presented: structural and chemical analysis of graphene, deposition techniques for nanoparticles, EBSD on steel for a broader range of methods, instruments and types of steel, soft X-ray Analysis of low-Z materials, analysis of mesoporous thin films, etc. T2 - BAM-IFW Workshop CY - Dresden, Germany DA - 28.03.2019 KW - PC characterisation KW - Nanoscale KW - Nanoparticles PY - 2019 AN - OPUS4-47860 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN ED - Bosse, H. ED - Buhr, E. ED - Dziomba, T. ED - Hodoroaba, Vasile-Dan ED - Klein, T. ED - Krumrey, M. T1 - NanoWorkshop 2018: Workshop on Reference Nanomaterials N2 - The Scope of the Workshop was to provide a forum for discussion on progress in development, characterisation and application of reference nanomaterials. Results of recently finsihed national and international research projects have been presented. Moreover, the need for future developments have been addressed. Attendees of teh Workshop were expected to be experts from academia, research institutes, regulatory bodies and industry working or interested in the area of reference nanomaterials. The following structure of Workshop was planned: the main focus of the first day was on reference material needs and development, while teh second day was focussed on reference materials characterisation and standardisation. Over 111 participants frm 13 countries and teh European Joint Research Centre have regsitered for the Workshop with 16 platform presentations and 42 poster contributions grouped in 2 sessions and 10 topical areas. A summary of the observations, analysis and conclusions of the Workshop is made including an overview table of links to information on existing reference nanomaterials. KW - Reference Nanomaterials KW - Nanometrology KW - Standardization KW - Nanoparticle Characterization KW - Comparability of Measurement Results KW - Nanomaterial Properties PY - 2019 SN - 78-3-95606-440-1 DO - https://doi.org/10.7795/110.20190412 SN - 0179-0609 VL - 2018 SP - 1 EP - 315 PB - Physikalisch-Technische Bundesanstalt CY - Braunschweig AN - OPUS4-47861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hampel, Marco A1 - Schenderlein, Matthias A1 - Schary, Christian A1 - Dimper, Matthias A1 - Özcan Sandikcioglu, Özlem T1 - Efficient detection of localized corrosion processes on stainless steel by means of scanning electrochemical microscopy (SECM) using a multi-electrode approach N2 - High resolution analysis of corrosion processes on stainless steels is a challenging task. The application of local electrochemical techniques such as scanning electrochemical microscopy (SECM) has opened new possibilities for the detection of corrosion products and activity on metallic surfaces. However, due to its stochastic nature, the analysis of pitting corrosion requires being at the right place at the right time. Scanning over large areas at a high resolution not only leads to long scan durations but also leaves many short-lived processes undetected. In this paper we present the combined automated operation of SECM and wire multi-electrodes connected to a multi-electrode analyzer (MMA). The inter-electrode currents between 25 wire electrodes connected via zero resistance ammeters (ZRA) are measured by the MMA at open circuit potential (OCP) and the electrodes reporting anodic currents are detected automatically to be analyzed by means of SECM. The results demonstrate the successful application of this methodology for the detection of unstable and stable pitting processes on 304 stainless steel in a corrosive aqueous environment. KW - Scanning electrochemical microscope (SECM) KW - Localised corrosion KW - Corrosion monitoring PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-478646 DO - https://doi.org/10.1016/j.elecom.2019.02.019 VL - 101 SP - 52 EP - 55 PB - Elsevier B.V. AN - OPUS4-47864 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenhagen, Jana A1 - Epping, Ruben T1 - View into the depths of copolymer microstructure by a special approach of LC-MS data evaluation N2 - It is a well-known story that copolymers beside their molar mass distribution (MMD) can exhibit a functionality type distribution (FTD), a copolymer composition distribution (CCD), a monomer sequence distribution (MSD) and additionally different topologies within one sample. This is and will remain a challenge for analysts. First a very short overview will be given concerning the common liquid separation techniques for polymers (SEC, LAC, LCCC, GELC) coupled to soft ionization mass spectrometric methods like MALDI and ESI-MS with focus on their limitations. For very broadly distributed samples or chemical very similar species the superposition of different separation mechanisms in chromatography is unavoidable or the separation efficiency cannot be optimized. Different ionization probabilities and species of the same nominal mass with completely different structures are just two problems of mass spec of complex polymer mixtures. Subsequently, different examples will be shown how these limitations in some cases could be outsmarted. First example will be the separation of statistical EO-PO copolymers of different chemical compositions by end group functionality and the quantification of end group fractions over the whole CCD. Here an UP-LCCC / ESI-TOF-MS coupling is applied. Further for different kinds of polymers it will be shown how it could be realized to obtain information on small isobaric/isomeric topological heterogeneities by coupling UP-SEC / ESI-TOF-MS. All results are based on the data processing of reconstructed ion chromatograms of single mass traces of complex ESI-MS spectra. T2 - SCM-9 CY - Amsterdam, The Netherlands DA - 29.01.2019 KW - Reconstructed ion chromatograms KW - Copolymer KW - Microstructure KW - LC x ESI-TOF-MS PY - 2019 AN - OPUS4-47836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kuchenbecker, Petra A1 - Hodoroaba, Vasile-Dan T1 - Considerations for nanomaterial identification of powders using volume-specific surface area method N2 - The EC’s recommendation for a definition of nanomaterial (2011/696/EU) should allow the identification of a particulate nanomaterial based on the number-based metric criterion according to which at least 50% of the constituent particles have the smallest dimension between 1 and 100 nm. However, it has been recently demonstrated that the implementation of this definition for regulatory purposes is conditioned by the large deviations between the results obtained by different sizing methods or due to practical reasons such as high costs and time-consuming. For most measurement methods for particle size determination it is necessary to initially disperse the particles in a suitable liquid. However, as the particle size decreases, the adhesion forces increase strongly, making it more difficult to deagglomerate the particles and to assess accurately the result of this process. Therefore, the success of the deagglomeration process substantially determines the measurement uncertainty and hence, the comparability between different methods. Many common methods such as dynamic light scattering (DLS), centrifugal liquid sedimentation (CLS) or ultrasound attenuation spectroscopy (US) can give good comparable results for the size of nanoparticles, if they are properly separated and stabilized (e.g. in reference suspensions). In order to avoid the use of hardly available and expensive methods such as SEM / TEM for all powders, an agglomeration-tolerant screening method is useful. One of the measurement methods well suited to probe the size of particulate powder is the determination of the volume-specific surface area (VSSA) by means of gas adsorption as well as skeletal density. The value of 60 m2/cm3 corresponding to spherical, monodisperse particles with a diameter of 100 nm constitutes the threshold for decisioning if the material is a nano- or non-nanomaterial. The identification of a nanomaterial by VSSA method is accepted by the EU recommendation. However, the application of the VSSA method was associated also with some limitations. The threshold of 60 m2/cm3 is dependent on the particle shape, so that it changes considerably with the number of nano-dimensions, but also with the degree of sphericity of the particles. For particles containing micro-pores or having a microporous coating, false positive results are induced. Furthermore, broad particle size distributions made necessary to additionally correct the threshold. Based on examples of commercially available ceramic powders, the applicability of the VSSA approach was tested in relation with SEM and TEM measurements. The introduction of a correction term for deviations from sphericity and further additions improved the applicability of VSSA as a screening method. T2 - Partec CY - Nuremberg, Germany DA - 09.04.2019 KW - VSSA KW - Nanoparticles PY - 2019 AN - OPUS4-47874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tumanov, I. A1 - Tumanov, E. A1 - Michalchuk, Adam T1 - Ball size or ball mass – what matters in organic mechanochemical synthesis? N2 - Ball mass is an important parameter that is known to have an influence on the outcome of a mechanochemical reaction induced by ball-milling. A standard way of modifying the ball mass is to change the size of the ball made of the same material. In this case, however, a change in mass is accompanied by a simulatneous change in the ball size. It is therefore not possible to disentangle the effects of mass and Surface area in these cases. In the present work we report the results of experiments with specially designed and manufactured balls in which (1) milling ball mass is held constant, but their size differs, and (2) the ball mass is altered, with the diameter of the milling ball being held constant. Using the cocrystallisation of theophylline + nicotinamide as a case study it was found that both diameter and ball mass play crucial roles in determining the rate of a mechanochemical reaction. For comparison, we have also used milling balls with the same size (different mass), and others with the same mass (different size) made of different materials, as would be “traditional”. It was found that, despite having the same size, the lightest milling ball (nylon) was the most efficient in initiating the co-crystallisation, presumably due to the sorption of EtOH. Hence, the results of this manuscript also demonstrate how milling ball material can in fact be the most influential parameter, and potentially counterintuitive to classical mechanics. KW - Mechanochemistry KW - XRD PY - 2019 DO - https://doi.org/0.1039/c8ce02109k VL - 21 SP - 2174 EP - 2179 PB - RSC Royal Society of Chemistry AN - OPUS4-47851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawek, Marcel A1 - Madkour, Sherif A1 - Hertwig, Andreas A1 - Schönhals, Andreas T1 - Growth Kinetics and Molecular Mobility of Irreversibly Adsorbed Layers in Thin Films of P2VP and PVME N2 - In well-annealed thin polymer films, with non-repulsive polymer/substrate interactions, an irreversibly adsorbed layer is formed. These adsorbed layers have shown enormous potential for technological applications. Due to the hard accessibility of these layers, their growth kinetics and molecular dynamics are still not fully understood. Here, the irreversibly adsorbed layers of Poly(2-vinylpyridine) (P2VP) and Poly(vinyl methyl ether) (PVME) thin films are revealed by solvent-leaching experiments. The growth kinetics of these layers is investigated as a function of original film thickness and annealing times. The thickness, topography and quality of the adsorbed layer is determined with Atomic Force Microscopy (AFM) and spectroscopic ellipsometry. Additionally, the molecular mobility of the adsorbed layer is investigated with Broadband Dielectric Spectroscopy (BDS). A recently developed nanostructured capacitor (NSC) is employed to measure the adsorbed layers with a free surface layer depending on annealing and solvent-leaching time. The results are quantitatively compared and discussed with respect to recently published work. T2 - Spring Meeting of German Physical Society CY - Regensburg, Germany DA - 31.03.2019 KW - Adsorbed layer KW - Thin polymeric films PY - 2019 AN - OPUS4-47766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawek, Marcel A1 - Hertwig, Andreas A1 - Schönhals, Andreas T1 - Growth Kinetics and Molecular Mobility of Irreversibly Adsorbed Layers in Thin Polymer Films N2 - In well-annealed thin polymer films, with non-repulsive polymer/substrate interactions, an irreversibly adsorbed layer is formed. These adsorbed layers have shown enormous potential for technological applications. The growth kinetics and molecular dynamics of these buried layers in thin films are still not fully investigated due to the hard accessibility. Here, the irreversibly adsorbed layers of homopolymer thin films are revealed by solvent-leaching experiments. The growth kinetics of these layers is investigated as a function of original film thickness and annealing times. The thickness, topography and quality of the adsorbed layer is determined with Atomic Force Microscopy (AFM) and spectroscopic ellipsometry. Additionally, the molecular mobility of the adsorbed layer is investigated with Broadband Dielectric Spectroscopy (BDS). A recently developed nanostructured capacitor (NSC) is employed to measure the adsorbed layers with a free surface layer depending on annealing and solvent-leaching time. The results are quantitatively compared and discussed with respect to recently published work. T2 - Spring Meeting of German Physical Society CY - Regensburg, Germany DA - 31.03.2019 KW - Adsorbed layer KW - Thin polymeric films PY - 2019 AN - OPUS4-47767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stock, V. A1 - Fahrenson, C. A1 - Voss, L. A1 - Thünemann, Andreas A1 - Boehmert, L. A1 - Sieg, S. A1 - Lampen, A. T1 - Impact of artificial digestion on the sizes and shapes of microplastic particles N2 - The environmental pollution with plastic debris is one of the great challenges scientists are facing in recent times Due to degradation by UV radiation and other environmental factors, larger pieces of plastic can decompose into microscale fragments which can enter human foodstuff through the food chain or by environmental entry Recent publications show a contamination of various food products with microplastic particles suggesting a widespread exposure Thus, orally ingested plastic particles pose a potential health risk to humans In this study, we investigated the impact of artificial digestive juices on the size and shape of the three environmentally relevant microplastic particles polystyrene (PS), polypropylene (PP) and polyvinyl chloride (PVC). T2 - 12th International Particle Toxicology CY - Salzburg , Austria DA - 11.09.2019 KW - Microplastic KW - Particle PY - 2019 AN - OPUS4-48847 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saloga, Patrick E. J. A1 - Thünemann, Andreas T1 - Microwave-Assisted Synthesis of Ultrasmall Zinc Oxide Nanoparticles N2 - We report on ultrasmall zinc oxide single-crystalline nanoparticles of narrow size distribution and long-term colloidal stability. These oleate-stabilized nanoparticles were synthesized using microwave-assisted synthesis for 5 min, corresponding to a 99% decrease in synthesis time, when compared to the conventional synthesis method. It was observed that the average particle radius increases from 2.6 ± 0.1 to 3.8 ± 0.1 nm upon increasing synthesis temperature from 125 to 200 °C. This change also corresponded to observed changes in the optical band gap and the fluorescence energy of the particles, from 3.44 ± 0.01 to 3.36 ± 0.01 eV and from 2.20 ± 0.01 to 2.04 ± 0.01 eV, respectively. Small-angle X-ray scattering, dynamic light scattering, and UV–vis and fluorescence spectroscopy were employed for particle characterization. Debye–Scherrer analysis of the X-ray diffraction (XRD) pattern reveals a linear increase of the crystallite size with synthesis temperature. The consideration of the convolution of a Lorentz function with a Gaussian function for data correction of the instrumental peak broadening has a considerable influence on the values for the crystallite size. Williamson–Hall XRD analyses in the form of the uniform deformation model, uniform stress deformation model, and uniform deformation energy density model revealed a substantial increase of strain, stress, and deformation energy density of the crystallites with decreasing size. Exponential and power law models were utilized for quantification of strain, stress, and deformation energy density. KW - SAXS KW - Zinc oxide KW - Microwave synthesis KW - Nanoparticles PY - 2019 DO - https://doi.org/10.1021/acs.langmuir.9b01921 SN - 0743-7463 VL - 35 IS - 38 SP - 12469 EP - 12482 PB - American Chemical Society CY - Washington, D.C., USA AN - OPUS4-49136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thünemann, Andreas T1 - A look inside nanoparticles N2 - Small-angle scattering is the method of choice when it comes to obtaining information about the interior of nanoparticles. The aim is to make nanotechnology safer. While the use of small-angle neutron scattering (SANS) is limited to a few instruments in the world, small-angle X-ray scattering (SAXS) is widely accessible, with an upward trend. The example of core-shell particles shows how simple their analysis is with data from an Anton Paar laboratory system. Here, SAXS is a central tool for the development of new reference materials based on poly(methyl) acrylate-PVDF core-shell particles. The dimensions of the cores and shells can be precisely determined. A detailed analysis makes it possible to show that the cores contain fluorinated and nonfluorinated polymers, whereas the shell consist only of PVDF. This core-shell particles with a diameter around 40 nm show a significantly higher PVDF beta phase content than the PVDF homopolymer when using an emulsion polymerization technique. This finding is of importance with respect to applications in electroactive devices. T2 - SAXS excites: International SAXS Symposium 2019 CY - Graz, Austria DA - 24.09.2019 KW - Small-angle X-ray scattering KW - SAXS KW - Nanoplastics PY - 2019 AN - OPUS4-49126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brandl, F. A1 - Lederle, F. A1 - Härter, C. A1 - Thünemann, Andreas A1 - Beuermann, S. T1 - From gaseous vinylidene fluoride to electroactive poly(vinylidene fluoride) – Inducing β-phase by formation of block copolymers and composite materials N2 - Polymeric core-shell particles were synthesized in a semi-batch emulsion polymerization process. The shell of the particles consist of PVDF with a high amount of beta-phase. Small-angle X-ray scattering (SAXS) was used to quantify the size of the cores of the particles and the thickness of the shell. T2 - Macromolecular Colloquium Freiburg CY - Freiburg, Germany DA - 20.02.2019 KW - Small-angle x-ray scattering KW - SAXS KW - Nanoparticle KW - Polymer PY - 2019 AN - OPUS4-47467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thünemann, Andreas T1 - The Single Chain Architecture of (Bio)Polymers in Contact with Nanoplastics N2 - In contrast to microplastics, little is known about nanoplastics (1 to 100 nm). In order to make the dectecability of nanoplasics more reliable, we started to develop nanoplastic reference materials. This project also aims to anser the question of how the single chain conformation of bio(polymers) changes in contact with nanoplastics. Small-angle X-ray and neutron scattering methods are suitable methods for studing this topic. Recently the soft and hard interactions between polystyrene nanoplasics and human serum albumin corona was investigated with small-angle neutron scattering. Here we concentrate on small-angle X-ray scattering as our favorite method to study how (bio)polymers change their conformation in contact with nanoplastics. The scattering of bovine serum albumin in its native state can be detected easily. The scattering pattern of this biopolymer changes dramatically when its globular stucture changes to a coil structure. Modeling of chain conformations and the calculation of the scattering pattern is relatively easy to perform. Numerous model calculations will be provided to predict the changes of conformation of single bio(polymer) chains when in conatact with nanoplastics. These predictions will be compared with recent experimenal results from in situ measurments of bio(polymers) in contact with nanoplastics. The impact of temperature, polymer concentration and salt on the single-chain conformation changes will be discussed. T2 - PolyDays 2019 CY - Berlin, Germany DA - 11.09.2019 KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle KW - Protein KW - Nanoplastics PY - 2019 AN - OPUS4-48959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Unger, Wolfgang A1 - Böllinghaus, Thomas T1 - Comprehensive study of deuterium-induced effects in in austenitic stainless steel AISI 304L N2 - The damaging impact of hydrogen on the austenitic stainless steel AISI 304 L was analysed. To this aim, samples were charged electrochemically with the hydrogen isotope deuterium (2H, D) and examined with time-of-flight secondary ion mass spectrometry (ToF-SIMS) and electron backscatter diffraction (EBSD). The fusion of the obtained chemical and structural information revealed local enrichment of deuterium in austenite, transformation into martensite, crack formation and severe roughening of the specimen surface. The results indicated that martensite was not only formed during charging but also during Desorption and ToF-SIMS examinations. Furthermore, cross-sections of deuterium-charged samples revealed that in preferred deformation bands a g/ε/a 0 evolution is taking place. By means of microscopic analyses and carrier gas hot extraction (CGHE), it was found that the use of NaAsO2 as recombination poison decreased the uptake of hydrogen significantly and resulted in severe precipitation on the specimen surfaces. This is in contrast to the popular presumption that NaAsO2 enhances the uptake of hydrogen (and deuterium) during electrochemical charging by hampering its recombination from Atoms to molecules. KW - AISI 304L KW - Hydrogen KW - ToF-SIMS KW - Deuterium KW - Martensite PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-477540 DO - https://doi.org/10.1016/j.ijhydene.2019.03.058 SN - 0360-3199 SN - 1879-3487 VL - 44 IS - 23 SP - 12228 EP - 12238 PB - Elsevier Ltd. AN - OPUS4-47754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hagendorf, C. A1 - Richter, S. A1 - Krause, S. A1 - Bauer, J. A1 - Miclea, P.-T. A1 - Braun, Ulrike A1 - Altmann, Korinna A1 - Turek, M. T1 - Microplastic detection and analysis in water with silicon filter systems N2 - The use of optimized silicon filter systems is presented for the microplastic detection. T2 - International Conference on Sustainable Energy-Water-enviroment Nexus in Desert Climate CY - Doha, Qatar DA - 02.12.2019 KW - Filters KW - Microplastics KW - TED-GC-MS KW - Harmonisation PY - 2019 AN - OPUS4-50006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Goedecke, Caroline A1 - Eisentraut, Paul A1 - Kittner, Maria A1 - Altmann, Korinna A1 - Müller, Axel A1 - Braun, Ulrike T1 - Analysis of microplastics in theory and in practice N2 - Due to the favorable properties of polymers, their production and thus their input into the environment has increased significantly in recent decades. Currently, FTIR or Raman spectroscopy are mainly applied for the analysis of microplastic particles (MP) in environmental samples. However, these methods have great difficulties in determining metrologically traceable MP values, especially with regard to the limiting values, as preferred in regulation. Therefore, we developed a systematic and fast thermoanalytical method called TED-GC-MS (thermal extraction desorption gas chromatography mass spectrometry), which determines mass contents. Now the current goal is the determination of its process parameters. This poster illustrates the theoretical requirements for MP analysis (left side) and contrast them with the current state of research (right side).Unexpected practical problems are presented and the relatively new method is discussed concerning the quality requirements of well-established methods such as LC-or GC-MS. T2 - Eurachem Workshop - Uncertainty from sampling and analysis for accredited laboratories CY - Berlin, Germany DA - 19.11.2019 KW - Microplastics KW - TED-GC-MS KW - Reference materials PY - 2019 AN - OPUS4-49665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholz, Philipp A1 - Wachtendorf, Volker A1 - Elert, Anna Maria A1 - Falkenhagen, Jana A1 - Becker, Roland A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Tschiche, Harald A1 - Reinsch, Stefan A1 - Weidner, Steffen ED - Scholz, Philipp T1 - Analytical toolset to characterize polyurethanes after exposure to artificial weathering under systematically varied moisture conditions N2 - Polyether and -ester urethanes (PU) were exposed to artificial weathering at 40 °C and artificial UV radiation in a weathering chamber. In 3 parallel exposures, humidity was varied between dry, humid, and wet conditions. Material alteration was investigated by various analytical techniques like size exclusion chromatography (SEC), liquid chromatography-infrared spectroscopy (LC-FTIR), thermal-desorption gas chromatography-mass spectrometry (TD-GC-MS), fluorescence mapping and dynamic mechanical analysis (DMA). Our results show that depending on the weathering conditions, different degradation effects can be observed. By means of SEC an initial strong decrease of the molar masses and a broadening of the mass distributions was found. After a material dependent time span this was followed by a plateau where molar mass changes were less significant. A minor moisture-dependent degradation effect was only found for polyester PU. Fluorescence measurements on two materials revealed an increase in the luminescence intensity upon weathering process reaching a saturation level after about 500 h. The changes in the optical properties observed after different exposure conditions and times were very similar. The TD-GC-MS data showed the fate of the stabilizers and antioxidant in the course of weathering. LC-FTIR measurements revealed a change in peak intensities and the ratio of urethane and carbonyl bands. KW - Polyurethane KW - Artificial weathering KW - Moisture KW - Crosslinking KW - Degradation PY - 2019 UR - https://www.sciencedirect.com/science/article/pii/S0142941819303708 DO - https://doi.org/10.1016/j.polymertesting.2019.105996 SN - 0142-9418 VL - 78 SP - 105996, 1 EP - 9 PB - Elsevier CY - Amsterdam AN - OPUS4-48625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Hodoroaba, Vasile-Dan A1 - Braun, Ulrike A1 - Pfeifer, Dietmar A1 - Sturm, Heinz T1 - Reinforced UV curable cycloaliphatic epoxy oligosiloxane resin nanocomposite for coating applications N2 - Coating materials are nowadays often required to deliver not only sufficient barrier performance and suited optical appearance but a broad range of other functional properties. The incorporation of inorganic nanoparticles (NPs) is known to improve many key characteristics and provide new functionalities in polymer materials. Presented work aims to prepare and characterize an organic-inorganic coating material designed to bring together advantageous properties of hybrid materials and reinforcement effect delivered from the inorganic NPs embedment. Siloxane-based hybrid resins hold great advantages as coating materials as their properties can be tuned between those of polymers and those of glasses, thus, the compositions with superior thermal and mechanical properties can be achieved. We used Cycloaliphatic Epoxy Oligosiloxane (CEOS) resin as a polymeric matrix where the network formation was achieved by UV induced cationic polymerisation. Boehmite Alumina (BA) nanoparticles were added to CEOS resin as a reinforcing agent and resultant material was processed into films either by bar-coating or by spin-coating depending on further characterization procedure. Two different types of BA NPs, hydrophilic and organophilic, were used in order to assess the impact of particles surface on the resin characteristics. CEOS synthesis by condensation reaction was confirmed using 13C and 29Si NMR. Changes in CEOS photocuring process, resulting from particles incorporation, were monitored by real-time IR spectroscopy. At the same time, the thermal behaviour was evaluated by DSC and TGA methods. Morphology of the coatings was investigated by means of SEM operated in transmission mode. It was observed that BA presence increased the epoxy conversion degree and glass transition temperature. Material formulations providing best film characteristics were determined with regard to the particle type and loading. Compared to the hydrophilic nanoparticles, organophilic BA NPs yield superior overall performance of the foils. T2 - HYMA Conference CY - Sitges, Spain DA - 11.03.2019 KW - Cycloalyphatic epoxy oligosiloxane KW - Nanocomposite KW - Boehmite KW - Photocuring PY - 2019 AN - OPUS4-47641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Ghasem Zadeh Khorasani, Media A1 - Hodoroaba, Vasile-Dan A1 - Braun, Ulrike A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Versatile role of boehmite particles in epoxy-based nanocomposites N2 - Thermosetting materials are gaining increasing attention in many structural composite applications. However, the incorporation of inorganic nanoparticles (NPs) into polymer matrix is a promising approach to enhance their functional characteristics, and thus, to enable the development of thermosets advanced application. It has been shown that Boehmite Alumina (BA) used as nanofillers can improve different parameters of polymers. This NPs can be easily tailored enabling desirable interactions with a big range of polymers. However, the overall effect of nanofiller depends on many factors, therefore, making it hard to predict the resulted performance of nanocomposites. In the current contribution we would like to discuss the impact of Boehmite NPs on two different epoxy resin nanocomposite systems with the focus on the possible influence mechanisms of this nanofiller. As the first system, UV curable Cycloaliphatic-Epoxy Oligosiloxane (CEOS) resin/Boehmite nanocomposites were investigated by FTIR, TGA, DSC and T-SEM. It was observed that incorporation of BA leads to the reinforcement of glass transition (Tg) and overall thermal stability indicating the attractive interactions between BA and CEOS network. In addition, an increase in epoxy conversion of CEOS was concluded for nanocomposites assuming that particles are involved in UV polymerisation processes. The second epoxy/Boehmite nanocomposite is based on the bisphenol-A-diglycidyl ether (DGEBA) cured with methyl tetrahydrophtalic acid anhydride (MTHPA). Thermomechanical as well as nanomechanical properties of this material were investigated by DMTA and IR spectroscopy and the advanced Intermodulation AFM, respectively. In contrast to the first system, it was found that BA leads to a decrease of Tg and crosslink density of the polymer while the young’s modulus of the composite and local stiffness of polymer matrix increase significantly. As a result, the versatile role of Boehmite was detected depending on the investigated systems. Based on the obtained results, the parameters indicating property-efficient epoxy/Boehmite system are suggested. T2 - HYMA Conference CY - Sitges, Spain DA - 11.03.2019 KW - Epoxy KW - Boehmite KW - Curing KW - Nanocomposite PY - 2019 AN - OPUS4-47640 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholz, Philipp A1 - Wachtendorf, Volker A1 - Panne, Ulrich A1 - Weidner, Steffen ED - Scholz, Philipp T1 - Degradation of MDI-based polyether and polyester-polyurethanes in various environments - Effects on molecular mass and crosslinking N2 - Size-exclusion chromatography (SEC) was used to monitor changes of the molecular masses of thermoplastic polyether – and polyester urethane (TPU) exposed to thermal, hydrolytic, and photo-oxidative (UV) Degradation conditions for several days. The thermal treatment was performed at elevated temperatures (100–200 °C) under oxidative (air) as well as non-oxidative (nitrogen) conditions to evaluate the specific influence of oxygen on the degradation. At higher temperatures (≥175 °C) a fast decrease of the molecular masses of both PU accompanied by a high degree of crosslinking was found. At lower temperatures (≤150 °C) the polymers remained widely unaffected by thermal degradation within the investigated degradation interval of up to two weeks. Surprisingly, the influence of oxygen (air) was found to be less distinct. In contrast to that, UV treatment at 25 °C at less than 10% rel. humidity (RH) resulted in a fast crosslinking, whereas the molecular masses of both PU decreased slower than for thermal treatments. The depth of penetration of the UV radiation was estimated using 3D printed PU samples with different thicknesses. Hydrolysis based degradation effects were less significant. Only slight molecular mass changes were detected at temperatures ≤80 °C within a time span of 14 days, while no crosslinking could be measured. Considering the degradation results at the investigated exposure parameters, it could be shown that esterbased PU in general exhibits a significant higher stability compared to ether-based materials. KW - Polyurethane KW - Thermal degradation KW - UV degradation KW - Molecular masses KW - Crosslinking PY - 2019 UR - https://www.sciencedirect.com/science/article/pii/S0142941819302363 DO - https://doi.org/10.1016/j.polymertesting.2019.04.028 SN - 0142-9418 VL - 77 SP - 105881, 1 EP - 12 PB - Elsevier CY - Amsterdam AN - OPUS4-48619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Zutta Villate, Julian Mateo T1 - Radioactive gold nanoparticles for cancer treatment: Size and cluster dependent damage studied by Geant4 Monte-Carlo simulations N2 - Dose enhancement by gold nanoparticles (AuNP) was shown to increase the biological effectiveness of radiation damage in biomolecules and tissue. Most of the current studies focus on external beam therapy on combination with AuNP. Here we present a Monte-Carlo study (Geant4) to characterise radioactive AuNP. Radioactive ¹⁹⁸Au emits beta and gamma rays and is considered for applications with solid tumours. To effectively apply ¹⁹⁸AuNP their energy deposit characteristics have to be determined in terms of intrinsic and extrinsic properties e.g. AuNP diameter, AuNP density, and their clustering behaviour. After each decay process, the energy deposit, inelastic scattering events, kinetic energy spectrum of secondary particles within the AuNP themselves and in a spherical target volume of water up to 1 μm radius were determined. Simulations were performed for AuNP radii ranging from 2.5 nm to 20 nm radius, different cluster sizes and densities. The results show an increase of the energy deposit in the vicinity of the AuNP up to 150 nm. This effect nearly vanishes for distances up to one micron. For the case of AuNP clusters and the same activity, the enhancement of the energy deposit increases with the relative gold mass percentage and therefore can be adjusted by changing AuNP radius or clustering behaviour. KW - Gold Nanoparticles KW - AuNP KW - Radioactive decay KW - Beta decay KW - DNA KW - DNA damage KW - Radiation damage KW - MCS KW - Monte-Carlo simulation KW - Geant4 KW - Dosimetry KW - Microdosimetry KW - Cancer treatment KW - Radiationtherapy KW - Brachytherapy KW - OH radicals KW - LEE KW - low energy electrons KW - gamma ray KW - beta particle KW - radiolysis KW - clustered nanoparticles KW - NP KW - Simulation KW - particle scattering KW - Geant4-DNA KW - Energy deposit PY - 2019 DO - https://doi.org/10.1140/epjd/e2019-90707-x SN - 1434-6060 SN - 1434-6079 VL - 73 IS - 5 SP - 95, 1 EP - 7 PB - Springer CY - Berlin Heidelberg AN - OPUS4-47952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Heinz A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee T1 - Grenzflächen als Material: Konzepte und Beispiele zu nanoverstärkten Duroplasten N2 - Nachdem Jahrzehnte die Grenzfläche zwischen Kohlefaser und Duroplastmatrix optimiert wurde liegt das Augenmerk heute auf der Polymermatrix selbst. Diese lässt sich hinsichtlich ihres Elastizitätsmoduls und ihrer Bruchfestigkeit verbessern, indem Nanopartikel aus Böhmit (AlOOH) eindispergiert werden. Der Vortrag geht auf integrale und hochauflösend-bildgebende Methoden ein die ein Verständnis der komplexen Zusammenhänge ermöglichen. Nach einer chemischen in-situ Analyse des Aushärtvorgangs, aus welchem sich die Bedeutung der externer Parameter ablesen lässt, werden diverse hochauflösende, neue Methoden der Rasterkraftmikroskopie (AFM) eingeführt. Der lokalen Bestimmung des E-Moduls der Nanopartikel folgen Ausführungen zum temperaturabhängigen Chemismus des Böhmits, der während der Aushärtung Wasser freisetzt. Die hochauflösende Bestimmung der Oberflächenpotentiale, der Steifigkeit, der attraktiven Kräfte zwischen Spitze und Probe sowie der Energiedissipation im Kontakt stellen auf der Nanoskala eine komplexe Datenquelle dar, die auf der Makroskala einer Ergänzung bedarf: Durch Kombination von dynamisch-mechanisch-thermischer Analyse einerseits und Kartierung physikalischer Eigenschaften auf der Nanoskala andererseits kann der Zusammenhang zwischen chemischer Steuerung der Netzwerkbildung und den mechanischen Eigenschaften des Nanokomposits geklärt werden. Überraschend ist, dass bei geeigneter Steuerung der lokale E-Modul der Polymermatrix den des Füllstoffs übersteigt. Die Rissfortschrittsenergie wird in Böhmit-modifiziertem Epoxy verbessert absorbiert, die These dazu ist, dass die (010)-Gleitebenen, die nur durch Wasserstoffbrücken zusammen gehalten werden, einigermaßen schadlos geschert werden können. Daraus folgt, dass das System auf der Nanoskala über einen, wenn auch begrenzten, Selbstheilmechanismus verfügt. Zudem wird durch die hohe Heterogenität der Steifigkeit und Energiedissipation des Nanokomposits eine Risstrajektorie vielfach umgelenkt und somit früher gestoppt. Ergebnisse dieses Vortrags stammen aus einer Zusammenarbeit innerhalb des DFG-Forscherverbundes FOR2021 „Wirkprinzipien nanoskaliger Matrixadditive für den Faserverbundleichtbau“. T2 - Niedersächsisches Symposium Materialtechnik - NSM 2019 CY - Clausthal, Germany DA - 14.02.1019 KW - Nanokomposit KW - Böhmit KW - Risstrajektorie KW - Oberflächenpotential KW - Energiedissipation im Kontakt KW - Oberflächensteifigkeit KW - attraktive Wechelwirkung KW - Epoxy-Anhydrid Duroplast KW - Leichtbau PY - 2019 AN - OPUS4-47636 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dudziak, Mateusz A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Thermal properties of polymer nanocomposites based on polycarbonate (PC) and boehmite N2 - Nanocomposites are extremely versatile due to their physicochemical properties, which differ significantly from bulk homopolymers. One of the inorganic nanomaterials which are increasingly used as a filler in polymer matrices is boehmite, typically used as an inexpensive flame retardant. Here, it is used as a nanofiller in polycarbonate and polyamide, expecting to improve their mechanical properties. For industrial use boehmite is obtained by the solvothermal method, resulting in a layered nanomaterial, whereas naturally it occurs as single crystals with the size of <100µm. In this work we are obtaining and isolating boehmite crystals by a bottom-up method, in which a reaction between aluminum nitride and sodium hydroxide. Obtaining boehmite as microcrystals is necessary for its analysis and characterization, as well as to investigate its interaction with polymer matrices at the polymer/particle interface. Here, the obtained particles in polymer matrices are characterized with differential scanning calorimetry and thermogravimetry analysis. T2 - 6th International Conference on Multifunctional, Hybrid and Nanomaterials CY - Sitges, Spain DA - 11.03.2019 KW - Boehmite KW - Polycarbonate PY - 2019 AN - OPUS4-47769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dudziak, Mateusz A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Thermal properties of polymer nanocomposites based on polycarbonate (PC) and boehmite N2 - Nanocomposites are extremely versatile due to their physicochemical properties, which differ significantly from bulk homopolymers. One of the inorganic nanomaterials which are increasingly used as a filler in polymer matrices is boehmite, typically used as an inexpensive flame retardant. Here, it is used as a nanofiller in polycarbonate and polyamide, expecting to improve their mechanical properties. For industrial use boehmite is obtained by the solvothermal method, resulting in a layered nanomaterial, whereas naturally it occurs as single crystals with the size of <100µm. In this work we are obtaining and isolating boehmite crystals by a bottom-up method, in which a reaction between aluminum nitride and sodium hydroxide. Obtaining boehmite as microcrystals is necessary for its analysis and characterization, as well as to investigate its interaction with polymer matrices at the polymer/particle interface. Here, the obtained particles in polymer matrices are characterized with differential scanning calorimetry and thermogravimetry analysis. T2 - DPG-Frühjahrstagung 2019 CY - Regensburg, Germany DA - 31.03.2019 KW - Boehmite KW - Polycarbonate PY - 2019 AN - OPUS4-47768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zutta Villate, J. M. A1 - Hahn, Marc Benjamin T1 - Radioactive gold nanoparticles for cancer treatment N2 - Dose enhancement by gold nanoparticles (AuNP) was shown to increase the biological effectiveness of radiation damage in biomolecules and tissue. Most of the current studies focus on external beam therapy on combination with AuNP. Here we present a Monte-Carlo study (Geant4) to characterise radioactive AuNP. Radioactive 198 Au emits beta and gamma rays and is considered for applications with solid tumours. To effectively apply 198 AuNP their energy deposit characteristics have to be determined in terms of intrinsic and extrinsic properties e.g. AuNP diameter, AuNP density, and their clustering behaviour. After each decay process, the energy deposit, inelastic scattering events, kinetic energy spectrum of secondary particles within the AuNP themselves and in a spherical target volume of water up to 1 μm radius were determined. Simulations were performed for AuNP radii ranging from 2.5 nm to 20 nm radius, different cluster sizes and densities. The results show an increase of the energy deposit in the vicinity of the AuNP up to 150 nm. This effect nearly vanishes for distances up to one micron. For the case of AuNP clusters and the same activity, the enhancement of the energy deposit increases with the relative gold mass percentage and therefore can be adjusted by changing AuNP radius or clustering behaviour. KW - Gold KW - Nanoparticle KW - Cancer KW - Monte-Carlo KW - Simulation KW - Cluster PY - 2019 DO - https://doi.org/10.1140/epjd/e2019-90707-x SN - 1434-6060 SN - 1434-6079 VL - 73 IS - 95 SP - 1 EP - 7 PB - Springer CY - Berlin AN - OPUS4-47964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Crasselt, Claudia A1 - Schmidt, Wolfram A1 - Sturm, Heinz T1 - Influence of rheology modifying admixtures on early hydration of cementitious suspensions N2 - The presence of polycarboxylate ether (PCE) based superplasticizers (SPs) has enormous influence on the early hydration of cement. C3A as the most reactive phase of Portland cement plays a significant role in early hydration reactions and affects the rheological performance. Therefore, this talk presents experimental results about the influence of delayed addition of PCEs on the Hydration of alite and C3A-gypsum pastes investigated by isothermal heat flow calorimetry. Complementary in-situ XRD was carried out on C3S and C3A-gypsum pastes to analyze hydration and phase changes related to the addition of PCE. Cement pastes with a delayed addition of PCE showed less retardation compared to simultaneous addition. The alteration caused by PCE is much more pronounced for C3A-gypsum mixes. With a delayed addition of SP, the hydration of C3A is less retarded or even accelerated. It is obvious that there is less retardation the later the addition of SP. Furthermore, the PCE alter the hydration of C3A when added delayed and exhibit changes in kinetics and Hydration rates. XRD results showed that more C3A is dissolved in the presence of PCE. Also, the gypsum depletion occurs earlier in the presence of PCE and even faster with delayed addition. Without PCE AFm starts to form just after the gypsum depletion. However, in the presence of PCE AFm already starts to form at the beginning of the hydration. Due to the faster gypsum depletion in the presence of PCE, also the transformation from ettringite into AFm begins earlier, but takes longer as without SP. T2 - 15th International Congress on the Chemistry of Cement CY - Prague, Czech Republic DA - 16.09.2019 KW - Cement KW - Alite KW - C3S KW - C3A KW - Early hydration KW - Polycarboxylate ether (PCE) KW - Delayed addition PY - 2019 AN - OPUS4-49103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Temperature in micromagnetism: Cell size and scaling effects of the stochastic Landau-Lifshitz equation N2 - The movement of the macroscopic magnetic moment in ferromagnetic systems can be described by the Landau-Lifshitz (LL) or Landau-Lifshitz-Gilbert (LLG) equation. These equations are strictly valid only at absolute zero temperature. To include temperature effects a stochastic version of the LL or LLG equation for a spin density of one per unit cell can be used instead. To apply the stochastic LL to micromagnetic simulations, where the spin density per unit cell is generally higher, a conversion regarding simulation cell size and temperature has to be established. Based on energetic considerations, a conversion for ferromagnetic bulk and thin film systems is proposed. The conversion is tested in micromagnetic simulations which are performed with the Object Oriented Micromagnetic Framework (OOMMF). The Curie temperatures of bulk Nickel, Cobalt and Iron systems as well as Nickel thin-film systems with thicknesses between 6.3 mono layer (ML) and 31ML are determined from micromagnetic simulations. The results show a good agreement with experimentally determined Curie temperatures of bulk and thin film systems when temperature scaling is performed according to the presented model. T2 - EUROMAT 2019 CY - Stockholm, Sweden DA - 01.09.2019 KW - Magnetic nanoparticles KW - Stochastic Landau Lifshitz Gilbert equation KW - Magnetic moment KW - Landau Lifshitz equation KW - Exchange interaction KW - OOMMF KW - Object oriented micromagnetic framework KW - Temeprature scaling KW - LLG KW - Ferromagnetism KW - Micromagnetism PY - 2019 AN - OPUS4-48762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin A1 - Zutta Villate, J. M. T1 - Radioactive gold nanoparticles for cancer treatment: Size and cluster dependent damage studied by Geant4 Monte-Carlo simulations N2 - Dose enhancement by gold nanoparticles (AuNP) was shown to increase the biological effectiveness of radiation damage in biomolecules and tissue. Most of the current studies focus on external beam therapy on combination with AuNP. Here we present a Monte-Carlo study (Geant4) to characterise radioactive AuNP. Radioactive ¹⁹⁸Au emits beta and gamma rays and is considered for applications with solid tumours. To effectively apply ¹⁹⁸AuNP their energy deposit characteristics have to be determined in terms of intrinsic and extrinsic properties e.g. AuNP diameter, AuNP density, and their clustering behaviour. After each decay process, the energy deposit, inelastic scattering events, kinetic energy spectrum of secondary particles within the AuNP themselves and in a spherical target volume of water up to 1 μm radius were determined. Simulations were performed for AuNP radii ranging from 2.5 nm to 20 nm radius, different cluster sizes and densities. The results show an increase of the energy deposit in the vicinity of the AuNP up to 150 nm. This effect nearly vanishes for distances up to one micron. For the case of AuNP clusters and the same activity, the enhancement of the energy deposit increases with the relative gold mass percentage and therefore can be adjusted by changing AuNP radius or clustering behaviour. T2 - EUROMAT 2019 CY - Stockholm, Sweden DA - 01.09.2019 KW - DNA KW - Dosimetry KW - Microdosimetry KW - Geant4 KW - MCS KW - Nanoparticle KW - AuNP KW - Gold Nanoparticle KW - low energy electrons KW - LEE KW - OH radicals KW - particle scattering KW - Radiationtherapy KW - Radioactive decay KW - Monte-Carlo simulation KW - Energy deposit KW - DNA damage PY - 2019 AN - OPUS4-48763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waniek, Tassilo A1 - Ghasem Zadeh Khorasani, Media A1 - Braun, Ulrike A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Water as side effect of reinforcing boehmite filler Local changes in anhydride cured epoxy resin N2 - Nanocomposites offer wide opportunities for lightweight constructions and enable reduction of weight and volume. Beside macroscopic toughening nanoparticle reinforced polymers show a soft interface around boehmite (AlOOH) filler nanoparticles. A related strong interaction between boehmite and the anhydride cured resin system is widely suspected in literature but not determined by structural Analysis. Determination of the molecular structure is important to allow simulations approaching the real system and predict future reinforcing effects. DRIFT (diffuse refletance infrared fourier transformed) spectra of the boehmite reinforced anhydride cured epoxy show significant changes in the molecular structure compared to the neat polymer. Further investigations of the interactions between the single components of the resin system and the boehmite filler pointed out reactions between released water released from the boehmite filler and the anhydride hardener or amine accelerator. This leads to the discussion of competing polymerisation mechanisms that highly influence the polymer properties. Ongoing experiments and literature research approve that this impact of water is able to locally change the stoichiometrie, alter the curing mechanism or support an inhomogeneous crosslink density. T2 - Polydays 2019 CY - Erwin-Schrödinger-Zentrum, Berlin Adlershof, Germany DA - 11.09.2019 KW - Nanocomposites KW - Epoxy KW - FTIR spectroscopy KW - Boehmite alumina PY - 2019 AN - OPUS4-49010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald A1 - Rühle, Bastian A1 - Hodoroaba, Vasile-Dan A1 - Seeger, Stefan A1 - Resch-Genger, Ute A1 - Braun, Ulrike A1 - Jann, Oliver A1 - Wilke, Olaf A1 - Geißler, Daniel A1 - Schmidt, Alexandra A1 - Unger, Wolfgang A1 - Sturm, Heinz T1 - Stand der Aktivitäten zur gemeinsamen Forschungsstrategie N2 - Die gemeinsame Forschungsstrategie der Bundesoberbehörden zur Nanotechnologie wurde 2016 veröffentlicht. Die darin enthaltenen Aufgaben wurden von den Bundesoberbehörden vielfältig bearbeitet. Diese Präsentation gibt einen Überblick über die Projekte, die von der BAM bis 2019 bearbeitet wurden/werden und sich in den Rahmen der Forschungsstrategie einordnen. T2 - Workshop zur gemeinsamen Forschungsstrategie der Bundesoberbehörden „Nanomaterialien und andere innovative Werkstoffe: anwendungssicher und umweltverträglich“ CY - Berlin, Germany DA - 02.09.2019 KW - Nano KW - Bundesoberbehörden KW - Forschungsstrategie KW - Nanomaterialien KW - Nanotechnologie PY - 2019 AN - OPUS4-49586 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Wirth, Thomas A1 - Florian, Camilo A1 - Sturm, Heinz A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Chemical effects during the formation of femtosecond laser-induced periodic surface structures N2 - The processing of laser-induced periodic surface structures (LIPSS, ripples) on metals and semiconductors in ambient air is usually accompanied by superficial oxidation effects – a fact that is widely neglected in the current literature. In this contribution, chemical, structural, and mechanical alterations in the formation of femtosecond LIPSS are characterized by a variety of surface analytical techniques, including energy dispersive X-ray analyses (EDX), X-ray photoelectron spectroscopy (XPS), micro Raman spectroscopy (µ-RS), and depth-profiling Auger electron microscopy (AEM). Alternative routes of electrochemical and thermal oxidation allow to qualify the relevance of superficial oxidation effects on the tribological performance in oil lubricated reciprocating sliding tribological tests (RSTT). It is revealed that the fs-laser processing of near-wavelength sized LIPSS on metals leads to the formation of a few hundreds of nanometers thick graded oxide layers, consisting mainly of amorphous oxides. Regardless of reduced hardness and limited thickness, this nanostructured surface layer efficiently prevents a direct metal-to-metal contact in the RSTT and may also act as an anchor layer for specific wear-reducing additives contained in the used engine oil. T2 - EMRS Spring Meeting 2019, Symposium V “Laser interactions with materials: from fundamentals to applications" CY - Nice, France DA - 27.05.2019 KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser KW - Oxidation KW - Tribology PY - 2019 AN - OPUS4-48127 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Marc Benjamin T1 - Simulational tools in nanoparticle research: Micromagnetics and particle scattering N2 - Simulational tools are applied to investigate the physical properties of nanoparticles. For the description of radioactive gold nanoparticles, particles scattering simulations are performed with the Geant4 monte carlo simulation toolkit. The temperature dependent behaviour of the magnetization dynamics of different magnetic nanoparticles are simulated with the object oriented micormagnetic framework (OOMMF). T2 - NanoBioAp CY - LLanes, Spain DA - 23.05.2019 KW - Monte Carlo KW - Monte-Carlo simulation KW - MCS KW - Nanoparticle KW - AuNP KW - Dosimetry KW - Radioactive NP KW - Microdosimetry KW - Geant4 KW - OOMMF KW - Micromagnetism KW - Simulation KW - Magnetic nanoparticle KW - LLG PY - 2019 AN - OPUS4-48110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ghasem Zadeh Khorasani, Media A1 - Elert, Anna Maria A1 - Hodoroaba, Vasile-Dan A1 - Agudo Jácome, Leonardo A1 - Altmann, Korinna A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Short- and long-range mechanical and chemical interphases caused by interaction of Boehmite (γ-AlOOH) with anhydride-cured epoxy resins N2 - Understanding the interaction between boehmite and epoxy and the formation of their interphases with different mechanical and chemical structures is crucial to predict and optimize the properties of epoxy-boehmite nanocomposites. Probing the interfacial properties with atomic force microscopy (AFM)-based methods, especially particle-matrix long-range interactions, is challenging. This is due to size limitations of various analytical methods in resolving nanoparticles and their interphases, the overlap of interphases, and the effect of buried particles that prevent the accurate interphase property measurement. Here, we develop a layered model system in which the epoxy is cured in contact with a thin layer of hydrothermally synthesized boehmite. Different microscopy methods are employed to evaluate the interfacial properties. With intermodulation atomic force microscopy (ImAFM) and amplitude dependence force spectroscopy (ADFS), which contain information about stiffness, electrostatic, and van der Waals forces, a soft interphase was detected between the epoxy and boehmite. Surface potential maps obtained by scanning Kelvin probe microscopy (SKPM) revealed another interphase about one order of magnitude larger than the mechanical interphase. The AFM-infrared spectroscopy (AFM-IR) technique reveals that the soft interphase consists of unreacted curing agent. The long-range electrical interphase is attributed to the chemical alteration of the bulk epoxy and the formation of new absorption bands. KW - Nanocomposites KW - Interphase KW - Intermodulation AFM KW - Electron microscopy KW - Infrared nano AFM PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-483672 UR - https://www.mdpi.com/2079-4991/9/6/853/htm DO - https://doi.org/10.3390/nano9060853 SN - 2079-4991 VL - 9 IS - 6 SP - 853, 1 EP - 20 PB - MDPI AN - OPUS4-48367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -