TY - JOUR A1 - Legall, Herbert A1 - Schwanke, Christoph A1 - Bonse, Jörn A1 - Krüger, Jörg T1 - The influence of processing parameters on X‑ray emission during ultra‑short pulse laser machining N2 - During ultra-short laser material processing at high laser pulse repetition rates unwanted X-ray radiation can be generated in a quantity that may constitute a potential risk for health. An adequate X-ray radiation protection requires a thoroughly understanding of the influence of the laser processing parameters on the generation of X-ray radiation. In the present work, the generated X-ray dose during laser machining was investigated in air for varying beam scanning conditions at a pulse duration of 925 fs, a center wavelength of 1030 nm and a laser peak intensity of 2.6 × 10^14 W/cm^2. The X-ray radiation dose and the corresponding spectral X-ray emission were investigated in dependence on the laser’s pulse repetition rate and on the beam scanning speed. The results show a strong dependence of the X-ray emission on these laser processing parameters. KW - Laser-induced X-ray emission KW - Ultrashort laser material interaction KW - Femtosecond laser KW - Radiation protection PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486441 DO - https://doi.org/10.1007/s00339-019-2827-y SN - 0947-8396 SN - 1432-0630 VL - 125 IS - 8 SP - 570, 1 EP - 8 PB - Springer AN - OPUS4-48644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Gawek, Marcel A1 - Madkour, S. A1 - Schönhals, Andreas T1 - Confinement and localization effects revealed for thin films of the miscible blend Poly(vinyl methyl ether) / Polystyrene with a composition of 25/75 wt% N2 - Thin films (200-7nm) of the asymmetric polymer blend poly(vinyl methyl ether) (PVME)/polystyrene (PS) (25/75wt%) were investigated by broadband dielectric spectroscopy (BDS). Thicker samples ([Formula: see text]37 nm) were measured by crossed electrode capacitors (CEC), where the film is capped between Al-electrodes. For thinner films ([Formula: see text]37 nm) nanostructured capacitors (NSC) were employed, allowing one free surface in the film. The dielectric spectra of the thick films showed three relaxation processes ( [Formula: see text] -, [Formula: see text] - and [Formula: see text] -relaxation), like the bulk, related to PVME fluctuations in local spatial regions with different PS concentrations. The thickness dependence of the [Formula: see text] -process for films measured by CECs proved a spatially heterogeneous structure across the film with a PS-adsorption at the Al-electrodes. On the contrary, for the films measured by NSCs a PVME segregation at the free surface was found, resulting in faster dynamics, compared to the CECs. Moreover, for the thinnest films ([Formula: see text]26 nm) an additional relaxation process was detected. It was assigned to restricted fluctuations of PVME segments within the loosely bounded part of the adsorbed layer, proving that for NSCs a PVME enrichment takes place also at the polymer/substrate interface. KW - Thin polymer films KW - Broadband dielectric spectroscopy PY - 2019 DO - https://doi.org/10.1140/epje/i2019-11870-3 SN - 1292-895X VL - 42 IS - 8 SP - 101, 1 EP - 11 PB - Springer AN - OPUS4-48651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholz, Philipp A1 - Wachtendorf, Volker A1 - Elert, Anna Maria A1 - Falkenhagen, Jana A1 - Becker, Roland A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Tschiche, Harald A1 - Reinsch, Stefan A1 - Weidner, Steffen ED - Scholz, Philipp T1 - Analytical toolset to characterize polyurethanes after exposure to artificial weathering under systematically varied moisture conditions N2 - Polyether and -ester urethanes (PU) were exposed to artificial weathering at 40 °C and artificial UV radiation in a weathering chamber. In 3 parallel exposures, humidity was varied between dry, humid, and wet conditions. Material alteration was investigated by various analytical techniques like size exclusion chromatography (SEC), liquid chromatography-infrared spectroscopy (LC-FTIR), thermal-desorption gas chromatography-mass spectrometry (TD-GC-MS), fluorescence mapping and dynamic mechanical analysis (DMA). Our results show that depending on the weathering conditions, different degradation effects can be observed. By means of SEC an initial strong decrease of the molar masses and a broadening of the mass distributions was found. After a material dependent time span this was followed by a plateau where molar mass changes were less significant. A minor moisture-dependent degradation effect was only found for polyester PU. Fluorescence measurements on two materials revealed an increase in the luminescence intensity upon weathering process reaching a saturation level after about 500 h. The changes in the optical properties observed after different exposure conditions and times were very similar. The TD-GC-MS data showed the fate of the stabilizers and antioxidant in the course of weathering. LC-FTIR measurements revealed a change in peak intensities and the ratio of urethane and carbonyl bands. KW - Polyurethane KW - Artificial weathering KW - Moisture KW - Crosslinking KW - Degradation PY - 2019 UR - https://www.sciencedirect.com/science/article/pii/S0142941819303708 DO - https://doi.org/10.1016/j.polymertesting.2019.105996 SN - 0142-9418 VL - 78 SP - 105996, 1 EP - 9 PB - Elsevier CY - Amsterdam AN - OPUS4-48625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fletcher, D. C. A1 - Hunter, R. A1 - Xia, W. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Blackburn, E. A1 - Kulak, A. A1 - Xin, H. A1 - Schnepp, Z. T1 - Scalable synthesis of dispersible iron carbide (Fe3C) nanoparticles by ‘nanocasting’ N2 - Metal carbides have shown great promise in a wide range of applications due to their unique catalytic, electrocatalytic and magnetic properties. However, the scalable production of dispersible metal carbide nanoparticles remains a challenge. Here, we report a simple and scalable route to dispersible iron carbide (Fe3C) nanoparticles. This uses MgO nanoparticles as a removable ‘cast’ to synthesize Fe3C nanoparticles from Prussian blue (KFeIII[FeII(CN)6]). Electron tomography demonstrates how nanoparticles of the MgO cast encase the Fe3C nanoparticles to prevent sintering and agglomeration during the high-temperature synthesis. The MgO cast is readily removed with ethylenediaminetetraacetic acid (EDTA) to generate Fe3C nanoparticles that can be used to produce a colloidal ferrofluid or dispersed on a support material. KW - Small-angle scattering KW - SAXS KW - Metal carbides KW - Nanoparticles KW - Nanocasting PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486295 DO - https://doi.org/10.1039/C9TA06876G SN - 2050-7488 SN - 2050-7496 VL - 7 IS - 33 SP - 19506 EP - 19512 PB - Royal Society of Chemistry (RSC) AN - OPUS4-48629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Daneshnia, S. A1 - Adeli, M. A1 - Yari, A. A1 - Shams, A. A1 - Donskyi, Ievgen A1 - Unger, Wolfgang T1 - Low temperature functionalization of two-dimensional boron nitride for electrochemical sensing N2 - Two-dimensional hexagonal boron nitride(h-BN)as an emerging nanomaterial exhibits uniquephysicochemical properties, making it suitable candidate for a wide spectrum of applications.However, due to its poor functionality, the processability of this nanomaterial is low. In this work, wereport on a straightforward and scalable approach for the functionalization of h-BN by nitrene[2+1]cycloaddition at room temperature. The triazine-functionalized h-BN(Trz-BNs)showed ahigh reactivity toward nucleophiles, through which post-modifications are performable. The post-modification of Trz-BNs by L-cysteine was studied using cyclic voltammetry and differential pulsevoltammetry. Taking advantage of the scalable and straightforward functionalization as well as abilityof triazine functional groups for the controlled post-modifications, Trz-BNs is a promisingnanoplatform for a wide range of future applications. KW - Two-dimensional hexagonal boron nitride(h-BN) KW - Nitrene[2+1]cycloaddition KW - Post-modification by L-cysteine KW - Electrochemical sensing KW - XPS PY - 2019 DO - https://doi.org/10.1088/2053-1591/ab317b SN - 2053-1591 VL - 6 IS - 9 SP - 095076, 1 EP - 11 PB - IOP Publishing Ltd AN - OPUS4-48635 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kulla, Hannes A1 - Michalchuk, Adam A1 - Emmerling, Franziska T1 - Manipulating the dynamics of mechanochemical ternary cocrystal formation N2 - The mechanism of ternary cocrystal formation, and the potential role of intermediate binary phases, has been debated for some time. We report here the first in situ real-time monitoring of two prototypic ternary cocrystals. Our results suggest that the question is more complicated than previously considered. The mechanism of mechanochemical ternary cocrystal formation depends on the milling conditions, here the milling frequency and addition of liquid. Binary phases can form under certain conditions, but do not act as intermediates in the formation of the ternary cocrystals. Rather, binary phases are competitive with the ternary phase, and their formation appears to compete with that of the ternary components. The presence of binary phases leads to an increase in the overall reaction time. The results reported here offer the first insights into the true complexities of mechanochemical multi-component synthesis of higher order multi-component crystals and demonstrate a new understanding of the influence of milling condition for the study of mechanisms and kinetics. KW - Mechanochemistry KW - In situ KW - Cocrystal PY - 2019 UR - https://pubs.rsc.org/en/content/articlepdf/2019/cc/c9cc03034d DO - https://doi.org/10.1039/c9cc03034d SN - 1364-548X VL - 55 IS - 66 SP - 9793 EP - 9796 PB - RSC AN - OPUS4-48613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - B, Yang A1 - Chua, Y. Z. A1 - Szymoniak, Paulina A1 - Carta, M A1 - Malpass-Evans, R A1 - McKeown, N A1 - Harrison, W A1 - Budd, P A1 - Schick, C A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Effect of backbone rigidity on the glass transition of polymers of in-trinsic microporosity probed by fast scanning calorimetry N2 - Polymers of Intrinsic Microporosity (PIMs) of high performance have developed as materials with a wide application range in gas separation and other energy-related fields. Further optimization and long-term behavior of devices with PIMs require an understanding of the structure-property relationships including physical aging. In this context the glass transi-tion plays a central role, but with conventional thermal analysis a glass transition is usually not detectable for PIMs be-fore their thermal decomposition. Fast scanning calorimetry provides evidence of the glass transition for a series of PIMs, as the time scales responsible for thermal degradation and for the glass transition are decoupled by employing ultrafast heating rates of tens of thousands K s-1. The investigated PIMs were chosen considering the chain rigidity. The estimated glass transition temperatures follow the order of the rigidity of the backbone of the PIMs. KW - Polymers of intrinsic microporosity KW - Fast scanning calormetry PY - 2019 DO - https://doi.org/10.1021/acsmacrolett.9b00482 SN - 2161-1653 VL - 8 IS - 8 SP - 1022 EP - 1028 PB - ACS Publications AN - OPUS4-48617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholz, Philipp A1 - Wachtendorf, Volker A1 - Panne, Ulrich A1 - Weidner, Steffen ED - Scholz, Philipp T1 - Degradation of MDI-based polyether and polyester-polyurethanes in various environments - Effects on molecular mass and crosslinking N2 - Size-exclusion chromatography (SEC) was used to monitor changes of the molecular masses of thermoplastic polyether – and polyester urethane (TPU) exposed to thermal, hydrolytic, and photo-oxidative (UV) Degradation conditions for several days. The thermal treatment was performed at elevated temperatures (100–200 °C) under oxidative (air) as well as non-oxidative (nitrogen) conditions to evaluate the specific influence of oxygen on the degradation. At higher temperatures (≥175 °C) a fast decrease of the molecular masses of both PU accompanied by a high degree of crosslinking was found. At lower temperatures (≤150 °C) the polymers remained widely unaffected by thermal degradation within the investigated degradation interval of up to two weeks. Surprisingly, the influence of oxygen (air) was found to be less distinct. In contrast to that, UV treatment at 25 °C at less than 10% rel. humidity (RH) resulted in a fast crosslinking, whereas the molecular masses of both PU decreased slower than for thermal treatments. The depth of penetration of the UV radiation was estimated using 3D printed PU samples with different thicknesses. Hydrolysis based degradation effects were less significant. Only slight molecular mass changes were detected at temperatures ≤80 °C within a time span of 14 days, while no crosslinking could be measured. Considering the degradation results at the investigated exposure parameters, it could be shown that esterbased PU in general exhibits a significant higher stability compared to ether-based materials. KW - Polyurethane KW - Thermal degradation KW - UV degradation KW - Molecular masses KW - Crosslinking PY - 2019 UR - https://www.sciencedirect.com/science/article/pii/S0142941819302363 DO - https://doi.org/10.1016/j.polymertesting.2019.04.028 SN - 0142-9418 VL - 77 SP - 105881, 1 EP - 12 PB - Elsevier CY - Amsterdam AN - OPUS4-48619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gao, S. A1 - Hou, J. A1 - Deng, Z. A1 - Wang, T. A1 - Beyer, Sebastian A1 - de Oliveira Guilherme Buzanich, Ana A1 - Richardson, J. J. A1 - Rawal, A. A1 - Seidel, R. A1 - Zulkifli, M. Y. A1 - Li, W. A1 - Bennett, T. D. A1 - Cheetham, A. K. A1 - Liang, K. T1 - Improving the Acidic Stability of Zeolitic Imidazolate Frameworks by Biofunctional Molecules N2 - Zeolitic imidazolate frameworks (ZIFs) have been widely investigated for their use in separation, gas adsorption, catalysis, and biotechnology. Their practical applications, however, can be hampered by their structural instability in humid acidic conditions. Here, guided by density functional theory calculations, we demonstrate that the acidic stability of two polymorphic ZIFs (i.e., ZIF-8 and ZIF-L) can be enhanced by the incorporation of functional groups on polypeptides or DNA. A range of complementary synchrotron investigations into the local chemical structure and bonding environment suggest that the enhanced acidic stability arises from the newly established coordinative interactions between the Zn centers and the inserted carboxylate (for polypeptides) or phosphate (for DNA) groups, both of which have lower pKas than the imidazolate ligand. With functional biomolecular homologs (i.e., enzymes), we demonstrate a symbiotic stability reinforcement effect, i.e., the encapsulated biomolecules stabilize the ZIF matrix while the ZIF exoskeleton protects the enzyme from denaturation. KW - Zeolitic Imidazolate Frameworks KW - Biofunctional Molecules KW - X-ray Absorption Spectroscopy PY - 2019 DO - https://doi.org/10.1016/j.chempr.2019.03.025 VL - 5 IS - 6 SP - 1597 EP - 1608 PB - Elsevier Inc. AN - OPUS4-48702 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - High-Quality Experimental Data in Electron Microscopy and Microanalysis – What can, and should we jointly do? N2 - There are different ways how to prove the quality of the results obtained by electron microscopy and related microanalysis techniques, e.g. use of validated standard operation procedures, participation in proficiency testing exercises, use of certified reference materials, etc. International standards are able to provide requirements, specifications, guidelines or characteristics of methods, instruments or samples with the final goal that these can be used consistently in accredited laboratories. In the field of electron microscopy and microbeam analysis standardization and metrology are terms which are encountered rather seldom at major conferences and scientific publications. Nevertheless, spectra formats like EMSA/MSA for spectral-data exchange or tagged image file format (TIFF) for SEM, guidelines for performing quality assurance procedures or for the specification of X-ray spectrometers as well as of certified reference materials (CRMs) in EPMA, or measurement of average grain size by electron backscatter diffraction (EBSD), or guidelines for calibrating image magnification in SEM or TEM are ISO standards already published and used successfully by a large part of the electron microscopy and microbeam analysis community. A main and continuous task of ISO/TC 202 and its subcommittees is to identify and evaluate feasible projects/proposals needed to be developed into new international standards, particularly in respect to recent but established technology, such the silicon drift detector (SDD) EDS one. Another international platform in the frame of which pre-standardization work can be organized is VAMAS (Versailles Project on Advanced Materials and Standards). International collaborative projects involving aim at providing the technical basis for harmonized measurements, testing, specifications, and standards to be further developed at ISO level. One key point of VAMAS activities is constituted by inter-laboratory comparisons for high-quality data. In the field of microbeam analysis, the technical working area (TWA) 37 Quantitative Microstructural Analysis deals with corresponding projects. Good ideas, e.g. on analysis of low-Z materials/elements and at low energies are particularly encouraged by directly contacting the author. Support and already available guidance will be supplied. T2 - Microscopy & Microanalysis 2019 CY - Portland, OR, USA DA - 03.08.2019 KW - Pre-standardisation KW - Inter-laboratory comparison KW - VAMAS KW - ISO KW - Electron microscopy KW - Microanalysis PY - 2019 AN - OPUS4-48672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -