TY - CONF A1 - Resch-Genger, Ute T1 - Applications and challenges of luminescence-based detection methods in the life and material sciences N2 - Luminescence-based detection methods, ranging from fluorescence spectroscopy for photophysical and mechanistic studies over sensing applications, chromatographic separation techniques and the microarray technology with fluorescence detection to fluorescence microscopy, flow cytometry, single molecule spectroscopy, and molecular imaging to integrating sphere spectroscopy, are among the most widely used methods in the life and material sciences. This is due to e.g., their unique sensitivity enabling the detection of single molecules, potential for multiplexing, ease of combination with spatial resolution, and suitability for remote sensing. Many of these advantages are closely linked to the choice of suitable molecular and nanoscale fluorescent reporters, typically required for signal generation. This includes organic dyes without and with sensor function, fluorophore-encoded polymeric and silica nanoparticles as well as nanocrystalline systems like semiconductor quantum dots and upconversion phosphors, emitting in the visible (vis), near-infrared (NIR), and IR (infrared). Current challenges present the environment sensitivity of most fluorophores, rendering fluorescence spectra, measured intensities/fluorescence quantum yields, and fluorescence decay kinetics matrix-dependent, and instrument-specific distortions of measured fluorescence signals that need to be considered for quantification and comparability of data, particularly fluorescence spectra. Here, current applications of luminescence-based methods and different types of reporters will be presented. In this context, suitable spectroscopic tools for the characteri-zation of the optical properties of fluorescent reporters and fluorophore-encoded microparticles, analytical tools for the determination of the surface chemistry of different types of particles, and different multiplexing strategies will be discussed. T2 - 9th Meeting of Engineering of Functional Interfaces CY - Wildau,Germany DA - 03.07.2016 KW - Fluorescence KW - Multiplexing KW - Lifetime KW - Nanomaterial KW - Nanoparticle KW - PEG KW - Ligand KW - Semiconductor quantum dot KW - Quantum yield KW - Quantification KW - Upconversion nanoparticle KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Fluorescence standard KW - Calibration PY - 2016 AN - OPUS4-37112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Würth, Christian A1 - Kaiser, Martin A1 - Kraft, Marco A1 - Muhr, Verena A1 - Wilhelm, Stefan A1 - Hirsch, Thomas A1 - Resch-Genger, Ute T1 - Setup for the power-dependent absolute quantum yield measurements: example of upconversion nanoparticles N2 - Lanthanide-doped up-converting nanoparticles (UCNPs), are promising reporters for bioanalysis and theranostics, which are excitable in the near infrared (NIR) by multiphoton absorption processes, and show multiple narrow emission bands in the visible (vis) and NIR, excellent photostability, and long luminescence lifetimes in the µs range. The rational design of brighter UCNP requires an improved understanding of the radiationless deactivation pathways in UCNP, that are affected by size, surface chemistry, and microenvironment. In this respect, we discuss the experimental requirements on absolute measurements of the upconversion quantum yield and its excitation radiant power density dependence and present the design and characterization of unique integrating sphere setup for such measurements in the vis to IR spectral region including its calibration, the influence of the excitation beam profile and solutions to perform such measurements in aqueous media. T2 - Upcon2016 CY - Breslau, Poland DA - 23.05.2016 KW - Upconversion KW - Quantum yield KW - Nanoparticle PY - 2016 AN - OPUS4-38409 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Hatami, Soheil A1 - Leubner, S. A1 - Gaponik, N. A1 - Eychmüller, A. T1 - Absolute spectroscopic characterization of the optical properties of semiconductor and upconversion nanocrystals in the vis and IR N2 - Nanocrystalline fluorophores like semiconductor quantum dots and rods and recently also lanthanide-based upconversion phosphors with emission in the visible (vis), near-infrared (NIR), and IR (infrared) region are increasingly being used in bioimaging studies and fluorescence assays as well as in photovoltaics and solid state lighting. The assessment and comparison of material performance as well as the development of rational design strategies for improved systems require spectroscopic tools, which enable the determination of the signal-relevant optical properties like photoluminescence quantum yields and brightness values. In the case of nonlinear fluorescence as shown by upconversion materials, such measurements must be also performed as function of excitation power density. In this work, we report on methods for the absolute determination of the photoluminescence quantum yield and brightness of fluorescent particles in dispersion and as powders based on integrating sphere spectroscopy and underline the importance of such measurements for the understanding of the photophysics of such nanocrystals. T2 - International Conference on Fundamental Processes in Semiconductor Nanocrystals (FQDots16) CY - Berlin, Germany DA - 05.09.2016 KW - Fluorescence KW - Nanoparticle KW - Semiconductor quantum dot KW - Upconversion nanocrystal KW - NIR KW - Integrating sphere spectroscopy KW - Fluorescence quantum yield KW - Method PY - 2016 AN - OPUS4-38695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Ermilov, Eugeny A1 - Hoffmann, Katrin T1 - Suitable geometries for the measurement of photoluminescence quantum yields of luminescent and scattering samples – The DIN TNS project N2 - The characterization of the optical properties of photoluminescent systems, that scatter, like dispersions of nanoparticles with sizes exceeding about 25 nm or solid nanophosphors is of increasing importance for many applications in the life and material sciences. Examples present nanoscale optical reporters and dye-doped microparticles for bioimaging, fluorescence assays or DNA sequencing as well as nanocrystalline emitters like semiconductor quantum dots and rods or lanthanide-based nanophosphors embedded into solid matrices for solid state lighting, display technologies, or barcoding/security applications. The assessment and comparison of material performance as well as the development of rational design strategies for improved systems require spectroscopic tools, which enable the determination of the signal-relevant optical properties like photoluminescence quantum yields and brightness values. This encouraged us to built up an integrating sphere setup enabling absolute measurements of photoluminescence spectra and quantum yields of transparent and scattering photoluminescent dispersions and solid samples in different measurement geometries, i.e., direct and indirect illumination and the combination of both geometries and perform first measurements with selected emitters. Here, the design of this setup is presented and first recommendations concerning suitable measurement geometries are given. T2 - DKE-Sitzung CY - Frankfurt am Main, Germany DA - 31.08.2016 KW - Nanoparticle KW - Integrating sphere KW - Fluorescence KW - Quantum yield KW - Method KW - Standardization KW - Calibration KW - Reference material PY - 2016 AN - OPUS4-38643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute ED - Martynenko, Irina ED - Baimuratov, A. S. ED - Osipova, V. A. ED - Kuznetsova, V. A. ED - Purcell-Milton, F. ED - Rukhlenko, I. D. ED - Fedorov, A. V. ED - Gun'ko, Y. K. ED - Baranov, A. V. T1 - Excitation energy dependence of the photoluminescence quantum yield of core/shell CdSe/CdS quantum dots and correlation with circular dichroism N2 - Quantum dot (QD) based nanomaterials are very promising materials for the fabrication of optoelectronic devices like solar cells, light emitting diodes (LEDs), and photodetectors as well as as reporters for chemo- and biosensing and bioimaging. Many of These applications involve the monitoring of changes in photoluminescence intensity and energy transfer processes which can strongly depend on excitation wavelength or energy. In this work, we analyzed the excitation energy dependence (EED) of the photoluminescence quantum yields (PL QYs) and decay kinetics and the circular dichroism (CD) spectra of CdSe/CdS core/shell QDs with different thicknesses of the surface passivation shell. Our results demonstrate a strong correlation between the spectral position of local maxima observed in the EED of PL QY and the zero-crossing points of the CD profiles. Theoretical analysis of the energy band structure of the QDs with effective mass approximation suggests that these structures could correspond to exciton energy levels. This underlines the potential of CD spectroscopy for the study of electronic energy structure of chiroptically active nanocrystals which reveal quantum confinement effects. KW - Fluorescence KW - Semiconductor KW - Nanoparticle KW - Surface chemistry KW - Quantum yield KW - Lifetime KW - Nanocrystal KW - Cysteine KW - Thiol KW - Ligand KW - Quantum dot KW - CdSe KW - Exciton KW - Circular dichroism KW - Theory KW - Excitation spectra KW - Excitation energy dependence PY - 2017 DO - https://doi.org/10.1021/acs.chemmater.7b04478 SN - 0897-4756 SN - 1520-5002 VL - 30 IS - 2 SP - 465 EP - 471 PB - ACS Publications AN - OPUS4-44034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Wegmann, Marc A1 - Hannemann, M. A1 - Somma, V. A1 - Jochum, T. A1 - Niehaus, J. A1 - Roggenbuck, D. T1 - Automated determination of genotoxicity of nanoparticles with DNA-based optical assays - The NANOGENOTOX project N2 - The overall interest in nanotoxicity, triggered by the increasing use of nanomaterials in the material and life sciences, and the synthesis of an ever increasing number of new functional nanoparticles calls for standardized test procedures1,2 and for efficient approaches to screen the potential genotoxicity of these materials. Aiming at the development of fast and easy to use, automated microscopic methods for the determination of the genotoxicity of different types of nanoparticles, we assess the potential of the fluorometric γH2AX assay for this purpose. This assay, which can be run on an automated microscopic detection system, relies on the detection of DNA double strand breaks as a sign for genotoxicity3. Here, we provide first results obtained with broadly used nanomaterials like CdSe/CdS and InP/ZnS quantum dots as well as iron oxide, gold, and polymer particles of different surface chemistry with previously tested colloidal stability and different cell lines like Hep-2 and 8E11 cells, which reveal a dependence of the genotoxicity on the chemical composition as well as the surface chemistry of these nanomaterials. These studies will be also used to establish nanomaterials as positive and negative genotoxicity controls or standards for assay performance validation for users of this fluorometric genotoxicity assay. In the future, after proper validation, this microscopic platform technology will be expanded to other typical toxicity assays. T2 - SPIE 2018 CY - San Francisco, USA DA - 27.01.2018 KW - Nanoparticle KW - Fluorescence KW - Surface chemistry KW - Size KW - Assay KW - Microscopy KW - Nanotoxicity KW - Toxicity KW - Automation KW - Calibration KW - Standard PY - 2018 AN - OPUS4-44186 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, K. A1 - Liu, H. A1 - Kraft, Marco A1 - Shikha, S. A1 - Zheng, X. A1 - Agren, H. A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Zhang, Y. T1 - A protected excitation-energy reservoir for efficient upconversion luminescence N2 - Lanthanide-doped upconversion nanoparticles (UCNPs) are of great interest for biomedical applications. Currently, the applicability of UCNP bionanotechnology is hampered by the generally low luminescence intensity of UCNPs and inefficient energy Transfer from UCNPs to surface-bound chromophores used e.g. for photodynamic therapy or analyte sensing. In this work, we address the low-Efficiency issue by developing versatile core-Shell nanostructures, where high-concentration sensitizers and activators are confined in the core and Shell Region of representative hexagonal NaYF2:Yb,Er UCNPs. After Doping concentration optimization, the sensitizer-rich core is able to harvest/accumulate more excitation energy and generate almost one order of Magnitude higher luminescence intesity than conventional homogeneously doped nanostructures. At the same time, the activator Ions located in the Shell enable a ~6 times more efficient resonant energy Transfer from UCNPs to surface-bound acceptor dye molecules due to the short distance between donor-acceptor pairs. Our work provides new insights into the rational design of UCNPs and will greatly encrease the General applicability of upconversion nanotechnologies. KW - Fluorescence KW - Lanthanide KW - Upconversion KW - Brightness KW - Quantification KW - Nanoparticle KW - Absolute fluorometry KW - NIR KW - IR KW - Quantum yield KW - Integrating sphere spectroscopy KW - Method KW - Energy transfer KW - Shell KW - Particle architecture PY - 2017 DO - https://doi.org/10.1039/c7nr06900f SN - 2040-3372 SN - 2040-3364 VL - 10 IS - 1 SP - 250 EP - 259 PB - The Royal Society of Chemistry AN - OPUS4-43893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Kraft, Marco A1 - Kaiser, Martin A1 - Radunz, Sebastian A1 - Muhr, V. A1 - Hirsch, T. T1 - Effect of particle architecture, dopant concentration, size, and excitation power density on the luminescence efficiency of upconversion nanocrystals N2 - Lanthanide-based upconversion nanoparticles (UCNPs) offer new strategies for luminescence-based sensing and imaging. One of the best studied materials are hexagonal ß-NaYF4 UCNPs doped with 20% Yb3+ and 2% Er3+, which efficiently convert 976 nm light to photons emitted at 540 nm, 655 nm, and 845 nm, respectively, reveal Long luminescence lifetimes (> 100 µs), and are very photostable and chemically inters.[1,2] The properties of their upconversion (UC) luminescence (UCL) are, however, strongly influenced by particle size, concentration and spatial arrangement of dopant Ions, surface chemistry, and microenvironment.[3,4] In addition, the multiphotonic absorption processes responsible for UCL render UCL dependent on excitation power density (P). The rational design of brighter UCNPs particle architectures encouraged us to assess systematically the influence of these parameters on UCL for differently doped UCNPs relying on the commonly used ß-NaYf4 matrix using steady state and time resolved fluorometry as well as integrating sphere spectroscopy for P varied over almost three orders of magnitude. This includes comprehensive studies of the influence of size and shell, Yb3+ and Er3+ dopand concentrations, and energy Transfer processes from UCNPs to surface-bound organic dyes or vice versa [5]. Our results underline the need for really quantitative luminescence studies for mechanistic insights, the potential of high p to compensate for UCL surface quenching, and the matrix- and P-dependence of the optimum dopand concentration. T2 - BIOSPIE 2018 CY - San Francisco, USA DA - 27.01.2018 KW - Upconversion KW - Nanoparticle KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Fluorescence KW - Surface chemistry KW - Deactivation pathways KW - Modeling KW - Size PY - 2018 AN - OPUS4-43939 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Fischer, S. A1 - Grauel, Bettina A1 - Alivisatos, A. P. A1 - Resch-Genger, Ute T1 - Quantum Yields, Surface Quenching, and Passivation Efficiency for Ultrasmall Core/Shell Upconverting Nanoparticles N2 - We synthesized and characterized a set of ultrasmall hexagonal-phase NaGdF4: 20% Yb3+, 2% Er3+ upconversion nanoparticles with core diameters of 3.7 ± 0.5 nm. In order to assess passivation effects and the influence of possible core−shell intermixing and to identify optimum particle structures for combined imaging in the visible and near-infrared (vis−NIR: 410−850 nm) and short-wave infrared (SWIR: 1520 nm), NaYF4 shells of varying thicknesses (monolayer to 10 nm) were introduced and the influence of this parameter on the upconversion and downshifting photoluminescence of these particles was studied at different excitation power densities. This included excitation power-dependent emission spectra, slope factors, quantum yields, and excited state decay kinetics. These measurements revealed enhancement factors of the upconversion quantum yield of >10 000 in the low power region and an excitation power density-independent quantum yield of the downshifted emission at 1520 nm between 0.1 and 14%. The optimized shell thickness for combined vis and SWIR imaging was identified as 5 nm. Moreover, lifetimes and quantum yields can be continuously tuned by shell thickness which can be exploited for lifetime multiplexing and encoding. The fact that we did not observe a saturation of the upconversion quantum yield or the excited state decay kinetics with increasing shell thickness is ascribed to a strong intermixing of the active core with the inert shell during the shelling procedure. This indicates the potential of spectroscopic tools to detect cation intermixing. KW - Nanoparticle KW - Upconversion KW - Quenching PY - 2018 DO - https://doi.org/10.1021/jacs.8b01458 IS - 140 SP - 4922 EP - 4928 PB - American Chemical Society AN - OPUS4-45378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Resch-Genger, Ute ED - Schäferling, Michael T1 - Luminescent nanoparticles for chemical sensing and imaging N2 - The implementation of fluorescent methods is of outstanding importance in the field of optical chemical sensor Technology and biosciences. Their bioanalytical applications are manifold including fluorescence microscopy, fluorescence in situ hybridization, DNA sequencing, fluorescence-activated cell sorting, immunoassays, analysis of DNA and Protein microarrays, and quantitative PCR, just to name a few examples. Particularly, fluorescence microscopy is a valuable method in the versatile field of biomedical imaging methods which nowadays utilizes different fluorescence Parameters like emission wavelength/Color and lifetime for the discrimination between different targets. Sectional Images are available with confocal microscopes. Tissue, cells or single cellular compartments can be stained and visualized with fluorescent dyes and biomolecules can be selectively labeled with fluorescent dyes to Monitor biomolecular interactions inside cells or at Membrane bound receptors. On the other hand , fluorophores can act as indicator (or "molecular probe") to visualize intrinsically colorless and non-fluorescent ionic and neutral analytes such as pH, Oxygen (pO2), metal ions, anions, hydrogen peroxide or bioactive small organic molecules such as Sugars or nucleotides. Thereby, their photoluminescent properties (fluorescence or phoporescence intensity, exitation and/or Emission wavelength, emission lifetime or anisotropy) respond to the presence of these species in their immediate Environment. In general, the use of luminescent probes has the advantage that they can be delivered directly into the sample, and detected in a contactless remote mode. By now, these probes are often encapsulated in different types of nanoparticles (NPs) made from (biodegradable) organic polymers, biopolymers or inorganic materials like silica or bound to their surface. KW - Fluorescence KW - Upconversion KW - NIR KW - Sensor KW - Nanoparticle KW - Surface chemistry KW - Quantum yield KW - Liftetime KW - Nanocrystal KW - Lanthanide KW - Semiconductor KW - Polymer KW - Silica KW - Imaging KW - Application KW - Dye KW - Quantum dot PY - 2017 SN - 978-3-319-48260-6 SN - 978-3-319-48259-0 DO - https://doi.org/10.1007/978-3-319-48260-6_5 SN - 1573-8086 SP - 71 EP - 109 PB - SPRINGER INTERNATIONAL PUBLISHING AG CY - Cham, Schweiz AN - OPUS4-44011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Homann, C. A1 - Krukewitt, Lisa A1 - Frenzel, Florian A1 - Grauel, Bettina A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Haase, M. T1 - NaYF4:Yb,Er/NaYF4 Core/Shell Nanocrystals with High Upconversion Luminescence Quantum Yield N2 - Upconversion core/shell nanocrystals with different mean sizes ranging from 15 to 45 nm were prepared via a modified synthesis procedure based on anhydrous rare‐earth acetates. All particles consist of a core of NaYF4:Yb,Er, doped with 18 % Yb3+ and 2 % Er3+, and an inert shell of NaYF4, with the shell thickness being equal to the radius of the core particle. Absolute measurements of the photoluminescence quantum yield at a series of different excitation power densities show that the quantum yield of 45 nm core/shell particles is already very close to the quantum yield of microcrystalline upconversion phosphor powder. Smaller core/shell particles prepared by the same method show only a moderate decrease in quantum yield. The quantum yield of 15 nm core/shell particles, for instance, is reduced by a factor of three compared to the bulk upconversion phosphor at high power densities (100 W cm−2) and by approximately a factor of 10 at low power densities (1 W cm−2). KW - Core shell structure KW - Upconversion KW - Non lienear processes KW - Nanoparticle KW - Quantum yield PY - 2018 DO - https://doi.org/10.1002/anie.201803083 VL - 57 IS - 28 SP - 8765 EP - 8769 PB - Wiley-VCH AN - OPUS4-45574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Denißen, M. A1 - Hannen, R. A1 - Itskalov, D. A1 - Biesen, L. A1 - Nirmalananthan-Budau, Nithiya A1 - Hoffmann, Katrin A1 - Reiss, G. J. A1 - Resch-Genger, Ute A1 - Müller, T. J. J. T1 - One-pot synthesis of a white-light emissive bichromophore operated by aggregation-induced dual emission (AIDE) and partial energy transfer N2 - Merocyanine–triarylamine bichromophores are readily synthesized by sequentially Pd-catalyzed insertion alkynylation–Michael–Suzuki four-component reactions. White-light emissive systems form upon aggregation in 1 : 99 and 0.1 : 99.9 vol% CH2Cl2–cyclohexane mixtures, ascribed to aggregation-induced dual emission (AIDE) in combination with partial energy transfer between both chromophore units as supported by spectroscopic studies. KW - Energy transfer KW - Nano KW - Nanoparticle KW - Photoluminescence KW - Fluorescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Dye KW - Enhancement KW - Particle KW - Polarity KW - AIE KW - Aggregation KW - Aggregation-induced emission KW - Solid state emission KW - Merocyanine PY - 2020 DO - https://doi.org/10.1039/d0cc03451g VL - 56 IS - 54 SP - 7407 PB - Royal Society of Chemistry AN - OPUS4-50936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nirmalananthan-Budau, Nithiya A1 - Budau, J. H. A1 - Moldenhauer, Daniel A1 - Hermann, G. A1 - Kraus, Werner A1 - Hoffmann, Katrin A1 - Paulus, Beate A1 - Resch-Genger, Ute T1 - Substitution pattern controlled aggregation-induced emission in donor-acceptor-donor dyes with one and two propeller-like triphenylamine donors N2 - We present a comparative study of the spectroscopic properties of the donor–acceptor–donor substituted dyes triphenylamine-allylidenemalononitrile-julolidine (TMJ) and triphenylamine-allylidenemalononitriletriphenylamine (TMT), bearing one and two propeller-like triphenylamine donor moieties, in solvents of varying polarity and viscosity and in the aggregated and solid state. Our results reveal control of the aggregation-induced spectroscopic changes and the packing motifs of the dye molecules in the solid state by the chemical nature and structure of the second nitrogen-containing donor, i.e., a planar and a rigid julolidine or a twisted triphenyl group. Assuming that the TMT and TMJ aggregates show a comparable arrangement of the molecules to the respective crystals, these different molecular interactions in the solid state are responsible for aggregation induced emission (AIE) in the case of TMT and its absence for TMJ. Moreover, a versatile strategy for the fluorescence enhancement of only weakly emissive AIE dyes is shown, turning these dyes into bright nanoscale fluorescent reporters by using them as stains for preformed polymer particles. KW - Nano KW - Nanoparticle KW - Photoluminescence KW - Fluorescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Dye KW - Enhancement KW - Particle KW - Polarity KW - AIE KW - Aggregation KW - Aggregation-induced emission KW - Solid state emission PY - 2020 DO - https://doi.org/10.1039/d0cp00413h VL - 22 IS - 25 SP - 14142 EP - 14154 AN - OPUS4-50967 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Biesen, L. A1 - Nirmalananthan-Budau, Nithiya A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Müller, T. J. J. T1 - Solid-State Emissive Aroyl-S,N-Ketene Acetals with Tunable N2 - N-Benzyl aroyl-S,N-ketene acetals can be readily synthesized by condensation of aroyl chlorides and N-Benzyl 2-methyl benzothiazolium salts in good to excellent yields, yielding a library of 35 chromophores with bright solid-state emission and aggregation-induced emission characteristics. Varying the substituent from electron-donating to electronwithdrawing enables the tuning of the solid-state emission Color from deep blue to red. KW - Nano KW - Nanoparticle KW - Photoluminescence KW - Fluorescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - dye KW - Enhancement KW - Particle KW - Polarity KW - AIE KW - Aggregation KW - Aggregation-induced emission KW - Solid state emission PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509072 DO - https://doi.org/10.1002/anie.201916396 VL - 59 IS - 25 SP - 10037 EP - 10041 PB - Wiley Online Libary AN - OPUS4-50907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bennet, Francesca A1 - Hodoroaba, Vasile-Dan A1 - Burr, L. A1 - Schmid, D. T1 - Microprinting and SEM analysis for quantitative evaluation of nanoparticles in solution N2 - Nanoparticle suspensions were microprinted onto TEM grids for subsequent analysis by SEM/TSEM and evaluation of particle numbers using Image J software. Various nanoparticle types, concentrations and printing conditions (temperature, rel. humidity) were evaluated in order to determine the optimal conditions for producing a uniform distribution of particles on the substrate and eliminating the coffee ring effect. T2 - H2020 ACEnano Project Meeting CY - Amsterdam, Netherlands DA - 04.03.2020 KW - Nanoparticle KW - Imaging KW - Microprinting KW - Homogeneous deposition PY - 2020 AN - OPUS4-50584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bäßler, Ralph T1 - Review: Nanopatterned and Nanoparticle‐Modified Electrodes N2 - Since nanoscience has a tremendous impact on the development of electrochemistry, Wiley‐VCH paid attention to that by publishing thisbook as volume 17 within the series “Advances in Electrochemical Science and Engineering”. This collection of “nanoaspects”on electrodes provides a helpful overview on principles and current findings to readers interested in such applications. It fulfills its intention of being “a valuable resource for researchers working in such fields as electrochemistry, materials science, spectroscopy, analytical and medicinal chemistry”. KW - Electrochemistry KW - Nanoparticle PY - 2020 DO - https://doi.org/10.1002/maco.202070014 SN - 1521-4176 SN - 0947-5117 VL - 71 IS - 1 SP - 179 EP - 180 PB - WILEY‐VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-50205 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Advanced characterization of nanomaterials N2 - The rational synthesis and use of nanomaterials require the characterization of many different properties, ranging from particle size and size distribution over surface chemistry to more applicationrelevant features like optical, electrochemical, and magnetic properties. In the following, several methods for the characterization of functional groups on nanomaterials, like polymer and silica nanoparticles, semiconductor quantum dots, and lanthanide-based upconversion nanocrystals are presented. Additionally, procedures for the measurement of the key spectroscopic performance parameters of nanomaterials with linear and nonlinear photoluminescence, such as the photoluminescence quantum yield, are presented for the UV/vis/NIR/SWIR. T2 - Summerschool CY - Bad Honnef, Germany DA - 22.07.2019 KW - Quantum yield KW - Nanoparticle KW - Fluorescence KW - Quantum dot KW - NIR KW - SWIR KW - Quality assurance KW - Calibration PY - 2019 AN - OPUS4-48630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiesholler, L. M. A1 - Frenzel, Florian A1 - Grauel, Bettina A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Hirsch, T. ED - Resch-Genger, Ute ED - Hirsch, Thomas T1 - Yb,Nd,Er-doped upconversion nanoparticles: 980 nm versus 808 nm excitation N2 - Yb,Nd,Er-doped upconversion nanoparticles (UCNPs) have attracted considerable interest as luminescent reporters for bioimaging, sensing, energy conversion/shaping, and anticounterfeiting due to their capability to convert multiple near-infrared (NIR) photons into shorter wavelength ultraviolet, visible or NIR luminescence by successive absorption of two or more NIR photons. This enables optical measurements in complex media with very little background and high penetration depths for bioimaging. The use of Nd3+ as substitute for the commonly employed sensitizer Yb3+ or in combination with Yb3+ shifts the excitation wavelength from about 980 nm, where the absorption of water can weaken upconversion luminescence, to about 800 nm, and laser-induced local overheating effects in cells, tissue, and live animal studies can be minimized. To systematically investigate the potential of Nd3+ doping, we assessed the performance of a set of similarly sized Yb3+,Nd3+,Er3+-doped core- and core–shell UCNPs of different particle architecture in water at broadly varied excitation power densities (P) with steady state and time-resolved fluorometry for excitation at 980 nm and 808 nm. As a measure for UCNPs performance, the P-dependent upconversion quantum yield (Φ) and its saturation behavior were used as well as particle brightness (B). Based upon spectroscopic measurements at both excitation wavelengths in water and in a lipid phantom and B-based calculations of signal size at different penetration depths, conditions under which excitation at 808 nm is advantageous are derived and parameters for the further optimization of triple-doped UCNPs are given. KW - Lanthanide KW - Upconversion KW - Nanoparticle KW - Photoluminescence KW - Quantum yield KW - Lifetime KW - Brightness KW - Nd excitation KW - Excitation power density KW - Modelling KW - NIR PY - 2019 DO - https://doi.org/10.1039/C9NR03127H SN - 2040-3372 SN - 2040-3364 VL - 11 IS - 28 SP - 13440 EP - 13449 PB - Royal Society of Chemistry CY - London AN - OPUS4-48608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meierhofer, F. A1 - Dissinger, F. A1 - Weigert, Florian A1 - Resch-Genger, Ute A1 - Waldvogel, S. R. A1 - Voss, T. T1 - Citric-Acid-Based Carbon Dots with Luminescence Quantum Yields > 50%: spectral tuning of the luminescence by ligand exchange and pH adjustment N2 - We report the synthesis and characterization of carbon nanodots (CDs) with high quantum yield (>50%) and tailored optical absorption as well as emission properties. A well-described protocol with polyethyleneimine (PEI) as amine precursor is used as a reference to a new CD system which is stabilized by aromatic 2,3-diaminopyridine (DAP) molecules instead. The DAP stabilizer is installed in order to red-shift the absorption peak of the n-π* electron transition allowing efficient radiative recombination and light emission. Size, shape, and chemical composition of the samples are determined by (HR)TEM, EDX and FTIR-spectroscopy. Optical parameters are investigated using UV-VIS, PL and QY measurements. Several parameters such as concentration, excitation wavelength and pH are studied. Zeta-potential analysis indicate that pH-induced (de-)protonation processes of functional moieties directly affect the n-π* energy bands. This results in unique pH-dependent absorption and emission characteristics which are discussed on the specific chemical composition of each CD system. T2 - MRS 2019 CY - Boston, MA, USA DA - 03.12.2019 KW - Nanoparticle KW - Carbon dot KW - Surface chemistry KW - Fluorescence KW - PH KW - Ligand KW - FTIR KW - Synthesis KW - Characterization PY - 2019 AN - OPUS4-49968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Würth, Christian A1 - Radunz, Sebastian A1 - Frenzel, Florian A1 - Resch-Genger, Ute T1 - Understanding Nucleation and Optical Properties of Upconverting Nanoparticles N2 - Non-linear optical emitters are promising materials for energy applications and biotechnologies. Solid-state multi-band emitters like lanthanide doped up-conversion nanoparticles (UCNPs) show excellent photostability, are excitable in the near infrared (NIR), and show emission bands from the UV to SWIR spectral regions. The optical properties of these materials strongly depend on the excitation power density, i.e., the number of photons absorbed per time interval. The upconversion (ΦUC) and downshifting quantum efficiencies (ΦDS) of these materials, the excitation power dependent population, and the deactivation dynamics are influenced by nanoparticle architecture, doping concentration, and the microenvironment. We studied the fundamental changes of the luminescence properties of ß-NaYF4 UCNPs doped with Yb3+ and Er3+ depending on size, different surroundings such as aqueous and organic media, and different surface chemistries. We obtained further insights into shelling procedures, FRET optimization, influence of doping concentration, and advantages of different sensitizer ions. T2 - NaNaX CY - Hamburg, Germany DA - 16.09.2019 KW - UpConversion KW - Optical properties KW - Nanoparticle KW - Nanomaterial PY - 2019 AN - OPUS4-49700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Research and development in material and life sciences and quality assurance at BAM N2 - Research and development activities at BAM are presented with Special Focus on bioanalysis and biophotonics. This includes Topics from the Focus Areas Material, Environment, and Analytical Sciences. Also, Job opportunities at BAM are emphasized. T2 - MPI CY - Göttingen, Germany DA - 26.10.2017 KW - Analytics KW - Materials KW - Fluorometry KW - Sensors KW - Biophotonics KW - Microbiology KW - Reference material KW - Standard KW - Calibration KW - Nanoparticle PY - 2017 AN - OPUS4-43132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Geissler, D. A1 - Wegmann, M. A1 - Gaponik, N. A1 - Eychmüller, A. T1 - Semiconductor nanocrystals with VIS and NIR/IR emission - spectroscopy properties and surface chemistry N2 - Semiconductor nanocrystals with a spherical (QDs) core and a spherical or a rod-shaped Shell, u.a., so-called Quantum dot-Quantum rods (QDQRs) are increasingly used as fluorescent Reporters or optically active components in the life and material science, e.g., in solid state lightening including Plasma Displays. (1,2) Morever, there is an increasing interest in materials with emission >800 nm for bioanalysis, medical diagnostics, and safety barcodes. Prerequisites for the mechanistic understanding of nonradiativ decay channels needed for the rational design of improved nanomaterials and the comparison of material Performance are reliable fluorescence measurements and validated methods for the assessment of their surface chemistry. (3,4) The latter is of particular importance for nanocrystalline Emitters, where surface states and the accessibility of emissive states by quenchers largely control photoluminescence properties. (5) Here, we present results from systematic spectroscopic studies including absolutely measured photolumunescence Quantum yields of different vissible and NIR emisisve QD and QDQRs Systems of varying particle architecture size and surface chemistries in Dispersion and embedded in salt crystals. (6,7) T2 - MCare 2017 CY - Jeju, South Korea DA - 20.02.2017 KW - Semiconductor quantum dot KW - Nanoparticle KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Fluorescence KW - Surface chemistry KW - Photophysics KW - Quantum yield KW - Single particle PY - 2017 AN - OPUS4-43133 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Pilch, A. A1 - Würth, Christian A1 - Kaiser, Martin A1 - Wawrzynczyk, D. A1 - Kurnatowska, M. A1 - Arabasz, S. A1 - Prorok, K. A1 - Samoc, M. A1 - Strek, W. A1 - Bednarkiewicz, A. T1 - Shaping luminescent properties of Yb3+ and Ho3+ co-doped upconverting core-shell ß-NaYF4 nanoparticles by dopant distribution and spacing N2 - At the core of luminescence color and lifetime Tuning of rare earth doped upconverting nanoparticles (UCNPs), is the understanding of the Impact of the particle architecture for commonly used sensitizer (S) and activator (A) Ions. In this respect, a series of core@Shell NaYF4 UCNPs doped with Yb3+ and Ho3+ ions are presented here, where the same dopant concentrations are distributed in different particle architectures following the scheme: YbHo core and YbHo@..., ...@YbHo, Yb@Ho, Ho@Yb, YbHo@Yb, and Yb@YbHo core-Shell NPs. As refealed by quantitative steady-state and time-resolved luminescence studies, the relative spatial Distribution of the A and S ions in the UCNPs and their protection from surface quenching has a critical Impact on ther luminescence characteristics. Although the increased amount of Yb3+ Ions boosts UCNP Performance by amplifying the Absorption, the Yb3+ ions can also efficiently dissipate the energy stored in the material through energy Migration to the surface, thereby reducing the Overall energy Transfer Efficiency to the activator ions. The results provide yet another proof that UC Phosphor chemistry combined with materials Engineering through intentional core@shell structures may help to fine-tune the luminescence Features of UCNPs for their specific future applications in biosensing, bioimaging, photovoltaics, and Display technologies. KW - Fluorescence KW - Upconversion KW - NIR KW - Nonlinear KW - Nanoparticle KW - Surface chemistry KW - Quantum yield KW - Liftetime KW - Nanocrystal KW - Lanthanide KW - Ho(III) KW - Yb(III) KW - Mechanism KW - Absolute flourescence KW - Excitation power density dependence PY - 2017 DO - https://doi.org/10.1002/smll.201701635 SN - 1613-6810 VL - 13 IS - 47 SP - 1701635, 1 EP - 13 PB - WILEY-VCH Verlag GmbH & co. KGaA CY - Weinheim AN - OPUS4-43629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Ren, J. A1 - Weber, F. A1 - Choudhury, S. A1 - Weigert, Florian A1 - Ritter, E. A1 - Cao, D. A1 - Bande, A. A1 - Puskar, L. A1 - Schade, U. A1 - Aziz, E. F. A1 - Petit, T. T1 - Effect of surface chemistry on optical, chemical and electronic properties of blue luminescent graphene quantum dots N2 - Due to their unique physical properties, particularly their electronic and luminescent properties, graphene quantum dots (GQDs) are expected to be suitable for a wide range of applications in bioimaging, electro-optical and photonic materials or energy harvesting among others.1 Tuning the surface chemistry provides an efficient approach to modulate the fluorescence and distinct electronic properties of GQDs.2 Nevertheless, the role of surface chemistry on the electronic structure of GQDs remains poorly understood. In this presentation, we will compare systematically the electronic and chemical structures of GQDs functionalized with carboxylic and aminated groups to those of non-functionalized GQDs, combining theoretical and experimental approaches, here various photon-based spectroscopies. First, the electronic structure of GQDs was characterized by soft X-ray absorption (XA) and X-ray emission (XE) spectroscopies, probing unoccupied and occupied electronic states, respectively, at the carbon K edge for the first time. The interpretation of the XA/XE spectra was done based on theoretical calculations. Then, the chemical structure of the GQDs was characterized in situ by ATR-FTIR in water, thereby accounting for the importance of the interface between GQDs and water believed to play a central role in the chemical reactivity and the optical properties. We previously demonstrated that monitoring the OH vibrations of water molecules during exposure to humid air was a powerful method to probe H-bonding environment around carbon nanomaterials.3 For GQDs, clear surface-dependent water adsorption profiles are observed and discussed. Finally, UV/Vis absorption and photoluminescence measurements were done to characterize the optical properties of these GQDs. Our results suggest that the surface chemistry of the GQDs affects significantly their electronic structure and optical properties. These findings will contribute to an improved understanding of the structure–activity relationship of GQDs and other carbon nanomaterials with surface modifications. T2 - MRS Fall Meeting 2017 CY - Boston, USA DA - 26.11.2017 KW - Carbon KW - Nanoparticle KW - Fluorescence KW - NIR KW - IR KW - Surface chemistry KW - Deactivation pathways KW - Lifetime KW - Size KW - Giant carbon dot KW - Quantum yield PY - 2017 AN - OPUS4-43494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martynenko, Irina A1 - Litvin, A.P. A1 - Purcell-Milton, F. A1 - Baranov, A. V. A1 - Fedorov, A.V. A1 - Gun´ko, Y.K. T1 - Application of semiconductor quantum dots in bioimaging and biosensing N2 - In this review we present new concepts and recent progress in the application of semiconductur quantum dots (QD) as labels in two important areas of biology, bioimaging and biosensing. We analyze the biologically relevant properties of QDs focusing on the following topics: QD surface treatment and stability labeling of cellular structures and receptors with QDs, incorporation of QDs in living cells, cytotoxicity of QDs and influence of the biolocical environment on the biological and optical properties of QDs. Initially, we consider utilization of QDs as agants in high-resolution bioimaging techniques that can provide information at the molecular levels. The deverse range of modern live-cell QD-based imaging techniques with resolution far beyond the diffraction limit of light is examined. In each technique, we discuss the pros and cons of QD use and deliberate how QDs can be further engineered to facilitate their application in the respective imaging techniques and to produce significant improvements in resolution. Then we review QD-based point-of-care bioassays, bioprobes, and biosensors designed in different formats ranging from analytic biochemistry assays and ELISA, to novel point-of-care smartphone integrated QD-based biotests. Here, a wide range of QD-based fluorescence bioassays with optical transduction, electrochemiluminescence and photoelectrochemical assays are discussedc. Finally, this review provides an analysis of the prospects of application of QDs in selected important Areas of biology. KW - Fluorescence KW - Semiconductor quantum dot KW - Imaging KW - Quantification KW - Nanoparticle KW - NIR KW - IR KW - Quantum yield KW - Method KW - Microscopy KW - Assay KW - Bioconjugate PY - 2017 DO - https://doi.org/10.1039/c7tb01425b VL - 5 IS - 33 SP - 6701 EP - 6727 PB - Royal Society of Chemistry AN - OPUS4-43027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Kraft, Marco A1 - Kaiser, Martin T1 - Absolute Fluorescence Measurements > 800 nm - Setup Design, Challenges, and Characterization of Semiconductor and Lanthanide-based Nanocrystals N2 - There is an increasing interest in optical reporters like semiconductor and lanthanide-based nanocrystals with emission > 800 nm and recently also > 1000 nm for bioanalysis, medical diagnostics, and safety barcodes. Mandatory for the comparison of different emitter classes and the rational design of the next generation of reporters for the short wavelength infrared (SWIR) region are reliable and quantitative photoluminescence measurements in this challenging wavelength region. This is of special relevance for nanocrystalline emitters like semiconductor quantum dots and rods as well as for upconversion and downconversion nanocrystals, where surface states and the accessibility of emissive states by quenchers largely control accomplishable quantum yields and hence, signal sizes and detection sensitivities from the reporter side. Such measurements are currently hampered by the lack of suitable methods and standards for instrument calibration and validation as well as by the lack of quantum yield standards with emission > 800 nm and especially > 1000 nm. In this respect, we present the design of integrating sphere setups for absolute and excitation power densitydependent measurements of emission spectra and quantum yields in the wavelength region of 650 to 1650 nm including calibration strategies and first candidates for potential fluorescence standards. Subsequently, the photoluminescence properties of different types of nanocrystals are presented and discussed including absolute photoluminescence measurements of upconversion and down conversion emission in different solvents. T2 - MRS 2017 CY - Boston, MA, USA DA - 26.11.2017 KW - Upconversion KW - Nanoparticle KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Fluorescence KW - Surface chemistry KW - Deactivation pathways KW - Semiconductor quantum dot KW - SWIR KW - Quantum yield KW - Energy transfer KW - Size PY - 2017 AN - OPUS4-43202 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Kaiser, Martin A1 - Kraft, Marco A1 - Pauli, Jutta A1 - Muhr, V. A1 - Hirsch, T. T1 - Challenges and examples for quantitative fluorescence measurements > 800 nm with semiconductor and lanthanide-doped nanocrystals N2 - There is an increasing interest in molecular and nanoscale with emission > 800 nm and recently also > 1000 nm for bioanalysis, medical diagnostics, bioimaging, and safety barcodes. Mandatory for the comparison of different emitter classes and the rational design of the next generation of reporters for the short wavelength infrared (SWIR) Region are reliable and quantitative photoluminescence measurements in this challenging wavelength region. This is of special relevance for nanocrystalline emitters like semiconductor quantum dots and rods as well as lanthanide-based upconversion and downconversion nanocrystals, where surface states and the accessibility of emissive states by quenchers largely control accomplishable photoluminescence quantum yields and hence, signal sizes and detection sensitivities from the reporter side. Such measurements are currently hampered by the lack of suitable methods and standards for instrument calibration and validation and quantum yield standards with emission > 800 nm and especially > 1000 nm. In this respect, we present the design of integrating sphere setups for absolute and excitation power density-dependent measurements of emission spectra and photoluminescence quantum yields in the wavelength Region of 650 to 1650 nm including calibration strategies and first candidates for potential fluorescence standards. Subsequently, the photoluminescence properties of different types of nanocrystals are presented including the upconversion and downconversion emission of differently sized and surface functionalized lanthanide-doped nanoparticles and photoluminescence quenching effects are quantified. T2 - SHIFT 2017 CY - Teneriffa, Spain DA - 13.11.2017 KW - Upconversion KW - Nanoparticle KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Fluorescence KW - Surface chemistry KW - Deactivation pathways KW - Semiconductor quantum dot KW - SWIR KW - Quantum yield PY - 2017 AN - OPUS4-43203 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Kraft, Marco A1 - Würth, Christian A1 - Kaiser, Martin A1 - Muhr, V. A1 - Hirsch, T. T1 - Effect of Particle Size and Excitation Power Density on the Luminescence Efficiency of Upconversion Nanocrystals in Different Dispersion Media N2 - Upconversion nanoparticles (UCNPs) offer new strategies for luminescence-based sensing and imaging. One of the best studied materials are ..-NaYF4 UCNPs doped with 20 % Yb3+ and 2 % Er3+, which efficiently convert 976 nm light to photons emitted at 540 nm, 655 nm, and 845 nm, respectively, reveal long luminescence lifetimes (> 100 µs), are photostable and chemically inert. Their upconversion (UC) luminescence (UCL) properties are, however, strongly influenced by particle size, surface chemistry, and microenvironment. In addition, the multiphotonic absorption processes responsible for UCL render UCL excitation power density (..) dependent. This makes quantitative UCL measurements as well as the determination of UC quantum yields (.UC) very challenging. The rational design of brighter UCNPs particle architectures and the interest in identifying optimum particle architectures for FRET-based sensing and imaging schemes, which often rely on core-only UCNPs to minimize donor-acceptor distances, encouraged us to assess the influence of particle size and P on UCL. Here, we present the photophysical properties of a series of hexagonal NaYF4 UCNPs with sizes from 10 to 43 nm with different surface ligands dispersed in organic solvents and water studied by steady state and time-resolved fluorometry as well as quantitatively by integrating sphere spectrometry with P varied over about three orders of magnitude. Our results underline the need for really quantitative luminescence studies for mechanistic insights and the potential of high P to compensate for UCL quenching due to high energy phonons and surface effects. T2 - 15th Conference on Methods and Applications in Fluorescence CY - Bruges, Belgium DA - 10.09.2017 KW - Upconversion KW - Nanoparticle KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Fluorescence KW - Surface chemistry KW - Deactivation pathways KW - Photophysics KW - Quantum yield PY - 2017 AN - OPUS4-43181 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ho, Y.T. A1 - Adriani, G A1 - Beyer, Sebastian A1 - Nhan, P.-T. A1 - Kamm, R. D. A1 - Kah, J.C.Y. T1 - A facile method to probe the vascular permeability of nanoparticles in nanomedicine applications N2 - The effectiveness of nanoparticles (NP) in nanomedicine depends on their ability to extravasate from vasculature towards the target tissue. This is determined by their permeability across the endothelial barrier. Unfortunately, a quantitative study of the diffusion permeability coefficients (Pd) of NPs is difficult with in vivo models. Here, we utilize a relevant model of vascular-tissue interface with tunable endothelial permeability in vitro based on microfluidics. Human umbilical vein endothelial cells (HUVECs) grown in microfluidic devices were treated with Angiopoietin 1 and cyclic adenosine monophosphate (cAMP) to vary the Pd of the HUVECs monolayer towards fluorescent polystyrene NPs (pNPs) of different sizes, which was determined from image analysis of their fluorescence intensity when diffusing across the monolayer. Using 70 kDa dextran as a probe, untreated HUVECs yielded a Pd that approximated tumor vasculature while HUVECs treated with 25 μg/mL cAMP had Pd that approximated healthy vasculature in vivo. As the size of pNPs increased, its Pd decreased in tumor vasculature, but remained largely unchanged in healthy vasculature, demonstrating a trend similar to tumor selectivity for smaller NPs. This microfluidic model of vascular-tissue interface can be used in any laboratory to perform quantitative assessment of the tumor selectivity of nanomedicine-based systems. KW - Nanoparticle PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-397053 DO - https://doi.org/10.1038/s41598-017-00750-3 SN - 2045-2322 VL - 7 IS - 1 SP - Article 707, 1 EP - 13 PB - Macmillan AN - OPUS4-39705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Weigert, Florian A1 - Frenzel, Florian A1 - Würth, Christian A1 - Hoffmann, Katrin A1 - Martynenko, Irena A1 - Dhamo, Lorena T1 - Photoluminescence Properties of Different Types of Nanocrystals at the Ensemble and Single Emitter Level N2 - Correlating the photoluminescence (PL) properties of nanomaterials like semiconductor nanocrystals (QDs) and upconversion nanocrystals (UCNPs) assessed in ensemble studies and at the single particle level is increasingly relevant for applications of these nanomaterials in the life sciences like bioimaging studies or their use as reporters in microfluidic assays. Here we present a comparison of the spectroscopic properties of ensembles and single emitters for QDs like II/VI QDs and cadmium-free AIS/ZnS QDs as well as different UCNPs. The overall goal of this study was to derive particle architectures well suited for spectroscopic and microscopic applications. T2 - BIOSSPIE CY - San Francisco, CA, USA DA - 02.02.2019 KW - Quantum yield KW - Nanomaterial KW - Photoluminescence KW - Absolute fluorometry KW - Integrating sphere spectroscopy, KW - NIR KW - IR KW - Fluorescence KW - Nanoparticle KW - Semiconductor KW - Quantum dot KW - Single particle spectroscopy KW - Surface chemistry PY - 2019 AN - OPUS4-47358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Kaiser, Martin A1 - Pauli, Jutta A1 - Hoffmann, Katrin T1 - Relative and Absolute Methods for Measuring Photoluminescence Quantum Yields of UV/vis/NIR Emitters N2 - One of the key spectroscopic performance parameters of molecular and particulate emitters is the photoluminescence quantum yield (PL QY) that provides a direct measure for the number of emitted per absorbed photons. This triggered the interest in methods suitable for measuring this property for emitters in various environments in the UV/vis/NIR and above 1000 nm as well as on the ensemble and single emitter level. Moreover, for nonlinear emitters like lanthanide-based upconversion nanocrystals methods including instrumentation for power density-dependent PL QY studies are required. An overview of the research activities in Division Biophotonics of BAM is given and suitable relative and absolute methods for the deter-mination of PL QY of organic dyes and different types of application-relevant nanomaterials in dispersion and in the solid state are presen-ted. This covers also the design and calibration of integrating sphere setups, achievable uncertainties, and candidates for PL QY reference materials. T2 - OSRAM Veranstaltung CY - Regensburg, Germany DA - 09.01.2019 KW - Quantum yield KW - Calibration KW - Reference material KW - Uncertainty KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Fluorescence KW - Nanoparticle KW - Dye PY - 2019 AN - OPUS4-47263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kraft, Marco A1 - Würth, Christian A1 - Muhr, Verena A1 - Hirsch, Thomas A1 - Resch-Genger, Ute T1 - Particle-size-dependent upconversion luminescence of NaYF4: Yb, Er nanoparticles in organic solvents and water at different excitation power densities N2 - A systematic study of the luminescence properties of monodisperse β-NaYF4: 20% Yb3+, 2% Er3+ upconversion nanoparticles (UCNPs) with sizes ranging from 12–43 nm is presented utilizing steady-state and time-resolved fluorometry. Special emphasis was dedicated to the absolute quantification of size- and environment-induced quenching of upconversion luminescence (UCL) by highenergy O–H and C–H vibrations from solvent and ligand molecules at different excitation power densities (P). In this context, the still-debated Population pathways of the 4F9/2 energy level of Er3+ were examined. Our results Highlight the potential of particle size and P value for color tuning based on the pronounced near-infrared emission of 12 nm UCNPs, which outweighs the red Er3+ emission under “strongly quenched” conditions and accounts for over 50% of total UCL in water. Because current rate equation models do not include such emissions, the suitability of these models for accurately simulating all (de)population pathways of small UCNPs must be critically assessed. Furthermore, we postulate population pathways for the 4F9/2 energy level of Er3+, which correlate with the size-, environment-, and P-dependent quenching states of the higher Er3+ energy levels. KW - Quantum Yield KW - Nanoparticle KW - Quenching KW - Upconversion PY - 2018 DO - https://doi.org/10.1007/s12274-018-2159-9 VL - 11 IS - 12 SP - 6360 EP - 6374 PB - Tsinghua Univ. Press CY - Beijing AN - OPUS4-47172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute ED - Mousavi, M. ED - Thomasson, B. ED - Li, M. ED - Kraft, Marco ED - Würth, Christian ED - Andersson-Engels, S. T1 - Beam-profile-compensated quantum yield measurements of upconverting nanoparticles N2 - The quantum yield is a critically important parameter in the development of lanthanide-based upconverting nanoparticles (UCNPs) for use as novel contrast agents in biological imaging and optical reporters in assays. The present work focuses on the influence of the beam Profile in measuring the quantum yield (f) of nonscattering dispersions of nonlinear upconverting probes, by establishing a relation between f and excitation light power density from a rate equation analysis. A resulting 60% correction in the measured f due to the beam profile utilized for excitation underlines the significance of the beam profile in such measurements, and its impact when comparing results from different Setups and groups across the world. KW - Fluorescence KW - Lanthanide KW - Upconversion KW - Brithtness KW - Quantification KW - Nanoparticle KW - Absolute fluoreometry KW - NIR KW - IR KW - Quantum yield KW - Integrating sphere spectroscopy KW - Method PY - 2017 DO - https://doi.org/10.1039/c7cp03785f SN - 1463-9076 SN - 1463-9084 VL - 19 IS - 33 SP - 22016 EP - 22022 PB - Royal Society of Chemistry AN - OPUS4-42583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, Jutta A1 - Hoffmann, Katrin A1 - Würth, Christian A1 - Behnke, Thomas A1 - Resch-Genger, Ute T1 - Standardization of fluorescence measurements in the UV/vis/NIR/IR N2 - Photoluminescence techniques are amongst the most widely used Tools in the life sciences, with new and exciting applications in medical diagnostics and molecular Imaging continuously emerging. Advantages include their comparative ease of use, unique sensitivity, non-invasive character, and potential for Multiplexing, remote sensing, and miniaturization. General drawbacks are, however, signals, that contain unwanted wavelength- and polarization contributions from Instrument-dependent effects, which are also time-dependent due to aging of Instrument-components, and difficulties to measure absolute flourescence entensities. Moreover, scattering Systems require Special measurement geometries and the interest in new optical Reporters with Emission > 1000 nm strategies for reliable measurements in the second diagnostic for the comparison of material Performance and the rational designg of new flourophores with improved properties. Here, we present strategies to versatile method-adaptable liquid and solid flourescence Standards for different flourescence paramters including traceable Instrument calibration procedures and the design of integrating spere setups for the absolute measurements of emission spectra and Quantum yields in the wavelength Region of 350 to 1600 nm. Examples are multi-Emitter glasses, spectral flourescence Standards, and quantum yield Standards for the UV/vis/NIR. T2 - Conference on Molecular-Guided Surgery - Molecules, Devices, and Applications III CY - San Francisco, CA, USA DA - 28.01.2017 KW - Fluorescence KW - Reference material KW - Standard KW - Calibration KW - Nanoparticle KW - Absolute flourometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Quantum yield standard KW - Emission standards PY - 2017 SN - 978-1-5106-0539-8 DO - https://doi.org/10.1117/12.2255728 SN - 0277-786X VL - 10049 SP - 1 PB - Proceedings of SPIE AN - OPUS4-41783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Kaiser, Michael A1 - Moser, Marko A1 - Nirmalananthan-Budau, Nithiya A1 - Behnke, Thomas A1 - Pauli, Jutta A1 - Weigert, Florian T1 - Quantitative Characterization of Functional Nanomaterials with vis/NIR Emission N2 - The rational design of functional nanomaterials for optical applications in the material and life sciences requires optical-spectroscopic methods for the quantitative characterization of their signal-relevant optical properties. Additionally, methods for the simple and quantitative analysis of the surface chemistry are desired as the chemical nature and number of the surface groups and ligands can affect the optical features and controls the interaction of these nanomaterials with their environment. Here, we present quantitative photoluminescenvce studies of different types of vis/NIR-emissive nanomaterials like semiconductor quantum dots and upconversion nanocrystals will be presented and their relevance for the mechanistic understanding of nonradiative decay channels and the rational design of new nanomaterials will be underpinned. In this respect, also validation concepts for such measurements and absolute fluorometry will be introduced. In addition, the potential of optical spectroscopy for surface group and ligand analysis surface chemistry will be demonstrated exemplarily for semiconductor quantum dots T2 - AK Prof. Voss CY - Uni Brunswick, Germany DA - 03.08.2017 KW - Semiconductor KW - Upconversion KW - Nanoparticle KW - Fluorescence KW - Surface group analysis KW - NIR KW - Absolute fluoreometry KW - Integrating sphare spectroscopy KW - Optical probe KW - Assay KW - Thiol ligand PY - 2017 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. AN - OPUS4-41366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - The European Upconversion Network: From the Design of Photon-upconverting Nanomaterials to (Biomedical) Applications (CM1403) WG1 Materials Research & Photophysical Characterization N2 - Lanthanide-doped photon-upconversion nanoparticles (UCNPs) have been in the focus of many research activities in the material and life sciences over the last 15 years because of their potential to convert light between different spectral regions and their unique photophysical properties. In order to fully exploit the application potential of these fascinating nanomaterials, a number of challenges has to be overcome such as the low brightness particularly of small UCNPs and the reliable quantification of the excitation power density (P)-dependent upconversion luminescence (UCL). Here, the need and requirements on the characterization of the optical properties of UCNPs are discussed with special focus on the reliabiliy and comparability of relative and quantitative luminescence measurements and prerequisites for their standardization. T2 - COST Treffen CY - Aveiro, Portugal DA - 26.06.2017 KW - Upconversion KW - Nanoparticle KW - Fluorescence KW - NIR KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - Reference maerial KW - Standardization KW - Quantum yield PY - 2017 AN - OPUS4-41367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Kaiser, Michael A1 - Kraft, Marco A1 - Moser, Marko A1 - Nirmalananthan-Budau, Nithiya A1 - Behnke, Thomas A1 - Pauli, Jutta T1 - Functional Nanomaterials with VIS/NIR Emission-Spectroscopic Properties And Surface Group Analysis N2 - Optical-spectroscopic methods for the quantitative characterization of the optical properties of different types of vis/NIR-emissive nanomaterials like semiconductor quantum dots and upconversion nanocrystals will be presented and their relevance for the mechanistic understanding of nonradiative decay channels and the rational design of new nanomaterials will be underpinned. In this respect, also validation concepts for such measurements and absolute fluorometry will be introduced. In addition, the potential of optical spectroscopy for surface group and ligand analysis surface chemistry will be demonstrated exemplarily for semiconductor quantum dots. T2 - Universität Mainz, AK Professor K. Heinze CY - Mainz, Germany DA - 24.07.2017 KW - Upconversion KW - Nanoparticle KW - Flourescence KW - Surface group analysis KW - NIR KW - Absolute flourometry KW - Integrating sphere spectroscopy KW - Optical probe KW - Assay KW - Thiol ligand PY - 2017 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. AN - OPUS4-41115 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Frenzel, Florian A1 - Würth, Christian A1 - Muhr, V. A1 - Hirsch, T. A1 - Resch-Genger, Ute T1 - Power dependent optical properties of hexagonal β-NaYF4: x % Er3+, 20 % Yb3+ core/ core-shell upconversion nanoparticles in cyclohexane and water N2 - Lanthanide doped photon upconverting nanophosphors (UCNPs) have the unique capability to produce narrow band, multi-color emission in the UV/vis/NIR upon multiphotonic absorption of infrared light, which makes them promising reporters for diagnostic, bioanalytical, and biological applications. This minimizes background signals, which normally occur due to autofluorescence from auxochromes, in biological matrices and enables deep penetration depths in biological applications. Moreover, UCNPs show long luminescence lifetimes in the μs range favorable for time gated emission in conjunction with a high photostability and chemical inertness and they do not blink. One of the most efficient upconversion (UC) phosphors for conversion of 976 nm to 655 nm and 545 nm light presents the hexagonal NaYF4-host crystal doped with 20 % Yb3+ used as sensitizer to absorb infrared light and 2 % Er3+ acting as activator mainly responsible for light emission. The high transparency in the relevant spectral windows of this host together with its low phonon frequencies ensure relatively high luminescence efficiencies. Although UCNPs are ideal candidates for many chemical and biological sensing and imaging applications, compared to other well-known chromophores like organic dyes or QDs, they suffer from a comparatively low brightness due to the low absorption cross sections of the parity forbidden f-f-transitions and low photoluminescence quantum yields (QYUC) particularly in the case of small nanoparticles with sizes of < 50 nm. The rational design of more efficient UCNPs requires an improved understanding of the nonradiative decay pathways in these materials that are influenced by particle architecture including dopant ion concentration and homogeneity of dopant distribution within UCNPs, size/surface-to-volume ratio, surface chemistry, and microenvironment. A promising approach to overcome the low efficiency of UCNPs is to use plasmonic interactions between a noble metal (Ag or Au) structure in the proximity of UCNPs and the incident light. This interaction leads to a modification of the spectroscopic properties due to local field enhancements and can involve an increase of the photoluminescence. In this respect, we study the interactions of UCNPs with metal structures (clusters and shells) by varying shape and size. Here, first results derived from integrating sphere spectroscopy and time-resolved fluorescence measurements are presented. T2 - Summer School "EXCITING NANOSTRUCTURES" CY - Bad Honnef, Germany DA - 17.07.2017 KW - Upconversion KW - Nanoparticle KW - Flourescence KW - Core-shell architecture KW - NIR KW - Absolute flourometry KW - Integrating sphere spectroscopy KW - Er(III) KW - Yb(III) KW - Single particle spectroscopy PY - 2017 AN - OPUS4-41172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dhamo, Lorena A1 - Würth, Christian A1 - Raevskaya, A. E. A1 - Stroyuk, O. L. A1 - Gaponik, N. A1 - Eychmüller, A. A1 - Resch-Genger, Ute T1 - Syntheses and characterization of 2-4nm AgInS2/ZnS quantum dots N2 - Ternary semiconductors Quantum Dots (t-QDs) like AgInS (AIS) QDs are interesting alternatives to Cd-based QDs for applications as optical active materials in light-emitting diodes (LEDs), solar concentrators and solar cells as well as as biodiagnostic tools, respectively. AIS QDs exhibit broad photoluminescence (PL) spectra in the visible and near infrared, which are tunable by size and chemical composition (ratio of components or doping). In order to enhance the PL quantum yield (PL QY or Fpl) and prevent material deterioration and oxidation, these QDs are covered by ZnS shell. Here we show a spectroscopic study of differently colored AIS QDs synthesized in water, evaluating their PL properties, their PL QY and their PL decay. The simple aqueous synthesis that avoids further ligand exchange steps for bioanalytical applications, the tunable emission color, the high PL QY, the high absorption coefficients and the long lifetime make these t-QDs promising Cd-free materials as biodiagnostic tools or optical active materials. T2 - Summer School "EXCITING NANOSTRUCTURES" CY - Bad Honnef, Germany DA - 17.07.2017 KW - Semiconductor KW - Nanoparticle KW - Quantum dot KW - Flourescence KW - Synthesis KW - Spectral multiplexing KW - Ternary quantum dot PY - 2017 AN - OPUS4-41173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Wawrzynczyk, D. A1 - Kurnatowska, M. A1 - Arabasz, S. A1 - Prorok, K. A1 - Samoc, M. A1 - Strek, W. A1 - Bednarkiewicz, A. A1 - Pilch, A. A1 - Würth, Christian A1 - Kaiser, Martin T1 - Quantitation of luminescent properties of Yb and Ho co-doped NaYF4 colloidal nanoparticles - novel active-core-active-shell materials and novel characterization methods N2 - At the core of luminescence color and lifetime tuning of rare earth doped upconverting nanoparticles (UCNPs) is the understanding of the impact of the particle architecture for commonly used sensitizer (S) and activator (A) ions. In this respect, we present here a series of core@shell NaYF4 UCNPs doped with Yb3+ and Ho3+ ions, where the same dopant concentrations were distributed in different particle architectures following the scheme: YbHo core and YbHo@..., …@YbHo, Yb@Ho, Ho@Yb, YbHo@Yb, and Yb@YbHo core-shell NPs. As revealed by quantitative steady state and time-resolved luminescence studies, the relative spatial distribution of the A and S ions in the UCNPs and their protection from surface quenching has critical impact on their luminescent characteristics. Interestingly, although the increased amount of Yb3+ ions boosts UCNP performance by increasing the absorption, the Yb3+ ions can also dissipate the energy stored in the material through energy migration to surface, thereby reducing the overall energy transfer efficiency to the activator ions. T2 - COST Workshop CY - Aveiro, Portugal DA - 30.06.2017 KW - Upconversion KW - Nanoparticle KW - Flourescence KW - Core-shell architecture KW - NIR KW - Absolute flourometry KW - Integrating sphere spectroscopy KW - Ho(III) KW - Yb(III) PY - 2017 AN - OPUS4-41161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weigert, Florian A1 - Guhrenz, C. A1 - Strelow, C. A1 - Gaponik, N. A1 - Eychmüller, A. A1 - Mews, A. A1 - Resch-Genger, Ute T1 - Probing the bright and dark fraction of core-shell CdSe nanocrystals with single particle spectroscopy N2 - "The optical properties of semiconductor nanocrystals (SCNC) are controlled by constituent material, particle size, and surface chemistry, specifically the number of dangling bonds favoring nonradiative deactivation. This can lead to a distribution of photoluminescence Quantum yields (PL QY) amongst the SCNC particles, i.e., mixtures of “bright” and “grey” or “dark” SCNCs. Particularly the number of absorbing, yet not emitting particles can have a significant effect on the PL quantum yield obtained in ensemble measurements, leading to ist underestimation. The “dark fraction” is not assessable in common ensemble measurements; it can be probed only on a single particle level using a confocal laser scanning microscope coupled with an AFM. Such a setup was used to study core‐shell CdSe SCNCs with different shells and surface chemistries. Special emphasis was dedicated to correlate brightness, blinking, dark fraction, and decay kinetics of the single SCNCs with the ensemble PL QY and the PL decay kinetics. The results of this study can help to identify new synthetic routes and surface modifications to colloidally and photochemically stable SCNCs with a PL QY of close to unity." T2 - Summer School "EXCITING NANOSTRUCTURES" CY - Bad Honnef, Germany DA - 17.07.2017 KW - Semiconductor KW - Nanoparticle KW - Quantum dot KW - Flourescence KW - CdSe KW - Shell KW - Surface chemistry KW - Single particle spectroscopy PY - 2017 AN - OPUS4-41192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Gorris, H.H. T1 - Perspectives and challenges of photon-upconversion nanoparticles - Part I: routes to brighter particles and quantitative spectroscopic studies N2 - Lanthanide-doped photon-upconversion nanoparticles (UCNPs) have been the Focus of many Research activities in materials and life sciences in the last 15 years because of their potential to convert light between different spectral regions and their unique photophysical properties. To fully exploit the application potential of These facinating nanomaterials, a number of challenges have to be overcome, such as the low brightness, particularly of small UCNPs, and the reliable quantification of the excitation-power-density-dependent upconversion luminescence. In this series of critical Reviews, recent developments in the design, Synthesis, optical-spectroscopic characterization, and application of UCNPs are presented with Special Focus on bioanalysis and the life sciences. Here we guide the reader from the Synthesis of UCNPs to different concepts to enhance their luminescence, including the required optical-spectroscopic assessment to quantify material Performance; surface modification strategies and bioanalytical applications as well as selected examples of the use of UCNPs as reporters in different Assay formats are addressed in part II. Future Trends and challenges in the field of upconversion are discussed with Special emphasis on UCNP Synthesis and material characterization, particularly quantitative luminescence studies. KW - Fluorescence KW - Lanthanide KW - Upconversion KW - Brightness KW - Quantification KW - Nanoparticle KW - Absolute fluorometry KW - NIR KW - IR KW - Quantum yield PY - 2017 DO - https://doi.org/10.1007/s00216-017-0499-z SN - 1618-2650 SN - 1618-2642 VL - 409 IS - 25 SP - 5855 EP - 5874 PB - Springer AN - OPUS4-41665 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Kaiser, Martin T1 - Spectroscopic characterization of semiconductor and lanthanide-based nanocrystals with vis and NIR emission N2 - The increasing interest in molecular and nanoscale emitters with photoluminescence > 800 nm and recently also > 1000 nm for bioanalysis, medical diagnostics, bioimaging, and safety Barcodes requires quantitative spectroscopic studies, which are, however still challenging in this long wavelength region. This is of special relevance for nanocrystalline emitters like semiconductor quantum dots and rods as well as lanthanide-based upconversion and downconversion nanocrystals, where surface states and the accessibility of emissive states by quenchers largely control accomplishable photoluminescence quantum yields and hence, signal sizes and detection sensitivities from the reporter side. Moreover, nonlinear emitters like lanthanide-based upconversion nanocrystals require also power density-dependent studies of their luminescence spectra, quantum yields, and decay kinetics. Here, we present suitable absolute methods and underline the impact of such measurements on a profound mechanistic understanding of the nonradiative deactivation pathways in semiconductor and upconversion nanocrystals of different chemical composition and particle architecture. T2 - PCNSPA 2018 - Photonic Colloidal Nanostructures: Synthesis, Properties, and Applications CY - St. Petersburg, Russia DA - 04.06.2018 KW - Semiconductor KW - Nanoparticle KW - Quantum dot KW - Absolute fluorometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Fluorescence KW - Surface chemistry KW - Deactivation pathways KW - Photophysics KW - Modeling PY - 2018 AN - OPUS4-45796 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Nirmalananthan-Budau, Nithiya A1 - Moser, Marko A1 - Roloff, Alexander A1 - Rühle, Bastian A1 - Borcherding, H. A1 - Thiele, T. A1 - Schedler, U. T1 - Cleavable probes and catch and release assays for surface group quantification on 2D- and 3D-supports N2 - Surface functionalization of 2D- and 3D-supports and nanomaterials are nowadays at the core of many applications of functional materials in the life and material sciences. Examples range from membranes and microarrays over bead-based assays, immunoseparation, and next generation sequencing to nanometer-sized optical reporters, nanosensors, and magnetic and optical contrast agents. Typically performed functionalization procedures include silanization and grafting reactions with reactive monomers to introduce functional groups like amino or carboxylic acid groups and the attachment of ligands like polyethylene glycol (PEG) molecules and biomolecules such as peptides, proteins, and DNA.[1-3] We present here a versatile concept to quantify the number of bioanalytically relevant functional groups like carboxyl, amino, and aldehyde moieties through the specific binding and subsequent release of small reporter molecules such as fluorescent dyes and non-fluorescent chromophores utilizing cleavable linkers or the formation of cleavable bonds as a reversible covalent labeling strategy. This is representatively demonstrated for different types of nano- and microparticles with different labeling densities of carboxyl, amino, and aldehyde groups. This strategy enables to separate the signal-generating molecule from the bead surface, thereby circumventing uncertainties associated with light scattering, binding-induced changes in reporter fluorescence, and fluorescence quenching dye-dye interactions on crowded material surfaces.[1-3] Moreover, the reporters are chosen to be detectable with different analytical methods as prerequisite for straightforward validation via method compari-sons and mass balances. Applications of these assays and multimodal cleavable probes range from a quantitative comparison of bead batches and process control to a qualitative prediction of the coupling efficiencies in bioconjugation reactions. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2019 KW - Nanoparticle KW - Surface group KW - Surface analysis KW - Cleavable probe KW - Optical assay KW - Quality assurance KW - Conductometry KW - Dye labeling KW - Methos comparision PY - 2019 AN - OPUS4-47628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Luminescence measurements, calibration strategies and photoluminescence quantum yields N2 - Different types of optical spectroscopies are introduced with special emphasis on method-inherent limitations and reliable instrument calibration and performance validation. In addition, procedures for the determination of spectroscopic key parameters like the photoluminescence quantum yield are presented including required instrument calibrations and material-specific effects related to certain emitters. T2 - Fakultät der University of Ottawa CY - Ottawa, Canada DA - 11.12.2018 KW - Quality assurcance KW - Optical spectroscopy KW - Method comparison KW - Photoluminescence KW - Calibration KW - Performance validation KW - Dye KW - Nanoparticle KW - Quantum dots KW - Quantum yields KW - Uncertainty KW - Method validation PY - 2019 AN - OPUS4-47630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Optical spectroscopy – Techniques, instrumentation, and typical molecular and nanoscale reporters N2 - Different types of optical spectroscopies are introduced with special emphasis on method-inherent limitations and reliable instrument calibration and performance validation. In addition, different classes of molecular and nanocrystalline emitters are presented and the underlying photophysical processes are briefly described. T2 - Fakultät der University of Ottawa CY - Ottawa, Canada DA - 11.12.2018 KW - quality assurcance KW - Optical spectroscopy KW - Method comparison KW - Photoluminescence KW - Calibration KW - Performance validation KW - Dye KW - Nanoparticle KW - Quantum dots KW - Quantum yields KW - Uncertainty KW - Method validation PY - 2018 AN - OPUS4-47631 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geissler, Daniel A1 - Wegmann, Marc A1 - Hoffmann, Katrin A1 - Hannemann, M. A1 - Somma, V. A1 - Jochum, T. A1 - Niehaus, J. A1 - Roggenbuck, D. A1 - Resch-Genger, Ute T1 - NanoGenotox - Automatable Determination of the Genotoxicity of Nanoparticles with DNA-based Optical Assays N2 - Nanomaterials are used in many different applications in the material and life sciences. Examples are optical reporters, barcodes, and nanosensors, magnetic and optical contrast agents, and catalysts. Due to their small size and large surface area, there are also concerns about their interaction with and uptake by biological systems. This has initiated an ever increasing number of cyctoxicity studies of nanomaterials of different chemical composition and surface chemistry, but until now, the toxicological results presented by different research groups often do not address or differ regarding a potential genotoxicity of these nanomaterials. This underlines the need for a standardized test procedure to detect genotoxicity.1,2 Aiming at the development of fast, easy to use, and automatable microscopic methods for the determination of the genotoxicity of different types of nanoparticles, we assess the potential of the fluorometric γH2AX assay for this purpose. This assay, which can be run on an automated microscopic detection system, relies on the determination of DNA double strand breaks as a sign for genotoxicity.3 Here, we present first results obtained with broadly used nanomaterials like CdSe/CdS and InP/ZnS quantum dots as well as iron oxide, gold, and polymer particles of different surface chemistry with previously tested colloidal stability. These studies will be also used to establish nanomaterials as positive and negative genotoxicity controls or standards for assay performance validation for users of this fluorometric genotoxicity assay. In the future, after proper validation, this microscopic platform technology will be expanded to other typical toxicity assays. References. (1) Landsiedel, R.; Kapp, M. D.; Schulz, M.; Wiench, K.; Oesch, F., Reviews in Mutation Research 2009, 681, 241-258. (2) Henriksen-Lacey, M.; Carregal-Romero, S.; Liz-Marzán, L. M., Bioconjugate Chem. 2016, 28, 212-221. (3) Willitzki, A.; Lorenz, S.; Hiemann, R.; Guttek, K.; Goihl, A.; Hartig, R.; Conrad, K.; Feist, E.; Sack, U.; Schierack, P., Cytometry Part A 2013, 83, 1017-1026. T2 - 9th International Conference on Nanotoxicology - New tools in risk assessment of nanomaterials CY - Dusseldorf/Neuss, Germany DA - 18.09.2018 KW - Nano KW - Nanotoxicity KW - Fluorescence KW - Quantum dot KW - Surface KW - Passivation shell KW - Automated assay KW - Nanoparticle PY - 2018 AN - OPUS4-47540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grauel, Bettina A1 - Würth, Christian A1 - Homann, C. A1 - Krukewitt, Lisa A1 - Andresen, Elina A1 - Roik, Janina A1 - Recknagel, Sebastian A1 - Haase, M. A1 - Resch-Genger, Ute T1 - Volume and surface effects on two-photonic and three-photonic processes in dry co-doped upconversion nanocrystals N2 - Despite considerable advances in synthesizing high-quality core/shell upconversion (UC) nanocrystals (NC; UCNC) and UCNC photophysics, the application of near-infrared (NIR)-excitable lanthanide-doped UCNC in the life and material sciences is still hampered by the relatively low upconversion luminescence (UCL) of UCNC of small size or thin protecting shell. To obtain deeper insights into energy transfer and surface quenching processes involving Yb3+ and Er3+ ions, we examined energy loss processes in differently sized solid core NaYF4 nanocrystals doped with either Yb3+ (YbNC; 20% Yb3+) or Er3+ (ErNC; 2% Er3+) and co-doped with Yb3+ and Er3+ (YbErNC; 20% Yb3+ and 2% Er3+) without a surface protection shell and coated with a thin and a thick NaYF4 shell in comparison to single and co-doped bulk materials. Luminescence studies at 375 nm excitation demonstrate backenergy transfer (BET) from the 4G11/2 state of Er3+ to the 2F5/2 state of Yb3+, through which the red Er3+ 4F9/2 state is efficiently populated. Excitation power density (P)-dependent steady state and time-resolved photoluminescence measurements at different excitation and emission wavelengths enable to separate surface-related and volume-related effects for two-photonic and threephotonic processes involved in UCL and indicate a different influence of surface passivation on the green and red Er3+ emission. The intensity and lifetime of the latter respond particularly to an increase in volume of the active UCNC core. We provide a threedimensional random walk model to describe these effects that can be used in the future to predict the UCL behavior of UCNC. KW - Nano KW - Nanomaterial KW - Upconversion KW - Nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Pphotophysics KW - Lifetime KW - Sensor KW - Excitation KW - Power density KW - Single particle KW - Brightness KW - NIR KW - Mechanism KW - Modeling KW - Simulation KW - Energy transfer PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535317 DO - https://doi.org/10.1007/s12274-021-3727-y SN - 1998-0124 VL - 15 IS - 3 SP - 2362 EP - 2373 PB - Springer AN - OPUS4-53531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oberemm, A. A1 - Hansen, Ulf A1 - Böhmert, L. A1 - Meckert, C. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Lampen, A. T1 - Proteomic responses of human intestinal Caco-2 cells exposed to silver nanoparticles and ionic silver N2 - Even although quite a number of studies have been performed so far to demonstrate nanoparticle-specific effects of substances in living systems, clear evidence of these effects is still under debate. The present study was designed as a comparative proteomic analysis of human intestinal cells exposed to a commercial silver nanoparticle reference material and ions from AgNO3. A two-dimensional gel electrophoresis/MALDI mass spectrometry (MS)-based proteomic analysis was conducted after 24-h incubation of differentiated Caco-2 cells with non-cytotoxic and low cytotoxic silver concentrations (2.5 and 25 µg ml−1 nanosilver, 0.5 and 5 µg ml−1 AgNO3). Out of an overall number of 316 protein spots differentially expressed at a fold change of ≥ 1.4 or ≤ −1.4 in all treatments, 169 proteins could be identified. In total, 231 spots were specifically deregulated in particle-treated groups compared with 41 spots, which were limited to AgNO3-treatments. Forty-four spots (14 %) were commonly deregulated by both types of treatment. A considerable fraction of the proteins differentially expressed after treatment with nanoparticles is related to protein folding, synthesis or modification of proteins as well as cellular assembly and organization. Overlays of networks obtained for particulate and ionic treatments showed matches, indicating common mechanisms of combined particle and ionic silver exposure and exclusive ionic silver treatment. However, proteomic responses of Caco-2 cells treated with higher concentrations of silver species also showed some differences, for example regarding proteins related to fatty acid and energy metabolism, suggesting an induction of also some different molecular mechanisms for particle exposure and ionic treatment. KW - Nanoparticle KW - Nanosilver KW - Silver PY - 2016 DO - https://doi.org/10.1002/jat.3231 SN - 1099-1263 VL - 36 SP - 404 EP - 413 PB - Wiley CY - Chichester AN - OPUS4-35301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, H. A1 - Krause, B.-C. A1 - Kästner, Claudia A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Tentschert, J. A1 - Jungnickel, H. A1 - Laux, P. A1 - Braeuning, A. A1 - Fessard, V. A1 - Thünemann, Andreas A1 - Luch, A. A1 - Lampen, A. T1 - Cellular Effects of In Vitro-Digested Aluminum Nanomaterials on Human Intestinal Cells N2 - Aluminum (Al) can be taken up from food, packaging, or the environment and thus reaches the human gastrointestinal tract. Its toxic potential after oral uptake is still discussed. The fate of different solid and ionic Al species during the passage through the digestive tract is the focus of this research, as well as the cellular effects caused by these different Al species. The present study combines the physicochemical processing of three recently studied Al species (metallic Al0, mineral Al2O3, and soluble AlCl3) in artificial digestion fluids with in vitro cell systems for the human intestinal barrier. Inductively coupled plasma mass spectrometry (ICP-MS) and small-angle X-ray scattering (SAXS) methods were used to characterize the Al species in the artificial digestion fluids and in cell culture medium for proliferating and differentiated intestinal Caco-2 cells. Cytotoxicity testing and cellular impedance measurements were applied to address the effects of digested Al species on cell viability and cell proliferation. Microarray-based transcriptome analyses and quantitative real-time PCR were conducted to obtain a deeper insight into cellular mechanisms of action and generated indications for cellular oxidative stress and an influence on xenobiotic metabolism, connected with alterations in associated signaling pathways. These cellular responses, which were predominantly caused by formerly ionic Al species and only at very high concentrations, were not impacted by artificial digestion. A two-directional conversion of Al between ionic species and solid particles occurred throughout all segments of the gastrointestinal tract, as evidenced by the presence of nanoscaled particles. Nevertheless, this presence did not increase the toxicity of the respective Al species. KW - SAXS KW - Small-angle X-ray scattering KW - Nanoparticle PY - 2020 DO - https://doi.org/10.1021/acsanm.9b02354 VL - 3 IS - 3 SP - 2246 EP - 2256 PB - American Chemical Society AN - OPUS4-50632 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -