TY - GEN A1 - Hodoroaba, Vasile-Dan A1 - Fontanges, Richard T1 - A new deep-learning AI tool for analysing images of complex nanoparticles N2 - A thousand times thinner than a human hair, nanoparticles (NPs) are finding applications in a range of modern products. However, as some can affect human health or the environment, knowing the types present is essential. Electron microscopy is the ‘gold standard’ for NP analysis, allowing identification based on manual size analysis, but a new method was required to analyse these particles quickly, accurately and in a consistent way. KW - Nanoparticles KW - Imaging KW - AI tool KW - Particle size and shape distribution PY - 2024 UR - https://www.euramet.org/casestudies/casestudiesdetails/news/a-new-deep-learning-ai-tool-for-analysing-images-of-complex-nanoparticles SP - 1 EP - 2 PB - EURAMET CY - Braunschweig AN - OPUS4-60095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan T1 - 2020 Microscopy Today Micrograph Awards N2 - Gold nanocubes with a monodispersed size distribution (edge = 55 nm) deposited on a silicon wafer. These tiny uniform cubes were produced as reference nanoparticles within the EMPIR project nPSize - Improved traceability chain of nanoparticle size measurements. SEM image acquired at 10 kV with an in-lens secondary electron detector. Image colored in ImageJ using LUT “Orange hot.” Published in Microscopy and Microanalysis 25(S2) (2019) 2328. KW - Nanoparticles KW - Au-nanocubes KW - Reference materials KW - Electron microscopy PY - 2020 DO - https://doi.org/10.1017/S1551929520001339 VL - 28 IS - 5 SP - 14 EP - 15 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thünemann, Andreas A1 - Kästner, Claudia T1 - (Bio)polymers tune the catalytic activity of silver nanoparticles N2 - We report on the development of ultra-small core-shell silver nanoparticles synthesized by an up-scaled modification of the polyol process. It is foreseen to use these thoroughly characterized particles as reference material to compare the catalytic and biological properties of functionalized silver nanoparticles. Small-angle X-ray scattering (SAXS) analysis reveal a narrow size distribution of the silver cores with a mean radius of RC = 3.0 nm and a distribution width of 0.6 nm. Dynamic light scattering (DLS) provides a hydrodynamic radius of RH = 10.0 nm and a PDI of 0.09. The particles’ surface is covered with poly(acrylic acid) (PAA) forming a shell with a thickness of 7.0 nm, which provides colloidal stability lasting for more than six months at ambient conditions. The PAA can be easily exchanged by biomolecules to modify the surface functionality. Replacements of PAA with glutathione (GSH) and bovine serum albumin (BSA) have been performed as examples. We demonstrate that the particles effectively catalyze the reduction of 4-nitrophenol to 4-aminophenol with sodium borohydride. The tunable catalytic activity of (436 ± 24) L g-1 s-1 is the highest reported in literature for silver nanoparticles. T2 - POLYDAYS 2016 CY - Potsdam, Germany DA - 28.09.2016 KW - Nanoparticles KW - Small-angle X-ray scattering KW - SAXS KW - Silver PY - 2016 AN - OPUS4-37622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -