TY - CONF A1 - Rautenberg, Max A1 - Gernhard, M. A1 - Roth, C. A1 - Emmerling, Franziska T1 - Metal phosphonates as proton conductors and ORR catalysts N2 - Metal phosphonates are promising materials for applications in fuel cells, due to their high proton conductivity and higher chemical and thermal stability compared to the industry standard (e.g. Nafion®). Additionally, metal phosphonates are precursors to porous carbon materials with evenly distributed centers for ORR catalysis. As a fast and sustainable synthesis, mechanochemistry is the synthesis method of choice. Thorough characterization is carried out by XRD, MAS-NMR, XAS, BET, and DVS. T2 - 2nd European Workshop on Metal Phosphonates CY - Berlin, Germany DA - 24.09.2019 KW - Phosphonates KW - Proton cunductor KW - Oxygen reduction reaction KW - Catalysis KW - Mechanochemistry PY - 2019 AN - OPUS4-50257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike T1 - Messen ist nicht alles, aber ohne Messmethoden ist alles nichts! N2 - Es wir der Wissenstand zur Analytik von Mikroplastik dargestellt, sowie die Notwendigkeit der Hamonisierung der Verfahren. T2 - Jahrestagung der deutschen Labordienstleistungsbranche CY - Gießen, Berlin DA - 05.09.2019 KW - TED-GC-MS KW - Mikroplastik KW - Analytik PY - 2019 AN - OPUS4-49994 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Mechanochemistrry - a time resolved perspective on unconventional crystallization N2 - Green chemsistry apporoach for the synthesis of metal organic frameworks. T2 - IFW BAM Workshop CY - Berlin, Germany DA - 25.11.2019 KW - Mechanochemistry KW - XRD KW - Metal-organic-frameworks PY - 2019 AN - OPUS4-50110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Griepentrog, Michael A1 - Hertwig, Andreas A1 - Hielscher-Hofinger, Stefan A1 - Weise, Matthias T1 - Mechanische, topometrische und optische Charakterisierung von Schichten mit Stand der Normung N2 - Der Vortrag „MECHANISCHE, TOPOMETRISCHE UND OPTISCHE CHARAKTERISIERUNG VON SCHICHTEN MIT STAND DER NORMUNG“ widmet sich unterschiedlichen Beschichtungssystemen und deren mechanischer, topometrischer und optischer Charakterisierung. Über die entsprechenden aktuellen Normen wird informiert. Es betrifft Verfahren wie die Instrumentierte Eindringprüfung (IIT), Centrifugal Adhesion Testing, Weißlichtinterferenzmikroskopie, Tastschnittverfahren und Ellipsometrie (SE). T2 - EFDS, V2019, Vakuum und Plasma CY - Dresden, Germany DA - 08.10.2019 KW - Normung KW - Spektrale Ellipsometrie (SE) KW - Instrumentierte Eindringprüfung (IIT) KW - Centrifugal Adhesion Testing (CAT) KW - Weißlichtinterferenzmikroskopie (WLIM, 3D) PY - 2019 AN - OPUS4-49320 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waniek, Tassilo A1 - Zarinwall, A. A1 - Silbernagl, Dorothee A1 - Garnweitner, G. A1 - Sturm, Heinz T1 - Mechanical coupling of matrix and nanoparticles depending on particle surface modification N2 - Boehmite nanoparticles has been successfully functionalized with APTES. After APTES functionalization further modification with tailored molecules e.g. via carboxylic acids is possible. The tailored surface functionalization is strongly enhanced by improved coupling protocols. Arbitrary variation of the functionalization degree is possible. Thereby the temperature stable APTES functionalization enables a wide range of functional groups. By TGA-MS analysis strong evidence for the bonding situation of the APTES on the boehmite surface has been found. Additionally first experiments has been performed to predict the polymer-particle compatibility enhancement via reverse wetting angle measurements with AFM. T2 - Workshop Acting Principles of Nano-Scaled Matrix Additives for Composite Structures CY - BAM, Berlin, Germany DA - 11.10.2019 KW - Surface modification KW - Nanocomposites KW - Boehmite KW - Silane KW - Thermogravimetry KW - Mass spectrometry PY - 2019 AN - OPUS4-49435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Sturm, Heinz T1 - Mechanical and chemical alteration of polymer matrix induced by nanoparticles in epoxy-boehmite nanocomposites N2 - Inorganic nanoparticles are used to improve the performance of epoxy as the matrix phase in fiber-reinforced composites used for aerospace applications. The effectiveness of nanofillers on property enhancement of thermosetting polymers depends on many factors including the interaction between the functional groups of nanofillers and the polymer reactants. In the current work, we study the effect of boehmite nanoparticles (BNPs) on properties of anhydride-cured bisphenol-A-diglycidyl ether (DGEBA). Dynamic mechanical thermal analysis (DMTA) and a high-resolution force measurement approach called intermodulation atomic force microscopy (ImAFM) were carried out to investigate the thermomechanical and nanomechanical properties of this material, respectively. It was found that BNPs lead to decrease of glass transition temperature (Tg) and crosslink density of the polymer network meanwhile significantly enhancing the Young’s modulus. Besides formation of a soft interphase near the particles, significant changes in local stiffness of polymer matrix far from the interphase was observed with ImAFM. Thus, boehmite induces long-range chemical alteration on the matrix. This effect has a higher impact on overall composite properties compared to the formation of interphase which is only a short-range effect. The local chemical evaluations on the soft interphase using an infrared-AFM method (NanoIR) revealed the accumulation of anhydride hardener near the boehmite interface. Based on these observations the effect of boehmite on the curing of epoxy is hypothesized to be governed by the strong interaction between boehmite and the anhydride. This interaction causes changes the ratio of reactants in the epoxy mixture and hence alteration of curing pathway and the network architecture. In future studies we examine this hypothesis by measuring the thermomechanical properties of cured epoxies in which the epoxy-hardener ratio is systematically altered and further comparing to those properties of nanocomposites shown in the current study. T2 - HYMA 6th International Conference on Multifunctional, Hybrid and Nanomaterials CY - Sitges, Spain DA - 11.03.2019 KW - Nanomechanics KW - Polymer nanocomposites KW - Boehmite KW - AFM KW - Epoxy PY - 2019 AN - OPUS4-50692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauw, Brian Richard A1 - Breßler, Ingo T1 - McSAS for SAS analysis: Usage, benefits, and potential pitfalls N2 - Introducing McSAS, the analytical tool (software) we developed for extracting form-free size distributions from X-ray scattering patterns. T2 - Small Angle Scattering Training School 2019 CY - Diamond Light Source, Didcot, UK DA - 04.06.2019 KW - X-ray scattering KW - SAXS KW - Software KW - Monte Carlo KW - Nanocharacterisation KW - Nanostructure PY - 2019 AN - OPUS4-48192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - May the Force be with you - Mechanochemical syntheses studied in situ N2 - Mechanochemistry is a fast and efficient method applicable for the synthesis of new organic, metal-organic, and inorganic compounds. The direct monitoring of milling reactions is still challenging. The underlying reaction mechanisms remain often unclear. In the last years, have established a tandem in situ approach for investigating mechanochemical reactions using time-resolved in situ XRD coupled with Raman spectroscopy. Here, we present an in situ coupling of synchrotron XRD, Raman spectroscopy, and thermography allowing the observation of mechanochemical reactions in real time. Information on the crystalline, molecular, and temperature state of the materials during grinding could be collected. The chemical composition of the reaction mixture was found to be directly correlated with changes in the temperature profile of the reaction. Furthermore, the presented setup allows the detection of crystalline, amorphous, eutectic as well as liquid intermediates. The resulting deeper kinetic and thermodynamic understanding of milling processes is the key for future optimization of mechanochemical syntheses. T2 - Seminar Universität Montpellier CY - Montpellier, France DA - 24.01.2019 KW - Mechanochemistry KW - In situ PY - 2019 AN - OPUS4-47261 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - May the force be with you - in situ investigation of mechanochemical reactions N2 - The past decade has seen a reawakening of solid-state to chemical synthesis, driven by the search for new, cleaner synthetic methodologies. Mechanochemistry has advanced to a widely applicable technique. T2 - SALSA's "Make and Measure 2019 CY - Berlin, Germany DA - 25.10.2019 KW - Mechanochemistry KW - Metal–organic frameworks PY - 2019 AN - OPUS4-50138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulla, Hannes A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - Manipulating the dynamics of mechanochemical ternary cocrystal formation N2 - The mechanism of ternary cocrystal formation, and the potential role of intermediate binary phases, has been debated for some time. We report here the first in situ real-time monitoring of two prototypic ternary cocrystals. Our results suggest that the question is more complicated than previously considered. The mechanism of mechanochemical ternary cocrystal formation depends on the milling conditions, here the milling frequency and addition of liquid. Binary phases can form under certain conditions, but do not act as intermediates in the formation of the ternary cocrystals. Rather, binary phases are competitive with the ternary phase, and their formation appears to compete with that of the ternary components. The presence of binary phases leads to an increase in the overall reaction time. The results reported here offer the first insights into the true complexities of mechanochemical multi-component synthesis of higher order multi-component crystals and demonstrate a new understanding of the influence of milling condition for the study of mechanisms and kinetics. KW - Mechanochemistry KW - In situ KW - Cocrystal PY - 2019 UR - https://pubs.rsc.org/en/content/articlepdf/2019/cc/c9cc03034d DO - https://doi.org/10.1039/c9cc03034d SN - 1364-548X VL - 55 IS - 66 SP - 9793 EP - 9796 PB - RSC AN - OPUS4-48613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Daneshnia, S. A1 - Adeli, M. A1 - Yari, A. A1 - Shams, A. A1 - Donskyi, Ievgen A1 - Unger, Wolfgang T1 - Low temperature functionalization of two-dimensional boron nitride for electrochemical sensing N2 - Two-dimensional hexagonal boron nitride(h-BN)as an emerging nanomaterial exhibits uniquephysicochemical properties, making it suitable candidate for a wide spectrum of applications.However, due to its poor functionality, the processability of this nanomaterial is low. In this work, wereport on a straightforward and scalable approach for the functionalization of h-BN by nitrene[2+1]cycloaddition at room temperature. The triazine-functionalized h-BN(Trz-BNs)showed ahigh reactivity toward nucleophiles, through which post-modifications are performable. The post-modification of Trz-BNs by L-cysteine was studied using cyclic voltammetry and differential pulsevoltammetry. Taking advantage of the scalable and straightforward functionalization as well as abilityof triazine functional groups for the controlled post-modifications, Trz-BNs is a promisingnanoplatform for a wide range of future applications. KW - Two-dimensional hexagonal boron nitride(h-BN) KW - Nitrene[2+1]cycloaddition KW - Post-modification by L-cysteine KW - Electrochemical sensing KW - XPS PY - 2019 DO - https://doi.org/10.1088/2053-1591/ab317b SN - 2053-1591 VL - 6 IS - 9 SP - 095076, 1 EP - 11 PB - IOP Publishing Ltd AN - OPUS4-48635 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Laser-induced periodic surface structures: from nanoscaled light localization to applications N2 - In this contribution the current state in the field of Laser-Induced Periodic Surface Structures (LIPSS) is reviewed. This includes the mechanisms of formation and current applications, particularly the colorization of technical surfaces, the control of surface wetting properties, the tailoring of surface colonization by bacterial biofilms, and the improvement of the tribological performance of nanostructured metal surfaces. T2 - PHOTONICA 2019 - The Seventh International School and Conference on Photonics CY - Belgrade, Serbia DA - 26.08.2019 KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser KW - Surface functionalization PY - 2019 UR - http://www.photonica.ac.rs/docs/PHOTONICA2019-Book_of_abstracts.pdf AN - OPUS4-48836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Laser-induced periodic surface structures N2 - This presentation reviews the current state in the field of Laser-induced Periodic Surface Structures (LIPSS). These surface nanostructures are a universal phenomenon and can be generated on almost any material by irradiation with intense linearly polarized laser radiation. LIPSS are formed in a “self-ordered” way and are often accompanying material processing applications. They can be produced following a single-step process and enable surface functionalization through the adaption of optical, mechanical and chemical surface properties. Their structural sizes typically range from several micrometers down to less than 100 nanometers exhibiting a clear correlation with the polarization direction of the laser radiation. Various types of surface structures are classified, relevant control parameters are identified, and their material specific formation mechanisms are analyzed for different types of inorganic solids, i.e., metals, semiconductors, and dielectrics, through time-resolved optical experiments and theoretical simulations. Finally, technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed. T2 - Seminar CY - Laser-Laboratorium Göttingen e.V., Germany DA - 18.11.2019 KW - Laser-induced periodic surface structures (LIPSS) KW - Surface functionalization KW - Electromagnetic radiation KW - Applications KW - Femtosecond laser ablation PY - 2019 AN - OPUS4-49689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Höhm, S. A1 - Derrien, Thibault J.-Y. A1 - Krüger, Jörg T1 - Laser-induced periodic surface nanostructures N2 - This presentation reviews the current state in the field of Laser-induced Periodic Surface Structures (LIPSS). These surface nanostructures are a universal phenomenon and can be generated on almost any material by irradiation with intense linearly polarized radiation. LIPSS are formed in a “self-ordered” way and are often accompanying material processing applications. They can be produced in a single-step process and enable surface functionalization through the adaption of optical, mechanical and chemical surface properties. Their structural sizes typically range from several micrometers down to less than 100 nanometers and show a clear correlation with the polarization direction of the laser radiation. Various types of surface structures are classified, relevant control parameters are identified, and their material specific formation mechanisms are analyzed for different types of inorganic solids, i.e., metals, semiconductors, and dielectrics, through time-resolved optical experiments and theoretical simulations. Finally, technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed. T2 - International Symposium “Fundamentals of Laser Assisted Micro- and Nanotechnologies” (FLAMN-19) CY - St. Petersburg, Russia DA - 30.06.2019 KW - Laser-induced periodic surface structures, LIPSS KW - Femtosecond laser KW - Surface functionalization KW - Ultrafast scattering PY - 2019 AN - OPUS4-48420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gräf, S. A1 - Kunz, C. A1 - Büttner, T.N. A1 - Naumann, B. A1 - Boehm, A.V. A1 - Gnecco, E. A1 - Bonse, Jörn A1 - Neumann, C. A1 - Turchanin, A. A1 - Müller, F.A. T1 - Large-area fabrication of low- and high-spatial-frequency laser-induced periodic surface structures on carbon fibers N2 - The properties of fiber-reinforced polymers (CFRP) or concretes (ECC) strongly depend on the interface between the fiber and the surrounding matrix. Different methods such as plasma oxidation, chemical or electrolytic etching and chemical vapor deposition have been investigated to increase, for example, the bonding strength. The present study deals with the functionalization of the fiber surface based on laser-induced periodic surface structures (LIPSS). They can be characterized as a modulation of the surface topography on the nano- and microscale that results from the irradiation of the surface with linearly polarized laser radiation close to the ablation threshold. According to their spatial period, LIPSS are classified into low-spatial frequency LIPSS (LSFL) and high-spatial frequency LIPSS (HSFL). The great potential of both types of LIPSS structures regarding functional surface properties was demonstrated in numerous investigations. The objective of the present study was the homogenous manufacturing of both types of LIPSS on large areas of carbon fiber arrangements without damage. The results are discussed based on a detailed analysis of the topographic and chemical surface properties. T2 - 15th International Conference on Laser Ablation (COLA 2019) CY - Hawaii, USA DA - 08.09.2019 KW - Laser-induced periodic surface structures (LIPSS) KW - Carbon fibers KW - Femtosecond laser ablation KW - Surface functionalization PY - 2019 AN - OPUS4-49676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Burek, K. A1 - Dengler, J. A1 - Emmerling, Franziska A1 - Feldmann, Ines A1 - Kumke, M. U. A1 - Stroh, Julia T1 - Lanthanide Luminescence Revealing the Phase Composition in Hydrating Cementitious Systems N2 - The hydration process of Portland cement in a cementitious system is crucial for development of the high-quality cementbased construction material. Complementary experiments of Xray diffraction analysis (XRD), scanning electron microscopy (SEM) and time-resolved laser fluorescence spectroscopy (TRLFS) using europium (Eu(III)) as an optical probe are used to analyse the hydration process of two cement systems in the absence and presence of different organic admixtures. We Show that different analysed admixtures and the used sulphate carriers in each cement system have a significant influence on the hydration process, namely on the time-dependence in the formation of different hydrate phases of cement. Moreover, the effect of a particular admixture is related to the type of sulphate carrier used. The quantitative information on the amounts of the crystalline cement paste components is accessible via XRD analysis. Distinctly different morphologies of ettringite and calcium-silicate-hydrates (C-S-H) determined by SEM allow visual conclusions about formation of these phases at particular ageing times. The TRLFS data provides information about the admixture influence on the course of the silicate reaction. The dip in the dependence of the luminescence decay times on the hydration time indicates the change in the structure of C-S-H in the early hydration period. Complementary information from XRD, SEM and TRLFS provides detailed information on distinct periods of the cement hydration process. KW - Cement admixtures KW - Cement hydration KW - Europium KW - Luminescence KW - SEM KW - X-ray diffraction PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504842 DO - https://doi.org/10.1002/open.201900249 VL - 8 IS - 12 SP - 1441 EP - 1452 PB - Wiley-VCH AN - OPUS4-50484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sturm, Heinz A1 - Braun, Ulrike T1 - Kunststoffe und deren Recycling – Materialwissenschaftliche Erkenntnisse, um mehr Recyclat einzusetzen N2 - Nach einer Übersicht zu den immer schneller aktualisierenden Rahmenbedingungen von Politik und Gesellschaft folgt eine Übersicht zu materialwissenschaftlichen Problemen des Recyclings von Kunststoffen. Lösungsansätze aus der Forschung reichen von einfacher Optimierung bis hin zur radikalen Neukonstruktion der polymeren Werkstoffe. Aus dem bereits möglichen Ansatz "performance-by-design" wird ein neuer Weg des "recycling-by-design" adressiert. Dies inkludiert methodisch eine skalenübergreifende Modellierung und die Depolarisation bis zum Monomer. T2 - Gefahrgut-Technik-Tage CY - Berlin, Germany DA - 07.11.2019 KW - Recycling KW - Kunststoff KW - Additiv KW - Polymer KW - Normung KW - Plastikstrategie KW - Grenzfläche als Material KW - Recycling-by-design PY - 2019 AN - OPUS4-49561 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pechenyuk, S A1 - Vikulova, E A1 - Semushina, Y A1 - Baidina, I A1 - Filatov, E A1 - Yusenko, Kirill T1 - Isostructurality and Thermal Properties in the Series of Double Complex Salts [M-1(NH3)(6)][M-2(C2O4)(3)]center dot 3H(2)O (M-1 = Co, Ir, M-2 = Fe, Cr) T1 - ИЗОСТРУКТУРНОСТЬ И ТЕРМИЧЕСКИЕ СВОЙСТВА В РЯДУ ДВОЙНЫХ КОМПЛЕКСНЫХ СОЛЕЙ СОСТАВА N2 - Preparation of new bimetallic compounds, including double complex salts (DCSs), containing both a platinumgroup metal and a transition metal of the fourth period is of great interest since these compounds can act as precursors of bimetallic materials. One example of using such compounds is the preparation of ultrafine particles of solid solutions of metals or intermetallic compounds on various supports to fabricate highly efficient catalysts with a low content of noble metals. Compounds containing coordinated oxalate anions are important objects of synthetic chemistry and interesting precursors. For example, a lot of attention is given to salts with [M(C2O4)2]2– anions, where M = Co, Ni, Cu, Pt, Pd. On the one hand, the uniqueness of oxalate coordinated anions is due to the fact that they are easily obtained and are stable both in aqueous solutions and in the solid phase; on the other hand, they are thermally decomposed at relatively low temperatures, which makes them promising precursors for the fabrication of metallic and oxide materials. N2 - Синтезирован ряд из четырех изоструктурных двойных комплексных солей, построенных на основе катионов [М1(NH3)6]3+ и анионов [M2(C2O4)3]3-, где M1 = Co, Ir, M2 = Fe, Cr. Соли кристаллизуются в гексагональной пространственной группе симметрии P`3c1. Согласно данным термического анализа в атмосфере аргона, термическая устойчивость (температуры начала разложения обезвоженных продуктов) изучаемых соединений зависит от природы комплексного трисоксалатного аниона и увеличивается в рядах [Ir(NH3)6][Co(C2O4)3] < [Ir(NH3)6][Fe(C2O4)3] < [Ir(NH3)6][Cr(C2O4)3] < [Ir(NH3)6][Ir(C2O4)3] и [Co(NH3)6][Co(C2O4)3] < [Co(NH3)6][Fe(C2O4)3] < [Co(NH3)6][Cr(C2O4)3] < [Co(NH3)6][Ir(C2O4)]. При этом при одинаковом анионе соли гексаммина иридия(III) более устойчивы по сравнению с солями кобальта(III)). При термическом разложении солей [Co(NH3)6][Fe(C2O4)3]·3H2O и [Ir(NH3)6][Fe(C2O4)3] 3H2O в атмосфере водорода образуются твердые растворы Co0,5Fe0,5 и Ir0,5Fe0,5 соответственно. KW - Single-source precursors KW - Double complex salts KW - Catalysts PY - 2019 UR - https://doi.org/10.1134/S0022476619070060 DO - https://doi.org/10.26902/JSC_id42958 VL - 60 IS - 7 SP - 1110 EP - 1119 PB - Springer AN - OPUS4-48925 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kleinbub, Sherin A1 - An, Biwen Annie A1 - Heidrich, Gabriele A1 - Özcan Sandikcioglu, Özlem A1 - Schenderlein, Matthias A1 - Dommisch, H. A1 - Wagner, D. A1 - Koerdt, Andrea T1 - Investigation of the corrosion potential by oral microorganisms related to periodontitis and peri-implantitis N2 - Since the early 19th century microorganisms were studied on their capabilities of causing microbiologically influenced corrosion (MIC) of metals. The most studied ones are sulfate-reducing bacteria (SRB), but others can corrode metals as well, e.g. acid-producing bacteria or methanogenic archaea (MA). However, these studies were mostly focused on metals related to the petroleum industry but metals for other industries, e.g. dentistry, are also susceptible to corrosion. The inert Titanium (Ti) is often used as an implant material, but it is a base metal. The formation of a passivating oxide layer allows Ti to be corrosion resistant at normal conditions. Nonetheless, scanning electron microscope images on dental implants from patients with acute peri-implantitis showed clear signs of corrosion. Currently, the corrosion mechanism of dental implants is unknown, but many indications suggest that oral microorganisms, including MA (Methanobrevibacter oralis) and SRB (Desulfomicrobium orale), could be involved. To determine if MA or SRB can corrode Ti (pure Ti or Ti-6Al-4V alloy), corrosion rate, methane and sulfide concentrations were analyzed. Electrical potential measurements using in-house developed electrochemical cells indicated a potential change on Ti in the presence of a corrosive MA strain compared to an abiotic control. Microbial composition comparison will be analyzed using samples from dental pockets of 150 infected patients by considering the quality of the implant and 50 healthy people by means of amplicon sequencing. Enrichments and isolation of pure cultures from the dentals samples are also examined for their corrosion behavior. Overall, this is the first study investigating the susceptibility of dental implant material to corrosion using human related MA. T2 - Annual Conference of the Association for General and Applied Microbiology CY - Mainz, Germany DA - 17.03.2019 KW - Methanogens KW - Microbiologically Influrenced Corrosion (MIC) KW - Biofilm PY - 2019 AN - OPUS4-47600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Haferkamp, Sebastian A1 - Emmerling, Franziska A1 - Akhmetova, Irina A1 - Kulla, Hannes A1 - Rademann, K. T1 - Insights into the mechanochemical Knoevenagel condensation N2 - Mechanochemistry paves the way to simple, fast, and green syntheses, but there is a lack in understanding of the underlying mechanisms. Here, we present a universal strategy for simultaneous real-time in situ analysis, combining X-ray diffraction, Raman spectroscopy, and thermography. T2 - Bessy User Meeting 2019 CY - Berlin, Germany DA - 05.12.2019 KW - Mechanochemistry PY - 2019 AN - OPUS4-50122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -