TY - JOUR A1 - Üstündag, Ömer A1 - Bakir, Nasim A1 - Gook, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Hybrid Laser-Arc Welding of Thick-Walled, Closed, Circumferential Pipe Welds N2 - The application of hybrid laser-arc welding (HLAW) for joining closed circumferential welds is a challenge due to the high risk of forming a defective overlap area with a shrinkage void or solidification cracks in the material thickness. A series of HLAW experiments were performed to understand the development of a faulty overlap area when closing the circumferential weld. Welding trials on flat specimens and pipe segments were supported by numerical analyses in which the thermomechanical behavior of the welds in the overlap area was investigated. Different process control strategies were tested, including variations in defocusing levels and the overlap length. The newly developed HLAW head, including laser optics with a motor-driven collimation system, made it possible to defocus the laser beam during welding without disturbing the stability of the welding process. High-level defocusing of the laser beam of more than 40 mm relative to the specimen surface with a resulting beam diameter of > 2.9 mm, and in combination with a short overlap length of 15 mm, was promising with respect to the formation of a desired cup-shaped weld profile that is resistant to solidification cracks. KW - Hybrid Laser-Arc Welding KW - Thick-Walled Steel KW - High-Power Welding KW - Crater KW - Pipe Welding PY - 2022 DO - https://doi.org/10.29391/2022.101.002 SN - 0043-2296 VL - 101 IS - 1 SP - 15 EP - 26 PB - American Welding Society CY - New York, NY AN - OPUS4-55508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Straße, Anne A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael ED - Schmidt, M. ED - Vollertsen, F. ED - Schmidt, B. M. T1 - Preliminary study to investigate the applicability of optical strain measurement technique for the detection of hot cracks in laser metal deposited layers N2 - Laser metal deposition (LMD) as an additive manufacturing technique became increasingly important in recent years and thus the demand for component safety. This is the reason, for the need for reliable in-situ defect detection techniques. For laser beam weld seams an optical measurement technique based on an optical flow algorithm was successfully used to define the critical straining conditions that lead to hot cracking. This algorithm was adapted for bead-on-plate weld seams on LMD deposited layers of IN718 alloy while performing external strain on the specimen in an externally loaded hot cacking test facility. The resulting transversal hot cracks along the weld seam were localized via X-Ray inspection and the type of cracking confirmed by Scanning Electron Microscopy (SEM). The strain distribution was measured in the vicinity of the solidification front and correlated to the detected hot cracks. Based on the results this technique could be adopted for LMD experiments. T2 - 12th CIRP Conference on Photonic Technologies [LANE 2022] CY - Fürth, Germany DA - 04.09.2022 KW - Laser Metal Deposition (LMD) KW - Strain measurement KW - Optical flow KW - Critical strain PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556445 DO - https://doi.org/10.1016/j.procir.2022.08.034 VL - 111 SP - 335 EP - 339 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-55644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Study on Duplex Stainless Steel Powder Compositions forthe Coating of Thick Plates for Laser Beam Welding N2 - Duplex stainless steels combine the positive properties of its two phases, austenite and ferrite. Due to its good corrosion resistance, high tensile strength and good ductility it has multiple applications. But laser beam welding of duplex steels changes the balanced phase distribution in favor of ferrite. This results in a higher vulnerability to corrosion and a lower ductility. In this study different powder combinations consisting of duplex and nickel for coating layers by laser metal deposition are investigated. Afterwards laser tracks are welded, and the temperature cycles measured. The ferrite content of the tracks are analyzed by feritscope, metallographic analysis and Electron Backscatter Diffraction. The goal is the development of a powder mixture allowing for a duplex microstructure in a two-step process, where firstly the edges of the weld partners are coated with the powder mixture by LMD and secondly those edges are laser beam welded. The powder mixture identified by the pretests is tested in the two-step process and analyzed by metallographic analysis, energy dispersive X-ray spectroscopy and Vickers hardness tests. The resulting weld seams show a balanced duplex microstructure with a homogenous nickel distribution and a hardness of the weld seam similar to the base material. KW - Duplex AISI 2205 KW - Stainless Steel KW - Laser Beam Welding KW - Nickel KW - Laser Metal Deposition PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554663 DO - https://doi.org/10.1002/adem.202101327 SN - 1438-1656 VL - 24 IS - 6 SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim AN - OPUS4-55466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - A numerical study on the suppression of a detrimental weld pool profile in wire feed laser beam welding by magnetohydrodynamic technique N2 - The weld quality and the possible defect formation are directly determined by the weld pool shape and the thermo-fluid dynamics therein. In this paper, an untypical weld pool profile, i.e., elongated at its top and bottom but narrowed at the middle, is found experimentally and numerically in the wire feed laser beam welding. The detrimental influence of the weld pool narrowing on the element transport is analyzed and discussed. A magnetohydrodynamic technique is utilized to suppress the narrowing, aiming at a more homogenous element distribution. It is found that a low-temperature region is formed in the middle of the weld pool due to the interaction of the two dominant circulations from the top and bottom regions. The weld pool is significantly narrowed due to the untypical growth of the mushy zone in the low-temperature region, which results in a direct blocking effect on the downward flow and the premature solidification in the middle region. The Lorentz force produced by a transverse oscillating magnetic field shows the potential to change the flow pattern into a single-circulation type and the low-temperature-gradient region is mitigated. Therefore, the downward transfer channel is widened, and its premature solidification is prevented. The numerical results are well validated by experimental measurements of metal/glass observation and X-ray fluorescence element mapping. T2 - 13th International Seminar Numerical Analysis of Weldability CY - Seggau, Austria DA - 04.09.2022 KW - Thermo-fluid flow KW - Element transport KW - Laser beam welding KW - Magnetohydrodynamics KW - Multi - physical modeling PY - 2023 SN - 2410-0544 VL - 13 SP - 143 EP - 160 PB - Verlag der Technischen Universität Graz AN - OPUS4-58806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huo, W. A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael A1 - Wolter, K. T1 - Strain Prediction Using Deep Learning during Solidification Crack Initiation and Growth in Laser Beam Welding of Thin Metal Sheets N2 - The strain field can reflect the initiation time of solidification cracks during the welding process. The traditional strain measurement is to first obtain the displacement field through digital image correlation (DIC) or optical flow and then calculate the strain field. The main disadvantage is that the calculation takes a long time, limiting its suitability to real-time applications. Recently, convolutional neural networks (CNNs) have made impressive achievements in computer vision. To build a good prediction model, the network structure and dataset are two key factors. In this paper, we first create the training and test sets containing welding cracks using the controlled tensile weldability (CTW) test and obtain the real strain fields through the Lucas–Kanade algorithm. Then, two new networks using ResNet and DenseNet as encoders are developed for strain prediction, called StrainNetR and StrainNetD. The results show that the average endpoint error (AEE) of the two networks on our test set is about 0.04, close to the real strain value. The computation time could be reduced to the millisecond level, which would greatly improve efficiency. KW - Convolutional neural network KW - Strain fields prediction KW - Laser beam welding KW - Solidification cracking PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570565 DO - https://doi.org/10.3390/app13052930 VL - 13 IS - 5 SP - 1 EP - 15 PB - MDPI AN - OPUS4-57056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huo, Wenjie A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael A1 - Wolter, Katinka T1 - Detection of solidification crack formation in laser beam welding videos of sheet metal using neural networks N2 - AbstractLaser beam welding has become widely applied in many industrial fields in recent years. Solidification cracks remain one of the most common welding faults that can prevent a safe welded joint. In civil engineering, convolutional neural networks (CNNs) have been successfully used to detect cracks in roads and buildings by analysing images of the constructed objects. These cracks are found in static objects, whereas the generation of a welding crack is a dynamic process. Detecting the formation of cracks as early as possible is greatly important to ensure high welding quality. In this study, two end-to-end models based on long short-term memory and three-dimensional convolutional networks (3D-CNN) are proposed for automatic crack formation detection. To achieve maximum accuracy with minimal computational complexity, we progressively modify the model to find the optimal structure. The controlled tensile weldability test is conducted to generate long videos used for training and testing. The performance of the proposed models is compared with the classical neural network ResNet-18, which has been proven to be a good transfer learning model for crack detection. The results show that our models can detect the start time of crack formation earlier, while ResNet-18 only detects cracks during the propagation stage. KW - Artificial Intelligence KW - Software PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586116 DO - https://doi.org/10.1007/s00521-023-09004-y SN - 0941-0643 VL - 35 IS - 34 SP - 24315 EP - 24332 PB - Springer Science and Business Media LLC AN - OPUS4-58611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Srinivasan, Krishnanand A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Laser Metal Deposition of Rene 80 – Microstructure and Solidification Behaviour Modelling N2 - New developments in nickel-based superalloys and production methods, such as the use of additive manufacturing (AM), can result in innovative designs for turbines. It is crucial to understand how the material behaves during the AM process to advance industrial use of these techniques. An analytical model based on reaction-diffusion formalism is developed to better explain the solidification behavior of the material during laser metal deposition (LMD). The well-known Scheil-Gulliver theory has some drawbacks, such as the assumption of equilibrium at the solid-liquid interface, which is addressed by this method. The solidified fractions under the Scheil model and the pure equilibrium model are calculated using CALPHAD simulations. Differential scanning calorimeter is used to measure the heat flow during the solid-liquid phase transformation, the result of which is further converted to solidified fractions. The analytical model is compared with all the other models for validation. T2 - Lasers in Manufacturing Conference 2023 CY - Munich, Germany DA - 26.06.2023 KW - Additive manufacturing KW - Laser metal deposition KW - Solidification behaviour KW - Analytical model KW - Nickel-based superalloy PY - 2023 SP - 1 EP - 10 AN - OPUS4-58612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rethmeier, Michael A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Bakir, Nasim A1 - Üstündag, Ömer A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey T1 - The bulging effect and its relevance in high power laser beam welding N2 - The present work deals with the recently confirmed widening of the weld pool interface, known as a bulging effect, and its relevance in high power laser beam welding. A combined experimental and numerical approach is utilized to study the influence of the bulge on the hot cracking formation and the transport of alloying elements in the molten pool. A technique using a quartz glass, a direct-diode laser illumination, a high-speed camera, and two thermal imaging cameras is applied to visualize the weld pool geometry in the longitudinal section. The study examines the relevance of the bulging effect on both, partial and complete penetration, as well as for different sheet thicknesses ranging from 8 mm to 25 mm. The numerical analysis shows that the formation of a bulge region is highly dependent on the penetration depth and occurs above 10 mm penetration depth. The location of the bulge correlates strongly with the cracking location. The obtained experimental and numerical results reveal that the bulging effect increases the hot cracking susceptibility and limits the transfer of alloying elements from the top of the weld pool to the weld root. T2 - 1st Annual Assembly and Conference of The Welding Federation of Africa (TWF-Africa) CY - Cairo, Egypt DA - 14.03.2023 KW - Laser beam welding KW - Melt pool dinamics PY - 2023 AN - OPUS4-58695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Straße, Anne A1 - Rethmeier, Michael A1 - Gumenyuk, Andrey T1 - Influence of edge‑deposited layers on mechanical and corrosion properties of laser beam welds of 15 mm thick AISI 2205 duplex stainless steel N2 - AISI 2205 duplex stainless steel is used in a variety of industries, including the chemical and petrochemical industries. This is due to its high tensile strength combined with good ductility and corrosion resistance. However, in laser beam welding, these properties are negatively afected by the high cooling rates typical of the welding process. The resulting higher ferrrite content in the weld metal than in the base material leads to a reduction in the ductility and corrosion resistance of the welded joint. To overcome this problem, in this study, thick plates were coated by direct energy deposition (DED) prior to laser beam welding, whereas a duplex powder mixture containing a higher nickel concentration was used as a coating material. To improve the weld quality for the proposed two-step process, a method of additional material deposition instead of conventional tack weld was investigated. The resulting welded joints showed a well-balanced austenite to ferrite ratio and their properties and microstructure were verifed by metallographic analysis, electron backscatter difraction and Charpy impact testing. Using the standard ASTM G48 test method, it was found that the corrosion resistance of the welds was improved by a factor of four in average compared to the conventionally welded joints. The resulting properties, such as good ductility and corrosion resistance, of the welds with pre-coated edges showed good agreement with those of the base metal and confrmed the proposed two-step process as a promising alternative to the conventional approaches for welding thick duplex stainless steel plates. KW - Laser metal deposition KW - Laser beam welding KW - Duplex steels PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581731 UR - https://rdcu.be/dlb6E DO - https://doi.org/10.1007/s40194-023-01567-7 SN - 0043-2288 SP - 1 EP - 12 PB - Springer AN - OPUS4-58173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hartwig, Philipp A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Scheunemann, Lisa A1 - Schröder, Jörg A1 - Rethmeier, Michael T1 - A Physically Motivated Heat Source Model for Laser Beam Welding N2 - In this contribution, we present a physically motivated heat source model for the numerical modeling of laser beam welding processes. Since the calibration of existing heat source models, such as the conic or Goldak model, is difficult, the representation of the heat source using so-called Lamé curves has been established, relying on prior Computational Fluid Dynamics (CFD) simulations. Lamé curves, which describe the melting isotherm, are used in a subsequent finite-element (FE) simulation to define a moving Dirichlet boundary condition, which prescribes a constant temperature in the melt pool. As an alternative to this approach, we developed a physically motivated heat source model, which prescribes the heat input as a body load directly. The new model also relies on prior CFD simulations to identify the melting isotherm. We demonstrate numerical results of the new heat source model on boundary-value problems from the field of laser beam welding and compare it with the prior CFD simulation and the results of the Lamé curve model and experimental data. KW - Welding simulation KW - Heat source models KW - Laser beam welding KW - Thermal analysis PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600899 DO - https://doi.org/10.3390/met14040430 VL - 14 IS - 4 SP - 1 EP - 26 PB - MDPI CY - Basel AN - OPUS4-60089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -