TY - CONF A1 - Sachse, René A1 - Hertwig, Andreas A1 - Hodoroaba, Vasile-Dan A1 - Krähnert, R. T1 - Multi-method analysis of pore-controlled mesoporous oxide materials N2 - Determining the porosity of catalytic layers is crucial for quality assurance. We present results of a multi-method study to determine thickness, porosity, dielectric function and other properties of pure and mixed iridium and titanium oxide layers used in electrocatalytic water splitting. T2 - European Optical Society Biennial Meeting (EOSAM) 2018 CY - Delft, The Netherlands DA - 08.10.2018 KW - Multi-method analysis KW - Mesoporous oxide materials KW - Electro catalytic water splitting KW - Electron probe X-ray microanalysis (EPMA) KW - Spectroscopic ellipsometry (SE) KW - Optical porosimetry PY - 2018 AN - OPUS4-46740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barnefske, Lena A1 - Petersen, Andreas A1 - Heidmann, Gerd A1 - Sturm, Heinz T1 - Development of a self-healing silicone rubber for high-voltage cable accessories N2 - One of the biggest problems in high-voltage silicone rubber insulation cable accessories is the damage on electrical treeing, initiated by partial discharges. The electrical treeing starts at unavoidable imperfections inside the material or at interfaces. The damage is usually irreversible and leads around the starting points to a partial destruction of the material. To prolong the lifetime and thereby to increase the assurance of the structural component commonly, for mechanical improvement constituted filler is modified to obtain a self-healing silicone rubber. Damage mechanism is analysed to address the filler to the damage mode. T2 - DGP-Frühjahrstagung und EPS-CMD27 CY - Berlin, Germany DA - 11.03.2018 KW - Self-healing silicone rubber KW - HV cable accessories PY - 2018 AN - OPUS4-45333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Crasselt, Claudia A1 - Schmidt, Wolfram A1 - Sturm, Heinz T1 - Influence of Rheology Modifying Admixtures on Hydration of Cementitious Suspensions N2 - The presence of polycarboxylate ether (PCE) based superplasticizers (SPs) has an enormous influence on the early hydration of cement. The hydration is retarded and the timing of formation and the morphology of hydrates is affected. This short paper presents experimental results about the influence of delayed addition time of PCE SPs on hydration of cement and alite pastes, investigated by isothermal heat flow calorimetry. For cement as well as for alite pastes the hydration is retarded with SP, whereby the high charge PCE has a stronger retarding effect than the low charge PCE. The retardation caused by PCE is much more pronounced for alite than for cement mixes. If PCE is added later to the mix, the induction period is shortened and the hydration is accelerated compared to simultaneous addition. This applies for cement and alite pastes. With delayed PCE addition the alite shows a clearly less retarded setting and main hydration than after simultaneous addition. It is obvious that for alite pastes there is less retardation the later the addition of SP. T2 - 6th International Symposium on Nanotechnology in Construction CY - Hong Kong, China DA - 02.12.2018 KW - Polycarboxylate ether (PCE) KW - Early hydration KW - Cement PY - 2018 SP - 1 EP - 8 AN - OPUS4-47204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Crasselt, Claudia A1 - Schmidt, Wolfram A1 - Sturm, Heinz ED - M. Tyrer, ED - E. Ganjian, ED - West, A. T1 - Influence of rheology modifying admixtures on hydration of cementitious suspensions N2 - The presence of polycarboxylate ether (PCE) based superplasticizers (SPs) has an enormous influence on the early hydration of cement. The hydration is retarded and the timing of formation and the morphology of hydrates is affected. This short paper presents experimental results about the influence of delayed Addition time of PCE SPs on hydration of cement and tricalcium aluminate (C3A) pastes, investigated by isothermal heat flow calorimetry. For cement pastes the hydration is retarded with SP, whereby the high charge PCE has a stronger retarding effect than the low charge PCE. With delayed PCE addition the cement shows a less retarded setting than with simultaneous addition. The alteration caused by PCE is much more pronounced for C3A and gypsum mixes than for cement. If the SP is added simultaneous, the exothermic peak of C3A is retarded. However, with delayed addition of SP the hydration is shortened, the gypsum depletion is fastened and the exothermic peak occurs less retarded or even accelerated compared to simultaneous addition. It is obvious that for C3A pastes there is less retardation the later the Addition of SP. Furthermore, the PCE alter the hydration of C3A when added delayed and exhibit changes in kinetics and hydration rates. The rate of reaction in the second stage is lower, discernible in decreased slopes and broader peaks. Besides this, a distinct ramp in the C3A heat flow curves within the first stage of C3A hydration occurs for all pastes with delayed addition of SP, which suggests an accelerated ettringite formation. T2 - 38th Cement and Concrete Science Conference CY - Coventry, UK DA - 10.09.2018 KW - Cement hydration KW - Polycarboxylate ether KW - C3A hydration PY - 2018 SN - 978-1-84600-088-1 SP - 64 EP - 67 CY - Coventry, UK AN - OPUS4-45995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Wirth, Thomas A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Chemical effects in the formation of fs-laser-induced periodic surface structures N2 - The processing of laser-induced periodic surface structures (LIPSS, ripples) on metals and semiconductors in ambient air is usually accompanied by superficial oxidation effects - widely neglected in the current literature. In this contribution, chemical, structural, and mechanical alterations in the formation of femtosecond LIPSS are characterized by a variety of surface analytical techniques, including energy dispersive X-ray analyses (EDX), X-ray photoelectron spectroscopy (XPS), micro Raman spectroscopy (µ-RS), and depth-profiling Auger electron microscopy (AEM). Alternative routes of electrochemical and thermal oxidation allow to qualify the relevance of superficial oxidation effects on the tribological performance in oil lubricated reciprocating sliding tribological tests (RSTT). It is revealed that the fs-laser processing of near-wavelength sized LIPSS on metals leads to the formation of a few hundreds of nanometer thick graded oxide layer, consisting mainly of amorphous oxides. Regardless of its reduced hardness and limited thickness, this nanostructured surface layer can effciently prevent a direct metal-metal contact in the RSTT and may also act as an anchor layer for specific wear-reducing additives contained in the engine oil involved T2 - 8th International LIPSS Workshop CY - Bochum, Germany DA - 27.09.2018 KW - Laser-induced periodic surface structures, LIPSS KW - Femtosecond KW - Oxidation KW - Tribology PY - 2018 AN - OPUS4-46106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Crasselt, Claudia A1 - Schmidt, Wolfram A1 - Sturm, Heinz T1 - Influence of rheology modifying admixtures on hydration of cementitious suspensions N2 - The state of fresh concrete is predominantly determined by the rheological properties of the cement paste. In order to control performance spectra and requirements of novel concretes and to better understand macroscopic phenomena, comprehensive knowledge of the material behavior of fresh cement suspensions as well as of the complex relationships of mechanisms at the nano and micro scale are necessary. This work focuses on micro and nano rheology of suspensions of cementitious model systems and the influence of polycarboxylate-based admixtures on the rheology. The phenomena are driven by multiple parameters such as adsorption and particle interactions. Hence, the first part examines the interaction between polycarboxylate ether (PCE) and synthesized clinker phases and hydration products as model systems with regard to early hydration products. T2 - 6th International Symposium on Nanotechnology in Construction CY - Hong Kong, China DA - 02.12.2018 KW - Cement KW - Early hydration KW - Polycarboxylate ether (PCE), PY - 2018 AN - OPUS4-46980 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Hodoroaba, Vasile-Dan A1 - Pfeifer, Dieter A1 - Braun, Ulrike A1 - Sturm, Heinz T1 - Impact of Boehmite nanoparticles on the curing behaviour and thermal properties of cycloaliphatic-epoxy oligosiloxane hybrid N2 - UV-curing coatings are nowadays widely used due to their unique advantages. High-quality coatings can be obtained at short curing times and low temperatures so that thermal stress to the substrate is minimised. Photocured Cycloaliphatic-Epoxy Oligosiloxane (CEO) resin was reported to be used as encapsulation material for organic electronics. However, further reinforcement of CEO film properties is desired to achieve requested device lifetime. In this work we introduced Boehmite nanoparticles (BA) into CEO matrix in order to modify the film properties and study the main changes of the material behaviour with regard to its photocuring kinetics, thermal stability and glass transition. Particular interest was focused on the role of particle surface in nanocomposite properties. Hence, BA particles without (HP14) and with organic surface modifier (OS1) at different loadings (up to 10 wt%) were applied in this study. Morphology investigation with SEM operated in transmission mode showed good BA dispersion forming network-like structure. At the same time, distribution of particles differed for HP14 and OS1 as a result of different interaction in CEO-solvent-particles system. CEO structure obtained via non-hydrolytic sol-gel reaction was verified by 13C and 29Si NMR. In situ monitoring of film curing was performed using RT-IR spectroscopy. No significant modification of final convention degree with particle incorporation was observed in contrast to considerable decrease of curing efficiency reported previously for similar system by Esposito et al.,2008. Further, cured hybrid nanocomposite films were analysed by TGA and DSC, which revealed impact of surface modifier on film thermal properties. T2 - E-MRS CY - Warsaw, Poland DA - 15.09.2018 KW - Cycloalyphatic epoxy oligosiloxane KW - Nanocomposite KW - Boehmite KW - DSC KW - TGA KW - UV-curing PY - 2018 AN - OPUS4-47643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schwanke, Christoph A1 - Legall, Herbert A1 - Pentzien, Simone A1 - Dittmar, G. A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - X-ray emission as a potential hazard during ultrashort pulse laser material processing N2 - Ultrashort laser pulse micromachining features a high precision. By increasing the repetition rate of the applied laser to several 100 kHz, laser processing becomes quick and cost-effective and make this method attractive for industrial applications. Upon exceeding a critical laser intensity, hard X-ray radiation is generated as a side effect. Even if the emitted X-ray dose per pulse is low, the accumulated X-ray dose becomes significant for high-repetition-rate laser systems so that radiation safety must be considered. T2 - Informationsveranstaltung der PTB und des BfS zu Fragen der Bauartzulassungen CY - Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit, Berlin, Germany DA - 20.06.2018 KW - Laser-induced X-ray emission KW - Ultrashort laser material interaction KW - Femtosecond laser KW - Radiation protection PY - 2018 AN - OPUS4-45364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Topolniak, Ievgeniia A1 - Hodoroaba, Vasile-Dan A1 - Pfeifer, Dieter A1 - Braun, Ulrike A1 - Sturm, Heinz T1 - Influence of Boehmite nanofiller on the properties of cycloaliphatic-epoxy oligosiloxane resin coatings N2 - Organic-inorganic nanostructured materials have drawn much attention over the past decade, particularly due to their versatile and outstanding properties. Possessing the properties between those of polymers and those of glasses, siloxane-based resins are non-toxic, easy to synthesize and process hybrid materials, that hold a promising potential in the field of advanced coatings. Photocurable resins are nowadays widely used as coatings due to their unique advantages. In particular, cationic ring-opening curing is not inhibited by oxygen, leads to low degree of shrinkage and superior adhesion. The most important, it enables production of high-quality coatings within short exposure times without applying temperature, thus, minimizing the presence of the thermal stress in the substrate. Photocured Cycloaliphatic-Epoxy Oligosiloxane (CEO) resin was reported to be used as encapsulation material for organic electronics. However, further reinforcement of CEO properties is desired to achieve requested device lifetime. One of the common approaches to improve material characteristics is by embedding inorganic nanoparticles into polymer matrix. It has been shown that the resulted nanocomposites exhibit enhanced functional properties included but not limited by optical, mechanical, thermal and barrier ones. In this work we focused on the incorporation of Boehmite nanoparticles (BA) into CEO matrix as a tool to strengthen the film properties and to study the main changes occurred in the material behavior with regard to its photocuring kinetics, thermal stability and glass transition. Particular interest was focused on the role of particle surface in nanocomposite properties. Hence, BA particles without (HP14) and with organic surface modifier (OS1) at different loadings (up to 10 wt%) were applied in this study. Morphology investigation with SEM operated in transmission mode showed good BA dispersion forming network-like structure. At the same time, distribution of particles differed for HP14 and OS1 as a result of different interaction in CEO-solvent-particles system. CEO structure obtained via non-hydrolytic sol-gel reaction was verified by 13C and 29Si NMR. In situ monitoring of film curing was performed using RT-IR spectroscopy. A slight increase of final convention degree with particle incorporation was observed in contrast to the considerable decrease of curing efficiency reported previously for similar system. Further, the cured hybrid nanocomposite films were analyzed by TGA and DSC, which revealed impact of surface modifier on thermal stability and glass transition temperature. T2 - Kyiv Conference on Analytical Chemistry: Modern Trends CY - Kyiv, Ukraine DA - 17.09.2018 KW - Cycloalyphatic epoxy oligosiloxane KW - Nanocomposite KW - Boehmite KW - Photocuring PY - 2018 AN - OPUS4-47642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Pentzien, Simone A1 - Dittmar, G. A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - X-ray emission as a potential hazard during ultrashort pulse laser material processing N2 - Ultrashort laser pulse micromachining features a high precision. By increasing the repetition rate of the applied laser to several 100 kHz, laser processing becomes quick and cost-effective and make this method attractive for industrial applications. Upon exceeding a critical laser intensity, hard X-ray radiation is generated as a side effect. Even if the emitted X-ray dose per pulse is low, the accumulated X-ray dose becomes significant for high-repetition-rate laser systems so that radiation safety must be considered. The X-ray emission during ultrashort laser processing was investigated for an intensity range up to 2.6*10^14 W/cm2. The investigations were performed with a laser emitting pulses with 925 fs pulse duration, at 1030 nm wavelength and 400 kHz repetition rate. Steel, tungsten, and glass were studied in ambient air. Corresponding X-ray spectra and X-ray dose measurements were presented. Suitable radiation protection strategies were shown. T2 - European Materials Research Society (EMRS) Spring Meeting 2018, Symposium X “Photon-assisted synthesis and processing of materials in nano-microscale” CY - Strasbourg, France DA - 18.06.2018 KW - Laser-induced X-ray emission KW - Ultrashort laser material interaction KW - Femtosecond laser KW - Radiation protection PY - 2018 AN - OPUS4-45382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -