TY - CONF A1 - Kuchenbecker, Petra A1 - Lindemann, Franziska A1 - Hodoroaba, Vasile-Dan T1 - Nano Powder - a Challenge for Granulometry N2 - If the particle size decreases, the ratio of surface area to volume increases considerably. This provides benefits for all surface-driven processes that run faster or at lower temperatures than larger particles. However, handling and characterization of the nanopowders are much more difficult. Particularly polydisperse powders with irregular shape, as grinding products, represent a challenge. Granulometry in the submicron and nanoscale often leads to incorrect results without knowledge of particle morphology. This presentation demonstrates potentials of using the volume-specific surface area (SV or VSSA) in the granulometric characterization of nanopowders, for instance, correlations between the volume-specific surface area and the median particle size are discussed considering the particle morphology and the model of the logarithmic normal distribution. Moreover, the presentation deals with the optimal dispersion of nanopowders during sample preparation. Indirect ultrasound device with defined cooling was developed to prevent both contamination by sonotrode abrasion and sample changes by heat. Successful granulometric characterization of nanopowders demands both improved dispersion technology and very often an effective combination of two or more measurement methods. T2 - Jahrestagung der Deutschen Keramischen Gesellschaft CY - Leoben, Austria DA - 06.05.2019 KW - Nano screening KW - VSSA KW - Nano particle KW - Particle size PY - 2019 AN - OPUS4-47976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan T1 - Quantitative microstructural analysis - VAMAS/TWA 37 N2 - The 44th Meeting of the Versailles Project on Advanced Materials and Standards (VAMAS) Steering Committee has just taken place at NIST in Boulder (CO, USA). BAM participates with significant contributions in Technical Working Areas on nanoparticle and surface chemistry characterization, but also has positioned itself to new global material challenges and trends in the developement of advanced materials and their characterization, such as thermal properties, self-healing materials, and micro- and nanoplastic. T2 - Annual Meeting of the Versailles Project on Advanced Materials and Standards (VAMAS) Steering Committee CY - Boulder, CO, USA DA - 22.05.2019 KW - VAMAS KW - Nanoparticles KW - Microbeam analysis KW - Advanced materials PY - 2019 AN - OPUS4-48184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Agea-Blanco, Boris A1 - Blaeß, Carsten A1 - Waurischk, Tina T1 - Sintering and foaming of silicate glass powders N2 - Glass powders are promising candidates for manufacturing a broad diversity of sintered materials like sintered glass-ceramics, glass matrix composites, glass bonded ceramics or pastes. Powder processing, however, can substantially affect sinterability, e.g. by promoting surface crystallization. On the other hand, densification can be hindered by gas bubble formation for slow crystallizing glass powders. Against this background, we studied sintering and foaming of silicate glass powders with different crystallization tendency for wet milling and dry milling in air, Ar, N2, and CO2 by means of heating microscopy, DTA, Vacuum Hot Extraction (VHE), SEM, IR spectroscopy, XPS, and ToF-SIMS. In any case, foaming activity increased significantly with progressive milling. For moderately milled glass powders, subsequent storage in air could also promote foaming. Contrarily, foaming could be substantially reduced by milling in water and 10 wt% HCl. Although all powder compacts were uniaxially pressed and sintered in air, foaming was significantly affected by different milling atmosphere and was found most pronounced for milling in CO2 atmosphere. Conformingly, VHE studies revealed that foaming is mainly driven by carbonaceous species, even for powders milled in other gases. Current results of this study thus indicate that foaming is caused by carbonaceous species trapped on the glass powder surface. T2 - IMAPS/ACerS 15th International Conference and Exhibition on Ceramic Interconnect and Ceramic Microsystems Technologies (CICMT 2019) CY - Shanghai, China DA - 16.04.2019 KW - Glass powder KW - Sintering KW - Foaming PY - 2019 AN - OPUS4-48196 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan A1 - Tielemann, Christopher A1 - Busch, R. A1 - Patzig, C. A1 - Müller, Ralf A1 - Höche, T. T1 - Oriented surface crystallization in 18BaO·22CaO·60SiO2 and MgO·CaO·2SiO2 glasses N2 - Up to now, oriented surface crystallization phenomena are discussed controversially, and related studies are restricted to few glasses. The vast majority of previous work does not consider possible effects of surface preparation and surrounding atmosphere. Moreover, very few observations of surface crystal orientation were made on separately grown crystals. The aim of our project is to advance the basic understanding of oriented surface crystallization, e.g. whether preferred orientation of surface crystals results from oriented nucleation or reorientation mechanisms during early crystal growth. In both cases, crystal orientation may reflect the orientation of the glass surface or that of anisotropic active surface nucleation sites. Therefore, we focus on orientation of surface crystals separately growing under controlled conditions. First results on diopside (MgCaSi2O6) and walstromite (BaCa2Si3O9) crystals growing from 18BaO·22CaO·60SiO2 and MgO·CaO·2SiO2 glass surfaces, respectively, indicate that different orientation mechanisms may occur. Neighbored walstromite crystals were found to gradually reorient themselves when they are going to impinge each other during stepwise isothermal treatments (log η = 4,5 Pa*s) of polished glass samples. Nevertheless, no preferred crystal orientation was evident for separate crystals. For diopside crystals growing from polished glass surfaces (1 μm diamond lapping foil), strong preferred orientation was observed for 3.5 to 85 min annealing at 850 °C. Electron Backscatter Diffraction (EBSD) studies showed that the c-axis of surface crystals is oriented parallel to the glass surface and that separated diopside crystals as small as 600 nm are already oriented. Studies on glass surfaces, polished with diamond lapping foils starting from 16 μm down to 1 μm grain, revealed that crystal orientation may scatter arround this preferential orientation and that this scatter progressively decreases with decreasing polishing grain size. T2 - 93rd Annual Meeting of the German Society of Glass Technology (DGG) in conjunction with the French Union for Science and Glass Technology (USTV) Annual Meeting CY - Nuremberg, Germany DA - 13.05.2019 KW - Surface crystallization KW - Orientation KW - Glass KW - Diopside PY - 2019 AN - OPUS4-48198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ehlers, Henrik A1 - Pelkner, Matthias T1 - Electromagnetic testing for additive manufacturing N2 - This talk presents a new application for high-spatial resolution eddy current testing (ET) with magneto resistive (MR) sensor arrays. With rising popularity and availability of additive manufacturing (AM), companies mainly in the aerospace sector, set high requirements on quality control of AM parts, especially produced with selective laser melting (SLM). Since it was shown that those parts are prawn to flaws like pores or cracks, every part needs to be tested. Therefore, NDT Methods, like ET, could help to characterize SLM parts. Research on ET has shown, that offline ET with high spatial resolution MR sensor arrays is possible and that flaws as small as 50 µm could be detected while significantly reducing testing time. In this talk a first approach on automated online ET method for testing SLM parts is proposed. An approach with hundreds of MR sensor is made to maintain spatial resolution and short testing times. Classic signal conditioning methods are used to reduce cost and complexity while maintaining high testing bandwidths. The proposed idea enables further research on automated generation of testing reports, process control or automated flaw curing. T2 - ICWAM 2019 CY - Metz, France DA - 05.06.2019 KW - GMR KW - Eddy Current KW - LBM KW - SLM KW - LPBF KW - Additive Manufacturing PY - 2019 AN - OPUS4-48201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenhagen, Jana T1 - Characterization of co (polyamide)s N2 - Characterization problems of technically relevant copolyamides applying size exclusion chromatography, interaction chromatography and their combination with MALDI-TOF-MS will be discussed. T2 - 23. Kolloquium Massenspektrometrie und synthetische Polymere CY - Berlin, Germany DA - 14.05.2019 KW - LCCC KW - Mass spectrometry of polymers KW - SEC KW - LC / MALDI-TOF-MS coupling PY - 2019 AN - OPUS4-48221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lohrer, Christian T1 - Report from the Forum of Notified Bodies for Pyrotechnic Articles N2 - Aktuelle Themen aus dem Forum der benannten Stellen für Pyrotechnik bei der EU-KOM werden vorgestellt, unter anderem zu den Themen Kennzeichnung, Round Robin Test, Konformitätserklärungen, Sicherheitsabstände N2 - Current topics and challenges in the forum of notified bodies for pyrotechnics at the EU-COM will be presented: labelling, round robin tests, declarations of conformity, safety distances. T2 - Meeting of the group of experts on pyrotechnic articles CY - Brussels, Belgium DA - 17.06.2019 KW - Konformitätserklärung KW - Pyrotechnik KW - Kennzeichnung KW - RRT KW - Round robin tests KW - Labelling KW - Declarations of conformity KW - Pyrotechnics PY - 2019 AN - OPUS4-48227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - High performance polymer materials for tribological applications in hydrogen and methane N2 - The development of hydrogen technologies is a key strategy to reduce greenhouse gas emission worldwide. Power-to-Gas is a challenging solution, in which hydrogen and methane can be used in mobility, industry, heat supply and electricity generation applications. This presentation deals with the tribological behaviour of polymer materials in hydrogen and methane, both in gas and in liquefied form. T2 - ECOTRIB 2019 CY - Vienna, Austria DA - 12.06.2019 KW - Sliding wear KW - Polymer materials KW - Hydrogen methane PY - 2019 AN - OPUS4-48250 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Langklotz, U. A1 - Babutzka, Martin A1 - Burkert, Andreas A1 - Schneider, M. T1 - FT-IR spectroscopy of corrosion products formed on zinc under atmospheric conditions N2 - Zinc materials are of high importance in the field of corrosion protection. For example, almost half of the annual production of zinc is used as anti-corrosive layer for steel components, particularly under atmospheric conditions. The corrosion protection is frequently ascribed to zinc carbonate species with low solubility which form on the metal surface under atmospheric conditions. Due to the technological importance and wide use of zinc materials, its corrosion behavior and the formation of reaction products has been intensively investigated over decades. Assuming atmospheric corrosion conditions, an initial native passive film of few nanometers thickness forms spontaneously. It consists of zinc oxide and hydroxide, transforming into various species in dependence of the surrounding atmospheric conditions. This study focusses on the investigation of corrosion product layers on massive titanium-zinc sheets, formed during short- and mid-term exposure experiments by Fourier-transformed infrared spectroscopy. This method enables the investigation of extremely thin native passive films which form during the initial hours of exposure. Furthermore, aged surface layers are analyzed which were formed by transformation of initial passive layers over the time of several weeks. The spectroscopic investigations are complemented by scanning electron microscopy (SEM/EDX) in order to obtain information on the chemical composition and morphology of the corrosion products. The combination of both methods offers a comprehensive view on the processes occurring in the early stages of zinc corrosion. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Zinc coatings KW - FT-IR KW - Layer formation PY - 2019 AN - OPUS4-49132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Jan P. A1 - Dell'Avvocato, G. A1 - Krankenhagen, Rainer T1 - Applying a two-layer quadrupole model for quantitative thermography at overload-induced delaminations in GFRP N2 - The applicability of 1D-quadrupole-model on the depth estimation of overload-induced delaminations is tested in this contribution. While classical 1D-methods like Pulsed Phase Transformation and Thermographic Signal Reconstruction determine the depth of a defect by one parameter, a two-layer quadrupole model provides two parameters: depth and thermal resistance. In addition, the convectional losses at the surfaces may be considered. The defect investigated is a large-scale delamination in glass fibre reinforced polymer generated by tension overload. T2 - Advanced Infrared Technology & Applications (AITA) CY - Florenz, Italy DA - 16.9.2019 KW - Aktive Thermographie KW - Nicht-lineare Regression KW - 1D-Simulation KW - GFK PY - 2019 AN - OPUS4-49133 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Oertzen, Alexander T1 - New Standardisation Tasks under the European Explosives Directive: Electronic Detonators, On-site Mixed Explosives N2 - Several decades have passed since the initial drafting of the European standards for explosives subject to European Directive 2014/28/EU, and this field as experienced some substantial technical innovations. While at the turn of the millenium the concept of electronic detonators had just been conceived, and it is mentioned in a Technical Specification, today electronic detonators exist in many variants, also regarding communication means between shotfirer and the detonating cap. Questions regarding safe functioning and prevention of inadvertent ignition have to be asked in a quite different way, where delicate electronic circuits are used, and where information is transmitted by radio waves. In addition, the safety of functioning is partly found in software components and the corresponding standards need to be reviewed thoroughly on these grounds. A different but in recent times more and more popular technology, is the on-site production of explosives, being mostly emulsion explosives, ANFO, or combined products. Also here software in the machinery is starting to play an important role. The on-site produced explosive must fulfil safety requirements and has to be, in addition, quality controlled. This cannot solely be left to the hopefully proper design of the software and machinery, but needs to be made accessible to verification. Since this area seems broader in approach, it is not going to be addressed by a new standard. The state of the art technology shall be described in a Technical Specification with a perspective from requirements of the above mentioned European Directive. T2 - EFEE 10th anniversary World Conference on Explosives and Blasting CY - Helsiniki, Finland DA - 15.09.2019 KW - Standardisation KW - Harmonised Standards KW - Technical Specification KW - Electronic Detonators KW - On-site mixed Explosives PY - 2019 AN - OPUS4-49106 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eisentraut, Paul A1 - Hassanein, Yosri A1 - Elert, Anna Maria A1 - Braun, Ulrike T1 - Understanding degradation mechanisms of microplastics in environmental samples N2 - Im Vortrag wird die Problematik Mikroplastik eingeführt und ein Probenset aus dem Mittelmeer mit ersten Ergebnissen besprochen. Die Alterung von Polymeren im Umweltkontext sowie Möglichkeiten der Analyse von Polymeralterungsfortschritten werden diskutiert. Die thermoanalytische Methode mit Zersetzungsgasanalytik (TED-GC-MS) wird eingeführt und deren Einsatzmöglichkeiten in der Thematik umrissen. T2 - EuroMech Colloquium 607 Marine Aging of Polymers CY - Brest, France DA - 28.08.2019 KW - Microplastics KW - Tara Mediterranee KW - Polymer aging KW - TED-GC-MS PY - 2019 AN - OPUS4-49110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Frei, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Resistance spot welding under external load for evaluation of LME susceptibility of zinc coated advanced high strength steel sheets N2 - Some zinc coated advanced high strength steels (AHSS), under certain manufacturing conditions, are known to be prone to liquid metal embrittlement (LME) during resistance spot welding. LME is an undesired phenomenon, which can cause both surface and internal cracks in a spot weld, potentially influencing its strength. An effort is made to understand influencing factors of LME better, and evaluate geometry-material combinations regarding their LME susceptibility. Manufacturers benefit from such knowledge because it improves the processing security of the materials. The experimental procedure of welding under external load is performed with samples of multiple AHSS classes with strengths up to 1200 MPa, including dual phase, complex phase and TRIP steels. This way, externally applied tensile load values are determined, which cause liquid metal embrittlement in the samples to occur. In the future, finite element simulation of this procedure gives access to in-situ stress and strain values present during LME formation. The visualization improves the process understanding, while a quantification of local stresses and strains allows an assessment of specific welded geometries. T2 - ESDAD 2019 CY - Dusseldorf, Germany DA - 24.06.2019 KW - RSW KW - LME KW - Advanced high strength steel KW - Testing method KW - Zinc coated steel PY - 2019 AN - OPUS4-49079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Kage, Daniel A1 - Weigert, Florian A1 - Martynenko, Irina A1 - Dhamo, Lorena A1 - Soares, J. X. T1 - Luminescent nanocrystals – Photophysics and applications for lifetime multiplexing N2 - Bioanalytical, diagnostic, and security applications require the fast and sensitive determination of a steadily increasing number of analytes or events in parallel in a broad variety of detection formats.[1,2] Ideal candidates for spectral encoding and multiplexing schemes are luminescent nanocrystals like semiconductor quantum dots (QDs), particularly Cd-containing II/VI QDs with their narrow and symmetric emission bands. With the availability of relatively simple and inexpensive instrumentation for time-resolved fluorescence measurements, similar strategies utilizing the compound-specific parameter fluorescence lifetime or fluorescence decay kinetics become increasingly attractive.[3-5] The potential of different types of QDs like II/VI, III/V and Cd-free ternary QDs such as AgInS (AIS) QDs for lifetime-based encoding and multiplexing has been, however, barely utilized, although the lifetimes of these nanocrystals cover a time windows which is barely accessible with other fluorophores. Here we present a brief insight into the photophysics of AIS QDs and show the potential of dye- and QD-encoded beads for lifetime-based encoding and detection schemes in conjunction with flow cytometry and fluorescence lifetime imaging microscopy T2 - Nanax 2019 CY - Hamburg, Germany DA - 16.09.2019 KW - Nano KW - Microparticle KW - Bead KW - Encoding KW - Lifetime KW - Multiplexing KW - Flow cytometry KW - Bead-based assay KW - Fluorescence KW - Dye KW - LT-FCM KW - Time-resolved flow cytometry KW - Method PY - 2019 AN - OPUS4-49039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Addressing ESC using FNCT enhanced by optical fracture surface analysis N2 - During their lifetime, polymer components subjected to mechanical loads and environmental influences show a loss of their mechanical properties required for their specific applications. In this respect, the craze-crack damage mechanism slow crack growth (SCG) is relevant for PE-HD components used in high-performance applications such as pipes and containers for the storage and transport of dangerous goods. SCG is considered to be the major failure mechanism in polyolefins and it typically occurs suddenly and unexpectedly. Due to the fields of application, SCG is a safety relevant issue. To test for the resistance of PE-HD pipe and container materials against SCG, the full-notch creep test (FNCT) is widely applied in Europe. In this study, SCG phenomena in PE-HD are investigated in detail based on an improved FNCT, especially including the consideration of the influence of environmental liquids effecting the damage mechanism. Using an enhanced fracture surface and a crack propagation analysis with imaging techniques such as light microscopy (LM), laser scanning microscopy (LSM), X-ray computed tomography (CT-scan) and scanning electron microscopy (SEM), detailed data concerning SCG are obtained. The combined application of FNCT and such imaging techniques is explicitly advantageous and recommended to gain important information on damage occurring to PE-HD induced by mechanical stress and the influence of environmental liquids, which is essential within the Fourth Industry Revolution. T2 - PPS Europe-Africa 2019 Regional Conference (PPS 2019) CY - Pretoria, South Africa DA - 18.11.2019 KW - Polyethylene, PE-HD KW - Full-Notch Creep Test (FNCT) KW - Fracture surface analysis KW - Slow crack growth KW - Environmental stress cracking KW - Laser Scanning Microscopy (LSM) KW - Scanning Electron Microscopy (SEM) PY - 2019 AN - OPUS4-50939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Scheidemann, Robert A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Wille, Frank T1 - Package testing of a dual purpose cask for SNF from german research reactors N2 - A new dual purpose cask design was developed for the safe transport and interim storage of spent fuel elements of German research reactors. In the framework of the safety assessment within the licensing procedure the Bundesanstalt für Materialforschung und –prüfung (BAM) as competent authority performed a series of drop tests according to the IAEA-Regulations. The package consists of a cylindrical thick-walled ductile cast iron cask body closed by a double lid system with metallic seals. A lid and bottom sided impact limiter consisting of a wood/steel construction limit the mechanical impact loading. The full-scale test specimen was equipped with a basket and assembled with dummy-fuel elements. The package and test specimen, respectively have a total mass of approximately 24 metric tons. The mechanical test program included three 9m free drop tests, in horizontal, vertical and oblique cask orientation onto the lid system. Additionally, a 1m-puncture drop test followed the horizontal drop test to consider an IAEA-test sequence. The horizontal and vertical drop tests were performed at a temperature of minus 40°C. During the oblique drop test the upper impact limiter was heated to +80°C. The tests were conducted onto an unyielding target, fulfilling the requirements of the IAEA regulations. The test specimen was considerably instrumented with strain gauges and accelerometers. Transient strains at selected locations of the inner and outer container walls, of the primary and secondary lid, as well as of the corresponding lid bolts were measured during the drop tests. Furthermore, decelerations in different locations at the cask body and the lids were measured. The complex geometrical deformation of the impact limiters due to the impact were determined by optical 3d- measurements using the projected fringe method in combination with multi-image photogrammetry. Before and after the drop tests the leakage rate of the lid system was determined by helium leakage testing. The experimental results contribute to the evaluation of the package response to mechanical tests, demonstrating safety under normal and accident conditions of transport. Especially to the verification of the dynamic finiteelement model of the package used in the package design safety report. The paper describes the performance of the drop tests, selected test results focusing on the lid screws and the cask body and the deformation of the impact limiters as well as impact kinematics, respectively. T2 - IHLWM 2019 CY - Knoxville, TN, USA DA - 14.04.2019 KW - Package testing KW - Drop test PY - 2019 AN - OPUS4-50620 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rahrig, M. A1 - Torge, Manfred T1 - 3D Inspection of the restoration and conservation of stained glass N2 - The initial focus of this research was on the development of a general workflow for the documentation and monitoring of historical stained glass windows using structured light scanning. Therefore windows from different churches, time periods and with different corrosion and damage phenomena were scanned before and after conservation measures. T2 - 27th CIPA International Symposium “Documenting the past for a better future” CY - Ávila, Spain DA - 01.09.2019 KW - Stained glass KW - Restoration and conservation KW - Structured light scanning KW - 3D inspection KW - Glass scanning PY - 2019 AN - OPUS4-49600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker T1 - Effective composite testing – from specimen size to component scale N2 - Even for the basic measurements of material data for design and engineering of composite structures there is a need to upgrade standards. With a new shear frame test rig more precise values can be obtained. With advanced methods in the research on the fatigue behaviour of FRP it was found a load level of infinite life for GFRP and CFRP. This is in the range of typical strain values of airliners and rotor blades in normal operation. Statistically the mean time between damage events on rotor blades is 6 years (Deutscher Windenergie Report 2006). Due to imperfection in the production the shell structures get cracks after a few years fare before the designed life time. A shell test rig was built at BAM for efficient research on the effects of defects in production. Test blades of ~10m are an efficient way for SHM research and evaluation of NDT-methods and blade geometry. T2 - colloquium genesis-puc CY - Rio de Janeiro, Brazil DA - 01.11.2019 KW - Polymer matrix composites KW - Nondestructive testing KW - New standards PY - 2019 AN - OPUS4-50129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker T1 - Polymer matrix composites investigated with NDT at BAM N2 - Statistically the mean time between damage events on rotor blades is 6 years (Deutscher Windenergie Report 2006). Due to imperfection in the production the shell structures get cracks after a few years fare before the designed life time. A shell test rig was built at BAM for efficient research on the effects of defects in production. In-situ and ex-situ NDT give a better understanding from degradation processes in composite materials. With advanced methods in the research on the fatigue behaviour of FRP it was found a load level of infinite life for GFRP and CFRP. This is in the range of typical strain values of airliners and rotor blades in normal operation. Due to the fibre-composite nature NDT techniques have to be suitable to a wide length scale to image micro cracking as well as bigger defects. Therefore different techniques have to be applied and developed. T2 - Colloquium Abendi CY - São Paulo, Brazil DA - 05.11.2019 KW - Polymer matrix composites KW - Non-destructive testing PY - 2019 AN - OPUS4-50130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker T1 - Fatigue life evaluation and certification according to CS22 N2 - The common fatigue life certification of aircrafts according to the certification Standards 23 and 25 follows a building block approach. Static tests at room temperature as well in humid and high temperature conditions are done on the coupon level. Additionally, a full-scale static and fatigue test must be performed on the complete airframe (minimum on the fuselage together with the wing). For each type-certificate the complete building block approach test program must be performed. Traditionally in Germany, the certification of sailplanes (Certification Standard 22) follows rather a family concept. A shared data base was created over the last 50 years based upon a large number of material testing. In addition to static tests at room temperature and hot-humid conditions, fatigue tests are also done on the coupon level. Additional static and fatigue tests were done on complex structures such as spar-beams, fuselages and full-scale wing structures. However, for each type-certificate, only static tests should be performed in full-scale. This concept is determined by the certification memorandum CM-S-006 “Composite Lightweight Aircraft” 2017. The presentation was given as an introduction to the discussion about the future expectations and developments of the EASA concerning the type-certification of lightweight aircrafts according to CS22 at the OSTIVE Sailplane Development Panel Meeting at the EASA in Cologne on the 11th of October 2019. T2 - OSTIV Sailplane Development Panel Meeting 2019, Europäische Agentur für Flugsicherheit (EASA) CY - Cologne, Germany DA - 11.10.2019 KW - Certification Standard 22 KW - EASA KW - Sailplane Development Panel KW - Fatigue Life Evaluation PY - 2019 AN - OPUS4-50147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja A1 - Funk, Alexander A1 - Jaenisch, Gerd-Rüdiger A1 - Zscherpel, Uwe A1 - Grunwald, Marcel A1 - Moosavi, Robabeh A1 - Redmer, Bernhard A1 - Nazarzadehmoafi, Maryam T1 - X-ray non-destructive testing of materials and composites N2 - Using magnetic materials for energy conversion as an example, this lecture shows how X-ray tomography investigations can contribute to structure elucidation in composites and solid samples. The components are tested non-destructively in order to characterize cracks, pores and other defects and their influence on the functional properties three-dimensionally and in good time in the life cycle of the material. If you combine microtomography with other methods of magnetic material characterization, you can make unique statements about the structure and the functional properties. T2 - TU Chemnitz Vortrag CY - Chemnitz, Germany DA - 04.11.2019 KW - X-Ray Imaging KW - Additive Manufacturing KW - Materials Science KW - Non-destructiv testing PY - 2019 AN - OPUS4-50150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja A1 - Funk, Alexander A1 - Moosavi, Robabeh A1 - Redmer, Bernhard A1 - Nazarzadehmoafi, Maryam A1 - Jaenisch, Gerd-Rüdiger A1 - Zscherpel, Uwe T1 - X-ray non-destructive testing of materials and composites N2 - Using magnetic materials for energy conversion as an example, this lecture shows how X-ray tomography investigations can contribute to structure elucidation in composites and solid samples. The components are tested non-destructively in order to characterize cracks, pores and other defects and their influence on the functional properties three-dimensionally and in good time in the life cycle of the material. If you combine microtomography with other methods of magnetic material characterization, you can make unique statements about the structure and the functional properties. T2 - Dcms CY - Stockholm, Sweden DA - 28.08.2019 KW - X-Ray imaging KW - Additive Manufacturing KW - Magnetocoloric KW - Material Science KW - Non-destructive testing PY - 2019 AN - OPUS4-50151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja A1 - Dzekan, D. A1 - Stork, A. A1 - Sellschopp, K. A1 - Berger, D. A1 - Nielsch, K. A1 - Fähler, S. T1 - A thermomagnetic generator with novel magnetic field topology N2 - To date, there are only very few technologies available for the conversion of low temperature waste heat to electricity. In this talk, we first describe the principle of thermomagnetic generators. Then we focus on the impact of topology of the magnetic circuit within thermomagnetic generators. We demonstrate that the key operational parameters strongly depend on the genus, i.e. the number of holes within the magnetic circuit. T2 - 2019 Joint MMM-Intermag Conference CY - Washington, DC, USA DA - 14.01.2019 KW - Energy harvesting KW - Magnetocaloric KW - Materials Science KW - Non-destructiv testing PY - 2019 AN - OPUS4-50152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - Energy harvesting using thermomagnetic generators with magnetocaloric materials N2 - To date, there are only very few technologies available for the conversion of low temperature waste heat to electricity. In this talk, we first describe the principle of thermomagnetic generators. Then we focus on the impact of topology of the magnetic circuit within thermomagnetic generators. We demonstrate that the key operational parameters strongly depend on the genus, i.e. the number of holes within the magnetic circuit. T2 - JEMS 2019 CY - Uppsala, Sweden DA - 26.08.2019 KW - Energy harvesting KW - Magnetocaloric KW - Materials science KW - Non-destructiv testing PY - 2019 AN - OPUS4-50153 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - Cooling and energy harvesting using magnetic materials N2 - To date, there are very few technologies available for the conversion of low-temperature waste heat into electricity. Thermomagnetic generators are one approach proposed more than a century ago. Such devices are based on a cyclic change of magnetization with temperature. For thermomagnetic materials, we used a commercial magnetocaloric alloy with a transition temperature of 300 K. T2 - Summer School CY - Szczecin, Poland DA - 26.09.2019 KW - X-Ray Imaging KW - Energy harvesting KW - Magnetocaloric KW - Material Science KW - Non-destructive testing PY - 2019 AN - OPUS4-50155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - Energy harvesting near room temperature using thermomagnetic materials N2 - To date, there are only very few technologies available for the conversion of low temperature waste heat to electricity. In this talk, we first describe the principle of thermomagnetic generators. Then we focus on the impact of topology of the magnetic circuit within thermomagnetic generators. We demonstrate that the key operational parameters strongly depend on the genus, i.e. the number of holes within the magnetic circuit. T2 - 8th WMRIF Symposium and General Assembly CY - Budapest, Hungary DA - 17.06.2019 KW - Energy harvesting KW - Magnetocaloric KW - Material Science KW - Non-Destructive testing PY - 2019 AN - OPUS4-50176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - Properties of powder-in-tube formed magnetocaloric materials N2 - This talk gives an overview of the shaping options for magnetocaloric materials. We have shown that powder-in-tube processing of these functional materials is a straightforward and efficient way to obtain wires and stacked structures for heat exchange. T2 - Eingeladener Vortrag / Symposiumsorganisation und Vortrag CY - Stockholm, Sweden DA - 05.09.2019 KW - X-Ray imaging KW - Additive Manufacturing KW - Magnetocaloric KW - Material Science KW - Non-Destructive testing PY - 2019 AN - OPUS4-50177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - Magnetocaloric materials for cooling and harvesting of low-grade waste heat N2 - To date, there are very few technologies available for the conversion of low-temperature waste heat into electricity. Thermomagnetic generators are one approach proposed more than a century ago. Such devices are based on a cyclic change of magnetization with temperature. For thermomagnetic materials, we used a commercial magnetocaloric alloy with a transition temperature of 300 K. T2 - Symposiumsorganisation und Vortrag CY - Stockholm, Sweden DA - 05.09.2019 KW - X-Ray imaging KW - Energy harvesting KW - Additive Manufacturing KW - Magnetocaloric KW - Material Science KW - Non-Destructive testing PY - 2019 AN - OPUS4-50178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - A thermomagnetic generator for harvesting low-grade waste heat N2 - To date, there are only very few technologies available for the conversion of low temperature waste heat to electricity. In this talk, we first describe the principle of thermomagnetic generators. Then we focus on the impact of topology of the magnetic circuit within thermomagnetic generators. We demonstrate that the key operational parameters strongly depend on the genus, i.e. the number of holes within the magnetic circuit. T2 - Eingeladener Vortrag / Symposiumsorganisation und Vortrag CY - Uppsala, Sweden DA - 28.08.2019 KW - Energy harvesting KW - Magnetocaloric KW - Material Science KW - Non-Destructive testing PY - 2019 AN - OPUS4-50179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Shaken or levitated? A time resolved perspective on unconventional crystallization N2 - This Outlook provides a brief overview of the recent achievements and opportunities created by acoustic levitation and mechanochemistry, including access to materials, molecular targets, and synthetic strategies that are difficult to access by conventional means. T2 - Vortragsreihe Analytik Merck CY - Darmstadt, Germany DA - 18.11.19 KW - Levitation KW - Acoustic levitation KW - X-ray and electron diffraction PY - 2019 AN - OPUS4-50135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - May the force be with you - in situ investigation of mechanochemical reactions N2 - The past decade has seen a reawakening of solid-state to chemical synthesis, driven by the search for new, cleaner synthetic methodologies. Mechanochemistry has advanced to a widely applicable technique. T2 - SALSA's "Make and Measure 2019 CY - Berlin, Germany DA - 25.10.2019 KW - Mechanochemistry KW - Metal–organic frameworks PY - 2019 AN - OPUS4-50138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Colini, Claudia T1 - Ink for papyri, ink of papyrus: Recipes from the Arabic world N2 - Papyrus was in use in the Islamic world until the 11th century and few ink recipes collected from treatises about the art of the books are dedicated to this support. But papyrus was also burnt in order to obtain soot used as an ingredient for a particular type of ink (midād al-qarāṭīs). In this talk I will give an overview of the recipes – in particular those by ar-Rāzī –, their context and transmission in order to evaluate this double nature of papyrus, which is considered at the same time a writing support and a material to be recycled. Moreover, I will discuss what kinds of ink are most likely to be found, according to these literary sources, on Arabic manuscripts and documents written on papyrus and compare them to the typologies mentioned for paper and parchment. These results are the premises of a research project starting at the beginning of 2019, in which a number of dated fragments from several European institutions will be analysed with non-destructive techniques in order to establish a profile of the main writing media used in the early centuries of the Islamic Era. T2 - 29th International Congress of Papyrology CY - Lecce, Italy DA - 28.07.2019 KW - Inks KW - Arabic recipes KW - Papyrus PY - 2019 AN - OPUS4-50158 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Colini, Claudia T1 - Fifty shades of black: Typologies and terminology of black inks in the light of new discoveries N2 - The identification of the materials constituting an artefact is the basis of any correct conservation project. For this reason (among others) in the last 50 years analytical techniques have been applied to the study of manuscripts. Unfortunately, the scientific investigation of Arabic books is still uncommon, focusing mainly on single case studies of illuminated manuscripts where the black media used to write the text is largely overlooked. This lack of knowledge prompted a recent research in which black ink recipes have been collected from written Arabic sources, their feasibility has been assessed, and some of them have been reproduced. These samples were artificially aged and analysed through an array of analytical techniques, mostly non-invasive and non-destructive, in order to build a database of Arabic inks and their ingredients and to verify the detection limits of the equipment employed. Finally, the results were compared to the data collected from historical manuscripts. In this talk I will focus on the ink typologies and the terminology (ancient and modern) used to describe them. In particular I will highlight how even the modern classification fails to capture the variety encountered in both recipes and manuscripts, particularly in the light of recent discoveries. I will address especially the terminological and conceptual issues of mixed inks – in the form of carbon inks and tannins, of carbon and iron gall inks, and of carbon and metallic salts –, iron gall inks made without vitriol and iron gall inks made with sources of tannins different from gall nuts. T2 - First International Conference Oriental Manuscripts: Codicology and Conservation issues CY - Saint Petersburg, Russia DA - 04.12.2019 KW - Ink terminology KW - Codicology KW - Non destructive analytical techniques PY - 2019 AN - OPUS4-50159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Colini, Claudia T1 - Ink recipes from the islamic era: Texts, manuscripts, ink reproductions and scientific analyses N2 - Ink recipes can often be found in Arabic manuscripts. They may be included in treatises of diverse subjects – from handbooks for secretaries or calligraphers to books on arts and crafts, to alchemical and astrological essays. Recipes can also appear, with or without relation to the main text in the manuscript, in the form of lists or collections or even added in empty spaces as single entries. Why were these recipes written down? Were they used by the many professionals dealing with inks in their every-day work? Or were they part of the literary genre of adab with little or no practical application? To answer these questions a research project was set up: ink recipes have been collected from written Arabic sources, their feasibility has been assessed and some of them have been reproduced. These samples were artificially aged and analysed through an array of analytical techniques, most non-invasive and non-destructive, and the results compared to the data obtained by the application of the same analyses on concrete manuscripts. The codicological characteristics of the manuscripts have also been studied. My aim in this talk is to show how such an interdisciplinary approach could be beneficial for the study of material culture. T2 - Broadening Horizons 6 CY - Berlin, Germany DA - 24.06.2019 KW - Inks KW - Arabic Recipes KW - Non destructive analytical techniques PY - 2019 AN - OPUS4-50160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Lüchtenborg, Jörg A1 - Lima, P. A1 - Diener, S. A1 - Katsikis, N. A1 - Günster, Jens T1 - Additive Manufacturing of Silicon Carbide by LSD-print N2 - The layerwise slurry deposition (LSD) has been established in the recent years as a method for the deposition of ceramic powder layers. The LSD consists in the layer-by-layer deposition of a ceramic slurry by means of a doctor blade; each layer is sequentially deposited and dried to achieve a highly packed powder layer. The combination of binder jetting and LSD was introduced as a novel technology named LSD-print. The LSD-print takes advantage of the speed of binder jetting to print large areas, parallel to the flexibility of the LSD, which allows the deposition of highly packed powder layers with a variety of ceramic materials. The working principle and history of the LSD technology will be shortly discussed. A theoretical background will be also discussed, highlighting advantages and drawbacks of the LSD compared to the deposition of a dry powder. The last part of the talk will be dedicated to highlight recent results on the LSD-print of SiSiC of geometrically complex components, in collaboration between BAM and HC Starck Ceramics GmbH. Density, microstructure and mechanical properties of LSD-printed and isostatic pressed samples will be discussed and compared. T2 - XVI ECerS CONFERENCE CY - Torino, Italy DA - 16.06.2019 KW - Additive Manufacturing KW - Silicon Carbide KW - 3D printing KW - Layerwise Slurry Deposition PY - 2019 AN - OPUS4-49220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zocca, Andrea A1 - Mühler, T. A1 - Lima, P. A1 - Günster, Jens A1 - Lüchtenborg, Jörg T1 - Advanced ceramics by powder bed 3D printing N2 - Powder bed -based technologies are amongst the most successful Additive Manufacturing (AM) techniques. "Selective laser sintering/melting" (SLS/SLM) and "binder jetting 3D printing" (3DP) especially are leading AM technologies for metals and polymers, thanks to their high productivity and scalability. However, the flowability of the powder used in these processes is essential to achieve defect-free and densely packed powder layers. For standard powder bed AM technologies, this limits the use of many raw materials which are too fine or too cohesive. This presentation will discuss the possibilities to either optimize the powder raw material to adapt it to the specific AM process, or to develop novel AM technologies which are able to process powders in a wider range of conditions. In this context, the "layerwise slurry deposition" (LSD) has been developed as a layer deposition method which enables the use of very fine ceramic particles. T2 - Smart Made CY - Osaka, Japan DA - 01.09.2019 KW - Additive Manufacturing KW - Ceramic KW - Powder KW - Layerwise slurry deposition KW - 3D printing PY - 2019 AN - OPUS4-49221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernard, D. A1 - Léonard, Fabien A1 - Plougonven, E. A1 - Bruno, Giovanni T1 - On the use of autocorrelation functions, permeability tensors, and computed tomography to characterize the anisotropy of Diesel particulate filter materials N2 - 3D images such as those produces by X-ray tomography can provide a wealth of information on the internal structure of materials, but quantification of specific geometrical or topological characteristics linked to some bulk physical property is far from being straightforward. This study focuses on methods to quantify the differences in physical properties as a function of direction, i.e. their anisotropy, and how it can be linked to measures of anisotropy of the internal structure of the material. The auto-correlation function gives a similarity measure in the volume as a function of distance and direction. This is a cross-correlation of the image with itself fast to compute and relatively insensitive to noise. It is why we focus on this method to compare with the physical property of our DPF material. Diesel Particulate Filter (DPF) materials are porous ceramics that; a) can be used at very high temperatures; b) have very good thermal shock resistance; c) are inert; d) can be manufactured with tailored porosity. Their usual way of production consists of the extrusion of a slurry into the desired filter shape, with successive ceramming at high temperature. This process causes anisotropy at both microscopic and macroscopic levels. T2 - ICTMS 2019 CY - Cairns, Australia DA - 22.07.2019 KW - Structure-property relationship KW - Anisotropy estimate KW - Porous ceramics KW - Autocorrelation PY - 2019 AN - OPUS4-49226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mansfeld, Ulrich A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Bartzcak, D. T1 - New reference material candidates for traceable size measurement of nonspherical nanoparticles N2 - Size measurement of nanoparticles (NP) becomes a challenging analytical problem when non-spherical shapes must be traceably measured. However, most industrial NPs have irregular shapes and broad size distribution making it often more complex to follow European regulatory to identify a material as a nanomaterial according to which accurate measurement of the smallest dimension and its size Distribution is necessary. The European research project nPSize - Improved traceability chain of nanoparticle size measurements aims to fill this gap by developing potential non-spherical reference nanoparticles, measurement procedures and physical modelling to improve the traceability chain, comparability and compatibility for NP size measurements between different methods. Therefore, new model NP with well-controlled shape has been synthesized and are supposed to be systematically characterized using the traceable methods scanning/transmission electron microscopy, atomic force microscopy and small angle X-ray scattering. Following NP candidates are under investigation with respect to their homogeneity and stability: (i) titania nanoplatelets (10-15 nm thickness x 50-100 nm lateral), (ii) titania bipyramides (~60 nm length x 40 nm width), (iii) titania acicular particles (100 nm length x 15-20 nm width; aspect ratio 5.5/6), (iv) gold nanorods (~10 nm width x 30 nm length), and (v) gold nanocubes (~55 nm x 55 nm x 55 nm). In addition, sample preparation procedures as well as measurement analysis procedures with evaluation of appropriate measurands and descriptors for each material class and method are being developed to support standardization. To underpin the traceability of the size measurement of nonspherical NP, physical modelling of the signals in e.g. electron microscopy techniques will be used and in combination, the implementation of machine learning is aimed to facilitate measurement Analysis procedures, especially regarding the accurate thresholding/segmentation of the NPs. T2 - European Conference on Applications of Surface and Interface Analysis ECASIA 2019 CY - Dresden, Germany DA - 15.09.2019 KW - Nanoparticles KW - Size distribution KW - Electron microscopy KW - Certified reference materials KW - Traceability PY - 2019 AN - OPUS4-49227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spaltmann, Dirk A1 - Kogia, M. A1 - Liedtke, S. A1 - Dykeman, D. A1 - Gradt, Thomas T1 - Challenges for the design of a universal tribological database for materials N2 - Renowned institutions in the field of tribology combine their testing and analytical capabilities with experts in materials/process information management technology to provide the respective services in Europe (i-TRIBOMAT). This requires a centralized materials information management system or the standardised capture, consolidation and harmonization of tribological information. T2 - 60. Tribologie-Fachtagung CY - Göttingen, Germany DA - 23.09.2019 KW - Database KW - Tribology KW - Digital KW - LIMS PY - 2019 AN - OPUS4-49145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Theiler, Géraldine A1 - Gradt, Thomas T1 - Sliding performance of polymer materials in hydrogen and methane N2 - In this talk, the sliding performance of polymer materials in hydrogen and methane are presented. The influence of the environmental conditions is discussed in terms of material composition, counterface, transfer film formation, and triboreactions. T2 - International Tribology Conference/ITC CY - Sendai, Japan DA - 17.09.2019 KW - Friction KW - Wear KW - Polymer composites KW - Hydrogen KW - Methane PY - 2019 AN - OPUS4-49148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stelzner, Ludwig A1 - Weise, Frank A1 - Oesch, Tyler A1 - Dlugosch, R. A1 - Powierza, Bartosz T1 - Transport and reconfiguration of moisture in HPC due to unilateral heating N2 - Explosive spalling is caused by, among others, the thermohydraulic spalling mechanism. During this process, vaporization, dehydration, moisture-transport and condensation processes interact. As a result, a drying and dehydration zone as well as a saturated zone, known as a moisture clog, are observed inside the unilaterally-heated concrete. The presented research is focused on the experimental investigation of the underlying thermohydraulic processes. To investigate these, a test methodology based on X-ray computed tomography (CT) and nuclear magnetic resonance (NMR) was developed. Thereby, the X-ray CT scans are carried out simultaneously during the application of a defined unilateral-heating regime on a specially-constructed specimen. This miniaturized specimen, equipped with a double-layer casing, reproduces the condition within a planar, unilaterally-heated building component. A preliminary test methodology and the first experimental results were presented at the 5th International Workshop on Concrete Spalling in Borås, Sweden (2017). The contribution for the upcoming workshop presents an improved version of this test methodology and new results for a high-performance concrete (HPC) mixture exposed to temperatures up to 500 °C. Regarding the CT measurements, a higher time-resolution of 15 min was achieved and a quantification of the moisture changes was implemented. Due to an increase in signal quality of the NMR measurements, a pore-size specific moisture distribution can now be resolved. This allows to conclude about the moisture reconfiguration between small gel pores and larger interhydrate pores. Additionally, the NMR measurement are no longer limited to first 2.5 cm below the heated surface but a one-dimensional moisture distribution can now be estimated over the whole 10 cm long specimen. The presented results demonstrate that the combination of X-ray CT and NMR measurements enables to image and quantify the thermally-induced moisture transport and reconfiguration from small gel pores up to macro pores. This provides important insights into the thermohydraulic damage mechanism and leads to a better understanding of spalling avoidance strategies, like the addition of polypropylene fibres. T2 - 6th International Workshop on Concrete Spalling due to fire exposure CY - Sheffield, UK DA - 19.09.2019 KW - Moisture clog KW - X-ray CT KW - NMR KW - Moisture transport KW - HPC PY - 2019 AN - OPUS4-49159 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - A theoretical study of influence of electromagnetic stirring on transport phenomena in wire feed laser beam welding N2 - The additional element from the filler wire in the laser beam welding is usually distributed inhomogeneously in the final weld due to the high solidification rate of weld pool. It has been found that the electromagnetic stirring produced by an external oscillating magnetic field can enhance the material mixing in the weld pool to achieve a more uniform element distribution. However, the magnetic field has a highly non-linear and multi-coupled interaction with the weld pool behavior, which makes the quantitative explanation of the physical mechanism difficult. In this study, the effect of electromagnetic stirring on the transport phenomena in the wire feed laser beam welding is investigated by a numerical modelling. A 3D transient multi-physical model considering the magnetohydrodynamics, heat transfer, fluid flow, keyhole dynamics and element transport is developed. The multiple reflections and the Fresnel absorption of the laser on the keyhole wall are calculated using the ray tracing method. The numerical results show that a Lorentz force produced by the oscillating magnetic field and its induced eddy current gives significant influence on the transport phenomena in the molten pool. The forward and downward flow is enhanced by the electromagnetic stirring, which homogenizes the distribution of the additional elements from a nickel-based filler wire in a steel weld pool. The numerical results show a good agreement with the high-speed images of the molten pool, the fusion line from the optical micrograph and the element distribution from the energy dispersive X-ray spectroscopy. This work provides a physical base for the electromagnetic-controlled laser beam welding and some guidance for the selection of electromagnetic parameters. T2 - ICALEO 2019 CY - Orlando, US DA - 07.10.2019 KW - Magnetohydrodynamics KW - Molten pool dynamics KW - Element transport KW - Laser beam welding PY - 2019 AN - OPUS4-49300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brunner-Schwer, C. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Laser-Plasma-Hybrid-Cladding: Possibilities in the combination of arc and laser for deposition welding N2 - Plasma-Transferred-Arc (PTA) welding is a process that enables high deposition rates, but also causes increased thermal 9 load on the component. Laser based Direct Energy Deposition (DED) welding, on the other hand, achieves a high level of 10 precision and thus comparatively low deposition rates, which can lead to high processing costs. Combining laser and arc 11 energy aims to exploit the respective advantages of both technologies. 12 In this study, different possibilities of this process combination are presented using a PTA system and a 2 kW disk laser. 13 This includes the combination in a common process zone as a highspeed plasma laser cladding technology (HPLC), which 14 achieves process speeds of 10 m/min. Besides that it is being examined whether a pre-running plasma arc can be used to 15 coat difficult-to-weld rail steel with a carbon content of 0.8 % due to a preheating effect. Furthermore, a smoothing of the 16 coating by a plasma arc following the laser is investigated. T2 - LiM 2019 CY - Aachen, Germany DA - 25.06.2019 KW - Plasma-Transferred-Arc KW - Direct Energy Deposition KW - Highspeed plasma KW - Laser cladding KW - Deposition welding PY - 2019 AN - OPUS4-49247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Frenzel, Florian A1 - Grauel, Bettina A1 - Nirmalananthan-Budau, Nithiya A1 - Pauli, Jutta A1 - Hoffmann, Katrin T1 - Photoluminescence at BAM – Photoluminescence at BAM – Photophysical Studies, Quantum Yield Measurements, Multiplexing Strategies, and Standards N2 - Photoluminescence applications in the life and material sciences require bright molecular and nanocrystalline emitters, stimuli-responsive optical probes, signal enhancement, multiplexing, and barcoding strategies and traceable methods to quantify the signal-relevant optical properties of luminescent materials at the ensemble and single molecule/particle level. In this context, current research at Division Biophotonics of BAM is presented ranging from dye and nanocrystal photophysics, absolute measurements of photoluminescence quantum yields in the UV/vis/NIR/SWIR, lifetime multiplexing, and the development of different types of fluorescence standards for validating optical-spectroscopic measurements. T2 - Institutskolloquium IPHT CY - Jena, Germany DA - 22.10.2019 KW - Surface group analysis KW - NIR KW - SWIR KW - Quantum dot KW - Lanthanide KW - Cleavable probe KW - Lifetime KW - Multiplexing KW - Sensor KW - Assay PY - 2019 AN - OPUS4-49360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Pötzsch, Sina T1 - Compatibility of polymeric sealing materials with biodiesel heating oil blends at different temperatures N2 - Biodiesel is subject to degradation processes like oil and grease. The oxidative degradation products of vegetable oil esters in biodiesel particularly lead to enhanced sedimentation in blended fuels. The polarity of biodiesel increases its solvency and facilitates permeation and extraction. Solvation, swelling and/or extraction lead to changes in the physical properties and chemical changes of polymeric materials. It also accelerates the degradation (hydrolysis and oxidation) of these materials with the loss of additives and stabilizers. The objective of this research was to determine the resistance of frequently used polymeric materials such as ACM, EPDM, FKM, FVMQ, CR, CSM, IIR, HNBR, NBR, PA, PE; POM, PUR, PVC and VMQ in biodiesel and heating oil with 10 %/20 % biodiesel (B10/B20) at 40°C and 70°C. Mass, tensile strength and breaking elongation of the test specimens were determined before and after the exposure for 84 days in the biodiesel heating oil blends. The visual examination of some elastomer test specimens clearly showed the great volume increase until break or partial dissolution. Shore hardness A and D were determined before and after exposure of the test specimens in the biofuels for 42 days. The elastomers CR, CSM, EPDM, IIR, NBR and VMQ were generally not resistant to biodiesel and B10 at 40°C and 70°C. FKM, ACM, HNBR, PA, PE, POM, and PVC showed high compatibility in B10/B20 at 40°C. A lower compatibility was determined for ACM in biodiesel. ACM and HNBR were not resistant in B20 at 70°C. T2 - Biofuels & Bioenergy CY - Rome, Italy DA - 14.10.2019 KW - Heating oil-Biodiesel-Blend KW - Compatibility evaluations KW - Tensile properties KW - Shore hardness PY - 2019 AN - OPUS4-49306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Artinov, Antoni A1 - Karkhin, V. A1 - Bakir, Nasim A1 - Meng, Xiangmeng A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Lamé curves approximation for the assessment of the 3-D temperature distribution in keyhole mode welding processes N2 - A novel approach for the reconstruction of an equivalent volumetric heat source from a known weld pool shape is proposed. It is based on previously obtained weld pool geometries from a steady-state thermo-fluid dynamics simulation. Hereby the weld pool dimensions are obtained under consideration of the most crucial physical phenomena, such as phase transformations, thermo-capillary convection, natural convection and temperature-dependent material properties. The algorithm provides a time and calibration efficient way for the reproduction of the weld pool shape by local Lamé curves. By adjusting their parameters, the identification of the finite elements located within the weld pool is enabled. The heat input due to the equivalent heat source is assured by replacing the detected nodes’ temperature by the melting temperature. The model offers variable parameters making it flexible and adaptable for a wide range of workpiece thicknesses and materials and allows for the investigation of transient thermal effects, e.g. the cooling stage of the workpiece. The calculation times remain acceptably short especially when compared to a fully coupled process simulation. The computational results are in good agreement with performed complete-penetration laser beam welding experiments. T2 - International Congress on Applications of Lasers & Electro-Optics (ICALEO 2019) CY - Orlando, FL, USA DA - 07.10.2019 KW - Weld pool shape approximation KW - Keyhole mode laser beam welding KW - Numerical simulation KW - Superelliptic Lamé curves PY - 2019 AN - OPUS4-49309 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - A decoupling numerical approach for the study of hot cracking formation during high power keyhole mode welding of steel plates with a high sheet thickness N2 - The weld pool dynamics and shape play a fundamental role in keyhole mode welding. The presented work aims the experimental and numerical investigation of the influence of the weld pool characteristics on the formation of hot cracking. The experimental procedure allows recording the molten pool in the longitudinal section of a butt joint configuration of 15 mm thick structural steel and transparent quartz glass by using a high-speed video camera and two thermal imaging cameras. The observations show that the dimensions of the weld pool vary depending on the depth. The regions close to the surface form a teardrop-shaped weld pool. A bulge-region and its temporal evolution are observed approximately in the middle of the depth of the weld pool, where hot cracking appears. A numerical framework including models for the weld pool dynamics, global temperature field, transient stress state, crystal growth, diffusion and macro-segregation and subroutines for their one-way couplings is developed. The numerically obtained and experimentally observed results are in a good agreement. It is shown that the bulge-region leads to a delay in the solidification behavior, increased temporal tensile stresses and accumulation of impurities in the defect region and hence enhance the probability of hot cracking formation. T2 - Colloquium, Dept. Materials Science & Engineering, The Ohio State University CY - Columbus, Ohio, USA DA - 18.10.2019 KW - Keyhole mode welding KW - Weld pool shape KW - Bulge KW - Hot cracking PY - 2019 AN - OPUS4-49339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael A1 - Karkhin, V. T1 - Mathematical modeling of the geometrical differences between the weld end crater and the steady-state weld pool N2 - The geometrical characteristics of the weld end crater are commonly used for the validation of numerical results in welding simulation. A semi-analytical model calculating the cooling stage of the welding process after the moving energy source is turned off has been developed. A solution for various combinations of heat sources and workpieces has been found. The theoretical limits for the heat transfer of the absorbed energy during cooling in a thin plate and a semi-infinite body were studied. It is shown that after turning off the energy source, an additional melting of the base material in longitudinal direction may occur. The developed technique is applied to complete-penetration keyhole laser beam welding of a 2 mm thick austenitic chromium-nickel 316L steel plate at a welding speed of 20 mm/s and a laser power of 2.3 kW. The results show a theoretical increase of the weld end crater length in comparison to the length of the steady-state weld pool of up to 19 %. A shift of the centre of the end crater, in which the solidification of the liquid metal ends, towards the tail of the end crater relative to the axis of the heat source at the time of its termination, was computed. The speed and the direction of crystallization of the molten material in the weld pool and the end crater were found to be different. A good agreement between the computational results and the welding experiments was achieved. T2 - ICALEO 2019 - The International Congress on Applications of Lasers & Electro-Optics CY - Orlando, FL, USA DA - 07.10.2019 KW - Keyhole mode welding KW - Weld pool shape KW - End-crater KW - Heat conduction PY - 2019 AN - OPUS4-49341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erning, Johann Wilhelm A1 - Kamaraj, Abinaya T1 - Susceptibility of 304 stainless steel to crevice corrosion in electrochemically active fluids N2 - The crevice corrosion behaviour of stainless steel 304 L n ECA fluids is investigated. Results are described, rules for operation are suggested T2 - Ceocor-Tagung 2019 CY - Copenhagen, Denmark DA - 21.05.2019 KW - Desinfection KW - Crevice corrosion KW - ECA PY - 2019 AN - OPUS4-49280 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erning, Johann Wilhelm T1 - Observations of copper pitting corrosion in german tap waters N2 - In recent years, a new type of pitting corrosion is observed on half-had copper pipes. examples are given and possible reasons are discussed T2 - Eurocorr 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Water KW - Pitting KW - Corrosion KW - Copper KW - Drinking PY - 2019 AN - OPUS4-49281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erning, Johann Wilhelm A1 - Kamaraj, Abinaya T1 - Susceptibility of 304 stainless steel to crevice corrosion in electrochemically active fluids N2 - The susceptibility of AISI 304 stainless steel to crevice corrosion on the effect of contact with electrochemically active fluids was investigated using exposure and stepwise potentiostatic polarisation. Crevice materials made up of 304 SS and Polyether ether ketone (PEEK) forming two kinds of crevices including 304 SS-to-PEEK and 304 SS-to-304 SS were tested. T2 - Eurocorr 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - ECA KW - Crevice KW - Corrosion KW - Stainless KW - Steel PY - 2019 AN - OPUS4-49282 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erning, Johann Wilhelm T1 - A new type of copper pitting corrosion in german tap waters N2 - Half-hard copper pipes show pitting corosion under conditions until now seen as uncritical. Examples are discussed, possible causes described. T2 - MTECH 2019 CY - Porec, Croatia DA - 09.10.2019 KW - Drinking KW - Pitting KW - Corrosion KW - Copper KW - Water PY - 2019 AN - OPUS4-49283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kamaraj, Abinaya A1 - Erning, Johann Wilhelm A1 - Reimann, S. A1 - Ahrens, A. T1 - Susceptibility of 304 stainless steel to crevice corrosion in electrochemically active fluids N2 - The susceptibility of AISI 304 stainless steel to crevice corrosion on the effect of contact with electrochemically active fluids was investigated using exposure and stepwise potentiostatic polarisation. Crevice materials made up of 304 SS and Polyether ether ketone (PEEK) forming two kinds of crevices including 304 SS-to-PEEK and 304 SS-to-304 SS were tested. T2 - Corrosion 2019 NACE CY - Nashville, TN, USA DA - 24.03.2019 KW - Desinfection KW - Crevice corrosion KW - ECA PY - 2019 AN - OPUS4-49284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mansfeld, Ulrich A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Bartczak, D. T1 - New reference material candidates for traceable size measurement of non-spherical nanoparticles N2 - New model nanoparticles with well-controlled shape were synthesized within the EMPIR project nPSize - Improved traceability chain of nanoparticle size measurements. Their systematic characterization takes place by the traceable methods scanning/transmission electron microscopy, atomic force microscopy and small angle X-ray scattering. Following reference nanoparticle candidates are under investigation with respect to their homogeneity and stability: titania nanoplatelets (10-15 nm x 50-100 nm), titania bipyramides (~60 nm x 40 nm), titania acicular particles (100 nm x 15-20 nm; aspect ratio 5.5/6), gold nanorods (~10 nm x 30 nm), and gold nanocubes (~55 nm x 55 nm x 55 nm). T2 - HyMET Workshop on optical surface analysis methods for nanostructured layers CY - Berlin, Germany DA - 10.10.2019 KW - Nanoparticles KW - Reference materials KW - Traceability KW - Particle size distribution PY - 2019 AN - OPUS4-49285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Martin A1 - Lüth, Peter A1 - Frost, K. A1 - Kurth, Lutz A1 - Malow, Marcus A1 - Michael-Schulz, Heike A1 - Uhlig, S. A1 - Zakel, S. T1 - CEQAT-DGHS Interlaboratory Test Programme for Chemical Safety - Need of Test Methods Validation - N2 - Safety experts, manufacturers, suppliers, importers, employers or consumers must be able to rely on the validity of safety-related test methods and on correct test results and assessments in the laboratory. Via the eChemPortal lots of data from the REACH registration dossiers are available. However, the quality and correctness of the information remains in the responsibility of the data submitter. Unfortunately, we found more or less appropriate information on physicochemical properties and concluded that more quality or adequacy of any data submitted will be needed. Interlaboratory tests play a decisive role in assessing the reliability of test results. Interlaboratory tests on different test methods have been performed by Bundesanstalt für Materialforschung und –prüfung (BAM) and Physikalisch-Technische Bundesanstalt (PTB) in collaboration with the QuoData GmbH during the last 10 years. Significant differences between the results of the participating laboratories were observed in all interlaboratory tests. The deviations of the test results were not caused only by laboratory faults but also by deficiencies of the test method. In view of the interlaboratory test results the following conclusions can be drawn: • To avoid any discrepancy on classification and labelling of chemicals it should become state of the art to use validated test methods and the results accompanied by the measurement uncertainty. • A need for improvement is demonstrated for all examined test methods. Thus, interlaboratory tests shall initially aim at the development, improvement and validation of the test methods and not on proficiency tests. • The laboratory management and the practical execution of the tests need to be improved in many laboratories. • The term "experience of the examiner" must be seen critically: A "long experience with many tests" is not necessarily a guarantee for correct results. T2 - 16th International Symposium on Loss Prevention and Safety Promotion in the Process Industrie CY - Delft, Netherlands DA - 16.06.2019 KW - Gefahrgut KW - Gefahrstoff KW - Ringversuch KW - Validierung KW - Qualitätssicherung KW - Prüfmethode PY - 2019 AN - OPUS4-49568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Evans, Alexander T1 - Experimental investigation on cyclic R-curves for additively manufactured 316L steel N2 - The present study deals with the experimental characterization of short crack propagation in SLM (selective-laser-melting) manufactured stainless steel. More specifically, the determination of cyclic R-curves is discussed. This describes the dependency of the crack propagation threshold on crack growth during the short crack propagation stage. For metals, the threshold, starting at a material-intrinsic value, increases until it reaches a value independent of the crack length due to crack closure phenomena which build up at that stage. The cyclic R-curve, when used in the frame of a cyclic R curve analysis, characterizes the resistance of a material to fatigue crack growth and the ability to arrest a physically short crack. Thus, it is the link between classical fatigue and fracture mechanics. In the high-cycle-fatigue range, the short crack propagation stage dominates the overall lifetime, i.e., the number of cycles until failure. Below the fatigue limit crack arrest of hitherto propagable micro-cracks will occur. The effort for the experimental characterization of the short fatigue crack propagation behavior and the cyclic R-curve is very high compared to experiments on long crack propagation. A very exact measurement of crack extension is required, since small increments need to be depicted. Pre-cracking must leave a closure free initial crack, since closure must be build up only by the cyclic R-curve. The closure-free status is achieved by compression pre-cracking. The aim of the present study is an insight into the influence of an AM process on the short crack propagation threshold. Cyclic R-curves are experimentally determined at different load-ratios for 316L austenitic steel specimens produced by SLM and conventional manufacturing. Residual stresses are measured in the crack plane and their influence on the cyclic R-curve is discussed. T2 - ESIAM19 CY - Trondheim, Norway DA - 09.09.2019 KW - fatigue crack growth KW - Additive Manufacturing KW - 316L KW - Cyclic R-curve KW - Laser Powder Bed Fusion KW - AM KW - L-PBF PY - 2019 AN - OPUS4-49412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro A1 - Werner, Tiago A1 - Sprengel, Maximilian A1 - Evans, Alexander A1 - Serrano Munoz, Itziar A1 - Zerbst, Uwe T1 - Effect of residual stresses on crack propagation in Laser Beam Melted (LBM) additively manufactured 316L N2 - Residual stresses count among the most limiting factors in the application of additively manufactured materials in safety relevant components subject to cyclic loading. The source of such stresses is inherent in the manufacturing Laser Beam Melted (LBM) process due to rapid cooling and solidification and their distribution in the specimen or component is not homogeneous, but it is usually characterized by high gradients. Moreover, the magnitude of the residual stress field depends very much on the orientation, being higher in the build direction. Many works in the literature advise to carry out a post-LBM treatment to relieve residual stresses, even though particular attention should be paid in choosing the parameters for the thermal treatment in order to avoid microstructural/phase transformations, which would affect greatly the mechanical properties of the material. Particularly in the case of the austenitic stainless steel 316L, it has been shown that annealing at high temperatures (above 900°C), besides relieving the residual stresses, may cause recrystallization, grain growth and even phase transformation. In contrast, if a too low annealing temperature is chosen in order to preserve the microstructure, the residual stresses cannot be completely relieved. This work aims to address the effect of residual stresses on short and long crack propagation for SEN(B) specimens made of 316L fabricated by LBM, in which notches have been machined by electro-discharge machining (EDM) on the mid-plane, perpendicular to the build direction. The specimens underwent different annealing treatments in inert atmosphere, in which the maximum temperature has been varied up to 900°C. The amount of residual stresses and their distribution has been measured by X-ray and neutron diffraction and the specimens have been subject to cyclic loading in a resonant testing machine. The tests show a massive influence of the residual stresses in the build direction on the resistance to fatigue crack propagation of additively manufactured 316L. Finally, a comparison with conventionally manufactured 316L is presented. T2 - Fourth Symposium on Structural Integrity of Additive Manufactured Materials and Parts CY - Gaylord National Resort And Convention Center; National Harbor, MD, USA DA - 07.10.2019 KW - Fatigue Crack Propagation KW - Additive Manufacturing KW - Residual Stresses PY - 2019 AN - OPUS4-49415 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waurischk, Tina A1 - Balzer, R. A1 - Kiefer, P. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. A1 - Deubener, J. T1 - Subcritical crack growth in hydrous silicate glass N2 - Ambient water influences sub-critical crack growth (SCCG) from microscopic surface flaws, leading to stress corrosion at the crack tip. The complex influence of humidity accelerating slow crack propagation (region I) is well studied only for dry commercial NCS glass (< 1000 ppm water). To shed light on this influence, the effect of water is mimicked by studying SCCG water-bearing glasses. For this purpose, water-bearing silicate glasses of 8 wt% total water were synthesized at 0.5 GPa and compared to dry glasses. SCCG was measured in double cantilever beam geometry. For dry glasses, 3 trends in crack velocity vs. stress intensity, KI, curve were found. The slope in region I increases in the order NCS < NBS < BaCS < NZnS < NAS glass. The velocity range of region II, reflecting the transition between corrosion affected and inert crack growth (region III), varies within one order of magnitude among these glasses. The KI region of inert crack growth strongly scatters between 0.4 and 0.9 MPam0.5. For hydrous glasses, it is found that water strongly decreases Tg, form a new sub-Tg internal friction peak caused by molecular water, and makes the glasses more prone to SCCG. The observed trends will be discussed in terms of the effects of Youngs Modulus on the strain energy release rate and energy dissipation related to mechanical glass relaxation phenomena. T2 - 25th International Congress on Glass (ICG2019) CY - Boston, MA, USA DA - 09.06.2019 KW - Internal friction KW - Soda-lime silicate glass KW - Crack growth KW - Water content KW - DCB PY - 2019 AN - OPUS4-49536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kiefer, P. A1 - Deubener, J. A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Behrens, H. A1 - Balzer, R. T1 - Density, microhardness and elastic moduli of hydrous soda-lime silicate glasses N2 - The effect of structural water on density, elastic constants and microhardness of water-bearing soda-lime-silica glasses of up to 21.5 mol% total water is studied. T2 - 25th International Congress on Glass (ICG2019) CY - Boston, MA, USA DA - 09.06.2019 KW - Elastic constants KW - Soda-lime-silica glass KW - Water content KW - Microhardness PY - 2019 AN - OPUS4-49537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fayet, G. A1 - Rotureau, P. A1 - Wehrstedt, Klaus-Dieter A1 - Knorr, Annett T1 - Predictive Methods for Determining the Thermal Decomposition Properties of Hazardous Substances N2 - Due to the fast development and availability of computers, predictive approaches are increasingly used in the evaluation process of hazardous substances complementary to experiments. Their use was recommended as alternative to experimental testing by the REACH regulation to complete the lack of knowledge on properties for existing substances that must be registered before 2018 (upon quantities). Among the proposed predictive approaches, Quantitative Structure Property Relationships (QSPR) are powerful methods to predict macroscopic properties from the only molecular structure of substances. In that context, the HAZPRED project (2015-2018, founded by the SAF€RA consortium) aims to develop theoretical models (e.g. QSPR) and small-scale tests to predict complex physico-chemical properties (e.g. thermal stability, explosivity) of hazardous substances to complete the lack of knowledge on these hazardous substances quickly or to understand their decomposition behaviour better. In particular, this contribution will present the work done in this project on the physical hazards of organic peroxides and self-reactive substances: gathering of existing experimental data, new experimental campaigns, review of existing models and proposition of new estimation methods. T2 - 16th International Symposium on Loss Prevention and Safety Promotion in the Process Industries CY - Delft, The Netherlands DA - 16.06.2019 KW - Self-reactive substances KW - QSPR KW - HAZPRED KW - Organic peroxides PY - 2019 AN - OPUS4-49509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Kleinbub, Sherin A1 - Herrmann, Annett T1 - Investigation of methanogen-induced microbiologically influenced corrosion (Mi-MIC) using simulated marine environments under flowing conditions N2 - Microbiologically influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) in offshore industries, such as the oil and gas pipelines, due to the high concentrations of sulfate in the seawater. SRM act upon the metal by the reactiveness of hydrogen sulfide (HS-), and by withdrawal of the available electrons (Fe --> Fe2+ + 2e-; E° = -0.47 V) in electrical contact with the metal (EMIC). However, methanogenic archaea can also cause MIC. Because they do not produce HS-, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. To investigate the corrosion potential of methanogens, we studied the EMIC methanogenic strains isolated from marine sediments (Methanobacterium-affiliated strain IM1) and crude oil tanks (Methanococcus maripaludis Mic1c10), in an in-house developed flow-through cell to simulate a fluctuating environment. A co-culture of M. maripaludis and D. alaskensis was also established to study the effect of syntrophic growth on metal corrosion that may occur in industrial pipelines. Results indicate that the rates of iron corrosion due to coupled methanogenesis (up to 0.4 mm/yr) are higher to that caused by the marine SRM Desulfovibrio alaskensis (0.15 mm/yr). Surface analyses of the metal showed severe pitting with high methane production. Genomic analysis of the EMIC methanogen M. maripaludis Mic1c10 will provide an insight on the mechanisms of MIC. Such knowledge and deeper understanding also from an electrokinetic point of view may not only provide further models in microbial electrophysiology, but also contribute to mitigation strategies in MIC T2 - Einladung zum Kolloquium HZDR – Helmholtz-Zentrum Dresden-Rossendorf CY - Dresden, Germany DA - 24.09.2019 KW - Corrosion KW - MIC KW - Archaea KW - Methanogens KW - Environmental Simulation PY - 2019 AN - OPUS4-49403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea A1 - An, Biwen Annie A1 - Kleinbub, Sherin A1 - Herrmann, Annett T1 - Investigation of methanogen-induced microbiologically influenced corrosion (Mi-MIC) using simulated marine environments under flowing conditions N2 - Microbiologically influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) in offshore industries, such as the oil and gas pipelines, due to the high concentrations of sulfate in the seawater. SRM act upon the metal by the reactiveness of hydrogen sulfide (HS-), and by withdrawal of the available electrons (Fe --> Fe2+ + 2e-; E° = -0.47 V) in electrical contact with the metal (EMIC). However, methanogenic archaea can also cause MIC. Because they do not produce HS-, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. To investigate the corrosion potential of methanogens, we studied the EMIC methanogenic strains isolated from marine sediments (Methanobacterium-affiliated strain IM1) and crude oil tanks (Methanococcus maripaludis Mic1c10), in an in-house developed flow-through cell to simulate a fluctuating environment. A co-culture of M. maripaludis and D. alaskensis was also established to study the effect of syntrophic growth on metal corrosion that may occur in industrial pipelines. Results indicate that the rates of iron corrosion due to coupled methanogenesis (up to 0.4 mm/yr) are higher to that caused by the marine SRM Desulfovibrio alaskensis (0.15 mm/yr). Surface analyses of the metal showed severe pitting with high methane production. Genomic analysis of the EMIC methanogen M. maripaludis Mic1c10 will provide an insight on the mechanisms of MIC. Such knowledge and deeper understanding also from an electrokinetic point of view may not only provide further models in microbial electrophysiology, but also contribute to mitigation strategies in MIC T2 - Archaea Meeting-Schmitten VAAM Fachgruppe CY - Schmitten, Germany DA - 12.09.2019 KW - Corrosion KW - MIC KW - Archaea KW - Methanogens KW - Environmental Simulation PY - 2019 AN - OPUS4-49405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Charmi, Amir A1 - Falkenberg, Rainer A1 - Skrotzki, Birgit A1 - Ávila, Luis A1 - Sommer, Konstantin T1 - Virtual-lab-based determination of a macroscopic yield function for additively manufactured parts N2 - This work aims for an yield function description of additively manufactured (AM) parts of S316L steel at the continuum-mechanical macro-scale by means of so-called virtual experiments using a crystal plasticity (CP) model at meso-scale. Additively manufactured parts require the consideration of the specific process-related microstructure, which prevents this material to be macroscopically treated as isotropic, because of crystallographic as well as topological textures. EBSD/CT-Scans from in-house additively manufactured specimen extract the unique microstructural topology which is converted to a representative volume element (RVE) with grain structure and crystal orientations. Crystal plasticity model parameters on this RVE are calibrated and validated by means of mechanical testing under different texture angles. From virtual experiments on this RVE, yield loci under various loading conditions are simulated. The scale bridging from meso- to macro-scale is realised by the identification of the simulated yield loci as a modified anisotropic Barlat-type yield model representation. T2 - The First European Conference on Structural Integrity of Additively Manufactured Materials (ESIAM19) CY - Trondheim, Norway DA - 09.09.2019 KW - Virtual experiments KW - Additive manufacturing KW - Anisotropy KW - Crystal plasticity KW - Scale-bridging PY - 2019 AN - OPUS4-49376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meng, Xiangmeng A1 - Rethmeier, Michael A1 - Bachmann, Marcel T1 - Controlling the transport phenomena of filler wire in laser beam welding by magnetohydrodynamics: a theoretical and experimental study N2 - The deep penetration laser beam welding (LBW) has developed to one of the most promising metal joining methods in the modern manufacturing industry. It has well-known advantages of good penetration capacity, low heat input, high reachable welding speed and low welding distortion in comparison to conventional arc welding techniques. However, there are still challenges in LBW making the realization of the advantages difficult, such as porosity or inhomogeneous element distribution when using filler material. The magnetohydrodynamics technique is a promising way to solve these issues by introducing a suitable electromagnetic field, and correspondingly Lorentz force, to control the Transport phenomena in the weld pool. The underlying physics in wire feed laser beam welding with electromagnetic stirring were investigated numerically and experimentally. A three-dimensional transient heat transfer and fluid flow model coupled with dynamic keyhole, magnetic induction and element transport was developed for the first time. The electromagnetic behaviour as well as the temperature and velocity profiles, solidification parameters, keyhole evolution and element transport are calculated. The model is well tested against the experimental results. The beneficial effects from electromagnetic stirring (element homogenization and grain refinement) are explained quantitatively using the numerical data and the results from high-speed imaging, OM, EDX and EBSD. T2 - Adolf Martens Fellowship Colloquium CY - Berlin, Germany DA - 12.12.2019 KW - Laser beam welding KW - MHD PY - 2019 AN - OPUS4-50079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fritzsche, André T1 - Influence of Welding Parameters on Electromagnetic Supported Degassing of Die-Cadted and Wrought Aluminium N2 - Laser beam welding of aluminum die casting is challenging. A large quantity of gases (in particular hydrogen) is absorbed by aluminum during the die-cast manufacturing process and is contained in the base material in solved or bound form. After re-melting by the laser, the gases are released and are present in the melt as pores. Many of these metallurgic pores remain in the weld seam as a result of the high solidification velocities. The natural (Archimedean) buoyancy is not sufficient to remove the pores from the weld pool leading to process instabilities and poor mechanical properties of the weld. Therefore, an electromagnetic (EM) system is used to apply an additional buoyancy component to the pores. The physical mechanism is based on the generation of Lorentz forces, whereby an electromagnetic pressure is introduced into the weld pool. The EM system exploits the difference in electrical conductivity between poorly conducting pores (inclusions) and the comparatively better conducting aluminum melt to increase the resulting buoyancy velocity of the pores. Within the present study, the electromagnetic supported degassing is investigated in dependence on the laser beam power, welding velocity and electromagnetic flux density. By means of a design of experiments a systematic variation of these parameters is carried out for partial penetration laser beam welding of 6 mm thick sheets of wrought aluminum alloy AlMg3 and die-cast aluminum alloy AlSi12(Fe) where the wrought alloy serves as a reference. The proportion of pores in the weld seams is determined using X-ray images, computed tomography (CT-) images and cross-section images. The results prove a significant reduction of the porosity up to 70 % for both materials as a function of the magnetic flux density T2 - 38th International Congress on Applications of Lasers & Electro-Optics CY - Orlando, FL, USA DA - 07.10.2019 KW - AISI D2 KW - Laser implantation KW - Surface texturing KW - TiB2 PY - 2019 AN - OPUS4-50010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Kromm, Arne A1 - Serrano Munoz, Itziar A1 - Evans, Alexander T1 - Diffraction-based experimental determination of Residual Stress in AM parts: A critical discussion N2 - Additive manufacturing (AM) technologies have experienced an exceedingly rapid growth, not always paralleled by the knowledge about the materials properties and performance. In particular, residual stress (RS) has been soon recognized as an issue in AM parts, so that parts are always post-heat-treated. Moreover, much effort has been spent on simulating RS, especially using finite element methods. The experimental determination of RS has thereby become increasingly important, and even simple data constitute (to date) a piece of knowledge to fill the above-mentioned gap. In particular, diffraction methods, which are basically non-destructive, offer enormous possibilities to gain knowledge on real components, since neutrons and synchrotron radiation can penetrate even heavy metals up to several millimeters (or even centimeters). Indeed, some success has been obtained, and the knowledge about the origins of the RS fields, as well as their variation as a consequence of heat or mechanical treatments, has been greatly expanded. In this talk, a few success stories will be outlined. It will be shown how the determination of RS in metallic parts (with focus on those produced by laser powder bed fusion) has even allowed showing that process parameters that were considered unimportant play a major role in the onset of stress. However, while RS is starting to be considered in the part design, deposition strategy (e.g. build plate temperature), and even in the definition of the relevant metric to assess the quality of a part, much is still to be investigated about the hypotheses underlying its experimental determination. Therefore, some aspects to be aware of, or even to date unclear will also be discussed, such as the determination of the reference unstrained samples and of the principal axes of stress. All these aspects will draw the path towards a comprehensive understanding of the process-structure-performance relationships in AM materials and parts. T2 - MSTAM 2019 CY - Bremen, Germany DA - 10.12.2019 KW - Elastic Constants KW - Residual Stress KW - Additive Manufacturing KW - Neutron Diffraction PY - 2019 AN - OPUS4-50020 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hodoroaba, Vasile-Dan A1 - Mansfeld, Ulrich A1 - Hörenz, Christoph A1 - Pellegrino, F. A1 - Maurino, V. A1 - Marguet, S. A1 - Testard, F. A1 - Tache, O. A1 - Bartczak, D. A1 - Goenaga-Infante, H. T1 - Challenges in Traceable Size Measurement of Non-Spherical, Non-Monodisperse Nanoparticles - nPSize N2 - Size measurement of nanoparticles (NP) becomes a challenging analytical problem when non-spherical shapes must be traceably measured. However, most industrial NPs have irregular shapes and broad size distribution making it often more complex to follow European regulatory to identify a material as a nanomaterial according to which accurate measurement of the smallest dimension and its size Distribution is necessary. The European research project nPSize - Improved traceability chain of nanoparticle size measurements aims to fill this gap by developing potential non-spherical reference nanoparticles, measurement procedures and physical modelling to improve the traceability chain, comparability and compatibility for NP size measurements between different methods. Therefore, new model NP with well-controlled shape has been synthesized and are supposed to be systematically characterized using the traceable methods scanning/transmission electron microscopy, atomic force microscopy and small angle X-ray scattering. Following NP candidates are under investigation with respect to their homogeneity and stability: (i) titania nanoplatelets (10-15 nm thickness x 50-100 nm lateral), (ii) titania bipyramides (~60 nm length x 40 nm width), (iii) titania acicular particles (100 nm length x 15-20 nm width; aspect ratio 5.5/6), (iv) gold nanorods (~10 nm width x 30 nm length), and (v) gold nanocubes (~55 nm x 55 nm x 55 nm). In addition, sample preparation procedures as well as measurement analysis procedures with evaluation of appropriate measurands and descriptors for each material class and method are being developed to support standardization. To underpin the traceability of the size measurement of nonspherical NP, physical modelling of the signals in e.g. electron microscopy techniques will be used and in combination, the implementation of machine learning is aimed to facilitate measurement Analysis procedures, especially regarding the accurate thresholding/segmentation of the NPs.zeige mehr T2 - Nanoparticle Reference Materials - Production and Cerification Training Course CY - London, UK DA - 10.12.2019 KW - Nanoparticles KW - Traceability KW - Particle size distribution KW - Electron microscopy KW - Reference materials KW - Non-spherical shape PY - 2019 AN - OPUS4-50040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja A1 - Funk, Alexander A1 - Jaenisch, Gerd-Rüdiger A1 - Zscherpel, Uwe A1 - Moosavi, Robabeh A1 - Grunwald, Marcel A1 - Redmer, Bernhard A1 - Nazarzadehmoafie, Maryam T1 - X-ray non-destructive testing of materials and composites N2 - Functional materials for energy conversion are important technology drivers needed for the implementation of low carbon energy. Therefore, researchers commonly focus on improving the intrinsic properties of a functional material. However, for applications, the extrinsic properties are at least as important as the intrinsic ones. Consequently, it is important to investigate and understand the external and internal structure of semi-finished products and especially defect dependent properties. The extrinsic properties may change during application and the life cycle of the material as well as through processing and molding steps. Our studies show how X-ray tomographic (XCT) investigations can contribute to structure investigations in composites and massive samples using the example of magnetic materials for energy conversion. The components are tested non-destructively in 3D in order to localize and characterize cracks, pores, inclusions as well as other defects and their influence on the functional properties and also “in-time” during the life cycle of the material. Exsitu and in-situ experiments performed with non-destructive XCT are predestinated to follow damaging mechanisms of materials under certain load conditions, atmospheres or liquids, e.g. went through several working cycles of a functional material. By combining microtomography with other methods of magnetic and classical material characterization, unique statements about the structure and the functional properties can be made. From the applications point of view, sometimes complex, three-dimensional geometries are needed to fully exploit the functional properties of the materials, e.g. to ensure a high surface area for heat exchange. Since many functional materials are brittle and difficult to form, shaping is often a big challenge. In principle, additive manufacturing processes offer the possibility to produce complex, porous components from poorly formable alloys. If all stages of additive manufacturing are accompanied by X-ray tomographic imaging, the process of finding the optimal parameters for material processing can be significantly accelerated. Based on the quality control of the initial powder material used and also investigations of the shape and arrangement of defects within the molten structure and their relationship with the melting path scanning strategy, Xray tomography has proven to be an ideal tool for additive manufacturing, even for functional materials. Overall, tomographic methods are important tools for the development of functional materials to application maturity. T2 - Physikalisches Kolloquium TU Chemnitz CY - Chemnitz, Germany DA - 04.12.2019 KW - Non-destructuve testing KW - X-ray imaging KW - Additive manufacturing KW - Materials science PY - 2019 AN - OPUS4-50100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Emmerling, Franziska T1 - Mechanochemistrry - a time resolved perspective on unconventional crystallization N2 - Green chemsistry apporoach for the synthesis of metal organic frameworks. T2 - IFW BAM Workshop CY - Berlin, Germany DA - 25.11.2019 KW - Mechanochemistry KW - XRD KW - Metal-organic-frameworks PY - 2019 AN - OPUS4-50110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Colini, Claudia T1 - The Interdisciplinary Alchemist: Reproduction and Study of Black Inks from the Islamicate World N2 - The identification of the materials constituting an artefact is the basis of any correct conservation project, for this reason (among others) in the last 50 years analytical techniques have been applied to the study of manuscripts. Unfortunately, the scientific investigation of Arabic books is still uncommon, focusing mainly on single case studies, often producing unclear results, especially for black inks. This lack of knowledge prompted a recent research in which black ink recipes have been collected from written Arabic sources on bookmaking, their feasibility has been assessed, and finally some of them have been reproduced. These samples were artificially aged and analysed through an array of analytical techniques, mostly non-invasive and non-destructive, in order to build a database of Arabic inks and their ingredients and also to verify the detection limits of the portable equipment employed. In this talk I will present some instances of how this approach can help textual criticism, for example in evaluating variants and determining the competence of authors and compilers. At the same time the research highlights how much this scientific work depends on textual studies, especially concerning the identification of ingredients. Moreover, I will focus on some of the problematics I faced both during the textual interpretation and the actual reproduction of the recipes and how they influenced the results of the scientific analyses. In particular I’ll look into the role played by the degree of purity of the components and the function (real and perceived) of some of the ingredients. T2 - International Medieval Conference 2019 CY - Leeds, UK DA - 01.07.2019 KW - Black Ink KW - Arabic Recipes KW - Interdisciplinary PY - 2019 AN - OPUS4-50114 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Gröke, Carsten T1 - Maintenance and periodic inspections for packagings not requiring CA-approval N2 - In this presentation the main requirements of BAM-GGR 016 regarding maintenance and periodic inspections were explained. BAM ensures during acceptance of the quality management program that specific and relevant instructions for maintenance and periodic inspections are developed and handed to the operator of the packaging. Examples are given. T2 - FORO Iberoamericano CY - Madrid, Spain DA - 25.11.2019 KW - Maintenance KW - Periodic inspections KW - Radioactive material KW - Package PY - 2019 AN - OPUS4-50049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinsch, Stefan T1 - Glass N2 - Überblick über die Arbeitsschwerpunkte des Fachbereichs 5.6 Glas und die Vielfalt des Werkstoffs Glas. An Hand der Vakuumheißgasextraktion (VHE) werden einige Beispiele u.a. zur Bestimmung des Wassergehalts oder des Diffusionskoeffizienten von Wasserstoff in Gläsern gezeigt. Zum Schluss erfolgt ein Ausblick auf die im nächsten Jahr zur Verfügung stehende robotergestützte Glasscreening Anlage. N2 - Overview about the key activities of division 5.6 glass and the diversity of the material glass. For the vacuum hot extraction method (VHE-MS) some examples are presented e. g. for the measurement of water content or the determination of diffusion coefficient of hydrogen in glasses. Finally, an outlook is shown on the robot controlled glass screening device which will be available next year. T2 - BAM - IFW Workshop CY - Berlin, Germany DA - 25.11.2019 KW - Glass KW - Glass screening device KW - Vacuum hot extraction PY - 2019 AN - OPUS4-50452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem A1 - Wurzler, Nina A1 - Hampel, Marco A1 - Witt, Julia A1 - Schenderlein, Matthias T1 - In situ imaging of corrosion processes N2 - The presentation summarizes our recent results on the coupled electrochemical methods for high resolution corrosion studies. The combination of Scanning Electrochemical Microscopy (SECM) and multielectrode (MMA) based real-time corrosion monitoring was presented as a new method for achieving high time resolution in local electrochemical analysis. Correlative imaging by means of Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) was demonstrated as a tool for the investigation of local corrosion processes initiated by the intermetallic particles (IMPs) on AA2024-T3 aluminium alloy. T2 - BAM-IfW Workshop CY - Dresden, Germany DA - 28.03.2019 KW - MIC KW - Atomic Force Microscopy (AFM) KW - Corrosion monitoring KW - Corrosion PY - 2019 AN - OPUS4-50291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf T1 - Glass Sintering with Concurrent Crystallization and Foaming N2 - Glass powders are promising candidates for manufacturing a broad diversity of sintered materials like sintered ¬glass-ceramics, glass matrix composites or glass bonded ceramics with tailored mechanical, thermal, electrical and optical properties and complex shape. Its wide and precise adjustability makes this class of materials a key component for advanced technologies. Processing of glass or composite powders often allow even more flexibility in materials design. At the same time, however, processing can have substantial effects on the glass powder surface and sinterability. Thus, mechanical damage and surface contamination can strongly enhance surface crystallization, which may retard or even fully prevent densification. Whereas sintering and concurrent crystallization have been widely studied, partially as cooperative effort of the TC7 of the ICG, and although glass powder sintering is predominantly applied for glasses of low crystallization tendency, sintering is also limited by gas bubble formation or foaming. The latter phenomenon is much less understood and can occur even for slow crystallizing glass powders. The lecture illustrates possible consequences of glass powder processing on glass sintering, crystallization and foaming. T2 - 93rd Annual Meeting German Soc Glass Technol in conjunction with annual meeting French Union for Sci and Glass technol CY - Nuremberg, Germany DA - 13.05.2019 KW - Blähen KW - Glass KW - Kristallisation KW - Sintern PY - 2019 AN - OPUS4-50433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Reinsch, Stefan T1 - Dynamic Mechanical Analysis (DMA): Viscoelasticity N2 - Der Vortrag gibt einen Überblick über die am FB 56 der BAM betriebene Dynamisch-Mechanische Analyse mit dem Schwerpunkt auf Anwendungen für Glas N2 - The talk presents an overview over the method of Dynamic Mechanical Analysis used at the BAM division 5.6 Glass mainly focussed on glasses. T2 - Seminar Instrumentelle Analytik, Fakultät III Prozesswissenschaften, Lehrstuhl Keramik TU Berlin CY - Berlin, Germany DA - 25.01.2019 KW - Dynamisch Mechanische Analyse KW - Dynamic mechanical analysis KW - Glas PY - 2019 AN - OPUS4-50436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia A1 - Almalla, Ahed T1 - Application of atomic force microscopy (AFM) for in situ corrosion studies of thin film covered AA2024 T3 aluminium alloy surface N2 - The performance of functional coatings and adhesively joined hybrid components relies strongly on the stability of the polymer-metal interface. With the increasing utilization of multi-material structures in the automotive and aerospace industry, it is of great scientific and technical interest to understand the processes leading to interface degradation and to develop novel strategies to increase corrosion and delamination resistance. The aim of this project is to develop thin epoxy-based films and their carbon nanofiller loaded composites on aluminium alloy AA2024-T3 as a model system and to investigate their interfacial stability under corrosive and coupled corrosive-mechanical load. Spin coating was used for the layer-by-layer deposition of poly[(o-cresyl glycidyl ether)-co-formaldehyde] and poly-(ethylenimine) bi-layers. Atomic force microscopy (AFM) results indicate a very homogeneous and dense film with low surface roughness. Carbon nanofillers were introduced either by mixing into the coating components or in between individual layers to control the separation between the carbon nanofillers and alloy surface. The film chemistry and barrier properties were characterized by means of spectroscopic and electrochemical methods, respectively. The degradation and delamination behavior of the epoxy-based films was characterized by means of in situ AFM corrosion experiments. The quantitative imaging (QI) mode allowed the observation of hydrogen-generation induced blister formation during exposure to corrosive electrolyte and how the local corrosion processes evolved with exposure time. Complementary energy dispersive X-ray spectroscopy (EDX) analysis was performed to correlate the corrosion behavior with the different intermetallic particle chemistries and distributions. The presentation will summarize our results on the effect of interface chemistry and carbon nanofiller – alloy separation on the initiation of local corrosion processes on thin film covered AA2024-T3 aluminium alloys. T2 - EuroCorr2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Corrosion KW - Atomic Force Microscopy (AFM) PY - 2019 AN - OPUS4-50293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia A1 - Fernandes Jamar, Marina A1 - Stepien, Daniel T1 - In situ atomic force microscopy (AFM) analysis of materials under combined corrosive and mechanical load N2 - In service, most materials are operated under simultaneous corrosive and mechanical load and there are very few methods capable for testing material degradation under these conditions, especially when it comes to high resolution analysis. For this purpose, in this work, a tensile module capable of uniaxial stretching and compression with up to 5 kN force was integrated into an AFM stage. The elimination of the need for sample unmounting and remounting and the resulting possibility of keeping the sample under constant mechanical load during AFM measurements not only enables a precise positioning of the area of interest but also allows for the analysis of processes in the elastic deformation regime. This methodology was demonstrated for two case studies. Scanning Kelvin Probe Force Microscopy (SKPFM) was used as the main tool to characterize the deformation behavior. Moreover, a flexible electrochemical measurement cell was used to enable electrochemical analysis by means of electrochemical impedance spectroscopy (EIS) and Linear Sweep Voltammetry (LSV) during AFM measurements at different levels of strain. The in situ AFM results are complemented by microstructure analysis by means of electron backscatter diffraction (EBSD). In the first case study, the deformation induced delamination of a thin organic coating on AA2024 T3 aluminium alloy was investigated as a function of alloy surface treatment. The formation of cracks in the insulating passive film enabled an early detection of deformation processes by means of SKPFM. The second case study focused on the comparison of corrosion and deformation behavior of conventional and additively manufactured 316 stainless steels. In comparison to the conventional 316 stainless steel, the effect of processing was clearly detectable on the additively manufactured material as zones of inhomogeneous potential, which also affected the initiation of local corrosion processes. The contribution will provide detailed information on the new AFM setup and summarize our results from both case studies. T2 - EuroCorr2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Corrosion KW - Coupled corrosive and mechanial load KW - Atomic Force Microscopy (AFM) PY - 2019 AN - OPUS4-50294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia A1 - Schenderlein, Matthias A1 - Hampel, Marco A1 - Almalla, Ahed T1 - Coupled electrochemical, microscopic and spectroscopic techniques for the analysis of local corrosion and mic processes N2 - Summary of the research topics of the division 6.2 and recent results T2 - HZDR-IRE Institutscolloquium CY - Dresden, Germany DA - 24.09.2019 KW - MIC KW - Localised corrosion KW - Corrosion monitoring KW - Biofilmbildung KW - Atomic Force Microscopy (AFM) PY - 2019 AN - OPUS4-50295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Deubener, J. A1 - Müller, Ralf A1 - Waurischk, Tina A1 - Reinsch, Stefan A1 - Behrens, H. A1 - Balzer, R. A1 - Bauer, U. A1 - Kiefer, P. T1 - Micromechanical properties of hydrous oxide glasses N2 - Presentation of the results on structure and mechanical properties of water-bearing oxide glasses, which were found during the project at the locations Clausthal, Hanover and Berlin within the priority program SPP1594. T2 - 9th Otto Schott Colloquium CY - Jena, Germany DA - 09.09.2019 KW - Crack growth KW - Glass KW - Water content KW - Mechanical properties KW - IR PY - 2019 AN - OPUS4-50444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Li, Wei T1 - Fatigue on carbon fiber reinforced composite under thermal cycling: Progress in the microscopic experiment N2 - Fiber-reinforced-polymers (FRPs) are in current research focus in the lightweight construction industry, because of their extraordinary characteristics (stiffness and strength-to-density relation). The structure of polymer matrix and the interaction with reinforcement are crucial for optimization of the mechanical and thermal properties of FRPs. Due to the macromolecular chain structure, the mechanical properties of a polymer strongly vary with temperature: Below the glass transition, the chain segments of a polymer are “frozen”. Regarding fracture, the total changed energy during fracture if only dissipates for the generation of the new surfaces. However, in the region of the glass transition, the polymer chain segments start to get “unfrozen”, and the energy is not only required for generating new surfaces, but also for irreversibly deformation. This irreversible deformation is affected by the global temperature and the local temperature near the crack tip, which is affected by the local strain rate and crack propagation velocity. Hence, in this research project, the irreversible deformation of neat and reinforced polymers will be controlled by changing the global temperature as well as the local temperature. With using different fracture experiments, the amount of energy required for creating new surfaces and for the irreversible deformation will be separated. In this presentation, I summarized of the first 15 months the whole project. In this period, the basic crack propagation theory for neat polymers is established and the special fracture experiment sample is prepared and tested at room temperature. In addition, the model of the specimen is first established. T2 - Doktorandenseminar von Abteilung 5 CY - Berlin, Germany DA - 25.01.2019 KW - Crack Propagation KW - Polymer PY - 2019 AN - OPUS4-48473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical analysis of weld pool behavior in wire feed laser beam welding with oscillating magnetic field N2 - The introduction of an external magnetic field in laser beam welding can bring a lot of beneficial effects e. g. a homogeneous element distribution and grain refinement. However, the physical mechanism has not been fully revealed because it is difficult to describe the weld pool behavior quantitatively. In this work, the influence of an oscillating magnetic field in wire feed laser beam welding is studied using a three-dimensional transient multi-physical model. The magnetohydrodynamics, heat transfer, fluid flow, keyhole dynamics and element transport are all taken into consideration. Under suitable electromagnetic parameters, a significant electromagnetic stirring can be produced in the weld pool by the induced Lorentz force. It shows important influence on the keyhole stability and the fluid flow. The keyhole collapses more frequently at the upper part under the oscillating magnetic field. The forward and downward flow along the central plane of the weld pool is enhanced, which can bring the additional element from the filler wire to the root of the weld pool. There is a good agreement between the numerical results and the experiment results from the high-speed imaging, the optical micrograph and the energy dispersive X-ray spectroscopy. This work provides a fundamental understanding of the relationship between electromagnetic control, weld pool behavior and weld property. T2 - 72nd IIW Annual Assembly CY - Bratislava, Slovakia DA - 07.07.2019 KW - Numerical simulation KW - Weld pool behavior KW - Elemenet transport KW - Magnetic field PY - 2019 AN - OPUS4-48486 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thomas, Maximilian A1 - Vollert, F. A1 - Weidemann, Jens A1 - Gibmeier, J. A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - On the Accuracy of Standard Analysis Methods for (Trans-) Varestraint Solidification Cracking Testing N2 - Solidification cracking of metals is a well-researched topic in the field of welding science. A material’s susceptibility to solidification cracking can be tested using numerous different specialized test procedures, one of which is the Modified Varestraint-/Transvarestraint test (MVT). It was developed at BAM in 1982 and is internationally standardised. Over the decades, this test has been extensively used to characterise the solidification cracking resistance of many different materials. The present study was conducted to further investigate the influences of the standardised MVT testing parameters, as well as the characteristics of evaluation methods on the results. Several different high alloyed martensitic LTT (low transformation temperature) filler materials, CrNi and CrMn type, were used. In previous pilot studies, these alloys have shown a rather distinctive solidification cracking behaviour. First, the effects of different process parameter sets on the solidification cracking response were measured using the standard approach. Subsequently, μCT scans were performed on the specimens. The results consistently show sub surface cracking, to significant, yet varying extents. Different Primary solidification types were found using WDX-analysis, an aspect that is regarded to be the main difference between the CrNi- and CrMn-type materials and their cracking characteristics. Results show that when it comes to testing of modern high-performance alloys, one set of standard MVT testing parameters might not be equally suitable for all materials. Also, to properly accommodate different solidification types, sub-surface cracking has to be taken into account. T2 - 72th International Assembly of the International Institute of Welding (IIW) CY - Bratislava, Slovakia DA - 08.07.2019 KW - Heißriss KW - Erstarrungsriss KW - Hot Cracking KW - Solidification Cracking KW - MVT KW - Varestraint KW - Low Transformation Temperature KW - LTT PY - 2019 AN - OPUS4-48752 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stankevich, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael A1 - Straße, Anne T1 - Measurement of thermal cycle at multi-pass layer build-up with different travel path strategies during DLMD process N2 - The shape of the parts, created by the technology of direct laser metal deposition (DLMD), is influenced by various parameters, for example, the power and diameter of the laser source spot. The contribution of energy from the laser affects the temperature distribution in the formed layers. The changing temperature in the working area entails a change in the geometry of the layers and affects the stability of the process. In this paper, experiments on the measurement of temperature cycles in the DLMD process with different directions of the filling track are carried out. An infrared camera was used to measure thermal cycles. The calibration of the acquired data (i.e. correspondence table between the intensity of thermal radiation of the material and the absolute temperature) was done with help of two-color pyrometer ex situ and in situ measurements. The experiments are carried out on two materials 316L and Inconel 718. The effect of the maximum temperature on the layer height is shown, and thermal cycles in the formation of layers for different filling strategies are presented. T2 - Laser in Manufacturing CY - Munich, Germany DA - 24.06.2019 KW - Thermography KW - Direct Laser Metal Deposition PY - 2019 AN - OPUS4-48715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baensch, Franziska A1 - Brunner, A. J. T1 - Towards predictor development for assessing structural integrity of components made from wood materials using Acoustic Emission monitoring and signal analysis N2 - Against the background of sustainable resource management and efficiency, wood-based materials are currently experiencing a revival and, among others, plywood, Laminated Veneer Lumber and glued laminated timber are becoming increasingly more important in the building sector. Even though these materials are so-called engineered products, the element wood is naturally grown with intrinsic variability in mechanical properties and requires professional handling on-site. Otherwise, load-bearing structures made of wood materials may entail certain risks. Critical situations can, in principle, be avoided by implementing a structural health monitoring system into components or structures made from wood material. The aim is to indicate accumulation of mechanical damage and to eliminate or at least significantly reduce the risk of unexpected failure. Toward this purpose, the failure behavior of several layered wood materials under quasi-static tension was investigated in laboratory-scale experiments by means of acoustic emission (AE) measurement. Based on spectral analysis and pattern recognition, two classes of AE signals are identified for each investigated lay-up that are characterized by either low or high frequency contents in the respective power spectra. AE activity and intensity of both signal classes are analyzed, striving for predictors appropriate for AE monitoring concepts. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures CY - Potsdam, Germany DA - 27.08.2019 KW - Wood materials KW - Acoustic Emission KW - Structural integrity PY - 2019 AN - OPUS4-48802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Hildenberg, Kai A1 - Hrabe, N. T1 - Thoughts on damage tolerance and safe life design in metallic AM structures N2 - Der Vortrag bietet eine Diskussion zur Abschätzung des Schadenstoleranzverhaltens metallischer AM - Komponenten. Im Fokus stehen Probleme bei der Ermittlung repräsentativer Materialdaten, der Einfluss von Materialdefekten und Eigenspannungen. Ausgehend von derzeitigem Stand auf dem Gebiet werden Möglichkeiten der Schadenstoleranten Bauteileauslegung von AM diskutiert. N2 - The presentation provides a discussion and damage tolerant assessment of metallic AM components. In the focus are problems of the determination of representative material data, the effect of material defects and residual stresses. Starting with the actual state-of-the-art in the field, options and possibilities of a damage tolerant design for AM are discussed. T2 - BAM/NIST-Workshop on Fatigue of Additive Manufactured Metallic Components CY - Berlin, Germany DA - 16.05.2019 KW - Schadenstolerante Bauteilauslegung KW - Repräsentative Werkstoffeigenschaften KW - Defekte Eigenspannung KW - Damage tolerant component design KW - Representative material properties KW - Residual stresses PY - 2019 AN - OPUS4-48810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakir, Nasim A1 - Biltgen, J. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Influence of Partial Penetration Laser Hybrid Welding Parameters on the Solidification Cracking for Thick-Walled Structures N2 - In this study, the influence of the welding speed and the arc power on the solidification crack formation for partial penetration laser hybrid welded Thick-Walled plates were investigated. Experimentally, a linear correlation between the welding velocity and the crack number was observed. That is by reducing the welding velocity the crack number was reduced. The reduced welding velocity showed a strong impact on stress, as the model demonstrated a very lower stress amount in comparison to the reference case. The reduction of the welding speed could be a helpful technique to reduce the hot cracking. The wire feed speed showed a very slight influence on the crack formation. That can be returned to the large distance between the critical region for cracking and the arc region. T2 - Lasers in Manufacturing Conference 2019 CY - Munich, Germany DA - 24.06.2019 KW - Solidification cracking KW - Partial penetration laser hybrid welding KW - Numerical simulation PY - 2019 AN - OPUS4-48731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakir, Nasim A1 - Üstündag, Ö. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Experimental and Numerical Study on the Influence of the Laser Hybrid Parameters in Partial Penetration Welding on the Solidification Cracking in the Weld Root N2 - In this study, the influence of the welding speed, the arc power and the laser focal position on the solidification crack formation for partial penetration laser hybrid welded thick-walled plates were investigated. Experimentally, a direct correlation between the welding speed and the crack number was observed. That is by reducing the welding velocity the crack number was decreased. The focal position shows also a significant influence on the crack number. Since by focusing the laser on the specimen surface, the crack number has been significantly diminished. The wire feed speed showed a very slight influence on the crack formation. That is due to the large distance between the critical region for cracking and the arc region. The numerical model shows a high-stress concentration in the weld root for both components (vertical and transversal). Numerically, the reduced welding speed showed a strong impact on stress, as the model demonstrated a lower stress amount by decreasing the welding speed. The solidification cracking in the weld root is a result of interaction between metallurgical and geometrical and thermomechanical factors. T2 - The 72nd IIW Annual Assembly and International Conference 2019 CY - Bratislava, Slovakia DA - 07.07.2019 KW - Laser hybrid welding KW - Solidification cracking KW - Thick-walled steels KW - Partial penetration KW - High-power laser beam PY - 2019 AN - OPUS4-48736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane T1 - Unravelling high temperature oxidation phenomena by in situ x-ray techniques N2 - Unravelling high temperature oxidation phenomena by in situ x-ray techniques. A multi techqnique approach to study high temperature gas corrosion is presented. T2 - Gordon Research Conference on High Temperature Corrosion CY - New London, NH, USA DA - 20.07.2019 KW - Corrosion KW - High temperature KW - Diffraction KW - Spectroscopy PY - 2019 AN - OPUS4-48772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, David A1 - Ou, D. A1 - Ghafafian, Carineh A1 - Zscherpel, Uwe A1 - Trappe, Volker T1 - Wind turbine rotor blade testing by dual-energy laminography N2 - Modern wind turbine rotor blades consist of sandwich shell segments made from glass fiber reinforced polymers. During manufacturing, defects can arise which could lead to failure of the whole component under dynamic mechanical and thermal loads. Hence during operation defects can arise which, if detected, can be repaired locally and in-situ by applying repair patches instead of taking the whole rotor blade down and repair it remotely. This method is much more time and cost effective, since the shut-down time of the energy converter is limited to a minimum. These repair patches can, however, also lead to new defects if not applied optimally. Therefore, it is necessary to control the quality of the repair patches to ensure the best possible restoration of structural integrity of the component. As a rotor blade is an object with a large aspect ratio, X-ray laminography is predestined to provide 3D information of the objective volume. To enhance the amount of information gained from laminographic reconstruction, we use in this study a photon counting and energy discriminating X-ray detector and apply a material decomposition algorithm to the data. By inherently separating the incident spectra within the detection process into two distinct energy bins, the basis material decomposition can provide material resolved images. Choosing glass and epoxy resin as basis materials and numerically solving the inverse dual-energy equation system, the reconstructed laminographic datasets contain highly valuable information about the distribution of the basis materials within the structure. Furthermore, cross- artifacts arising from the limited angle of the projection data can be reduced by this method which allows to investigate structures that were hidden underneath the artefacts. T2 - 1st International Symposium on Photon Counting Technologies & Applications CY - München, Germany DA - 05.07.2019 KW - Laminography KW - Wind energy KW - Fiber reinforced polymer KW - Photon counting detector KW - Dual-energy PY - 2019 AN - OPUS4-48440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Léonard, Fabien T1 - Good practice guide on the correct choice of characterisation technique based on level of accuracy and type of measurement N2 - The characterisation of AM structures is an important aspect of the AM process, required in order to: 1. optimise the AM printing process 2. assess the quality of produced parts A wide range of characterisation techniques are available, and the selection can be complex, based on multiple factors. One output from the MetAMMi project is a good practice guide on the correct choice of characterisation technique. T2 - Workshop on additive manufacturing CY - Berlin, Germany DA - 13.05.2019 KW - X-ray computed tomography KW - Mechanical properties KW - Microstructural analysis KW - Defect detection PY - 2019 AN - OPUS4-48262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Wille, Frank T1 - Fire reference test for IAEA package thermal testing in a propane gas fire test facility N2 - Packages for the transport of radioactive material shall withstand severe accidents. Therefore, the IAEA Regulations define different test scenarios to cover severe hypothetical accident conditions. One of these tests defined in detail is the thermal test, mainly consisting of a 30 minute fully engulfing 800 °C pool fire or an equally severe fire test. The heat fluxes into the package are of significant importance and depend substantially on the fire characteristics and the surface temperature of the package. In order to investigate the heat fluxes over a wide range of surface temperatures during a propane gas fire test and to get information about local fire impact a fire reference package, representing the outer geometry of a specific type of transport cask for radioactive waste, was designed. A closed steel sheet cylinder with a wall thickness of 10 mm was chosen as fire reference package. The cylinder was filled with refractory insulation material and instrumented with thermocouples distributed all over the cylinder. The local steel sheet temperatures measured allow the determination of local as well as global heat fluxes as a function of time and surface temperature. With this fire reference package three open-air propane gas fire tests were performed at BAM’s open air fire test stand. The flame exposure time period was changed for the different fire tests. Furthermore, the wind conditions changed between and during the tests. Test stand parameters like wind shield location and propane gas volume flow were chosen constant for the three tests. The test results were used to determine the changes of heat flux into the fire reference package in relation to the package surface temperature. This data also allows the calculation of local characteristics of the propane gas fire as there are the flame temperature, the fire convection coefficient and the radiation exchange coefficient in a first approach. The recently conducted tests provide an initial picture of local fire characteristics of the propane gas fire test facility. The test shows that the propane gas fire covers the IAEA-fire over a wide range of surface temperatures with the chosen test stand parameters. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Thermal testing KW - Convection coefficient KW - IAEA fire KW - Propane gas fire test facility PY - 2019 AN - OPUS4-48841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mieller, Björn A1 - Rabe, Torsten T1 - Design and fabrication of ceramic springs N2 - Ceramic springs offer versatile possibilities for load bearing or sensor applications in challenging environments. Although it may appear unexpected, a wide range of spring constants can be implemented by material selection and especially by the design of the spring. Based on a rectangular cross-section of the windings, it is possible to design a spring geometry that generates the desired spring constant simply by choosing appropriate diameter, height, widths, and number of windings. In a recent research project the calculation of helical compression springs made of rectangular steel (German standard DIN 2090) was applied for the design of ceramic springs. A manufacturing technology has been worked out to fabricate such springs from hollow cylinders of several highly dense technical ceramics by milling. Ceramic springs with precise rectangular section, without edge damage, and mean surface roughness smaller than 0.2 µm were produced after parameter optimization. Tolerances of less than 10 µm were achieved regarding spring diameter, height, and width of cross section. It is shown that the calculations outlined in the standard are valid for a variety of ceramic materials as well. Demonstrator springs with a wide range of spring constants have been fabricated, including zirconia springs with 0.02 N/mm, alumina springs with 1 N/mm and Si3N4 springs with 5 N/mm. A reproducibility study of six zirconia springs with a constant of 0.3 N/mm showed a relative difference in spring constants of less than +/- 1 %. This combination of a valid calculation approach for spring geometry and a reliable manufacturing technology allows for purposeful development and fabrication of ceramic springs with precise mechanical properties and superior chemical stability. T2 - EUROMAT 2019 CY - Stockholm, Sweden DA - 01.09.2019 KW - Ceramic spring KW - Hard machining KW - Spring constant PY - 2019 AN - OPUS4-48870 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano Munoz, Itziar A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Bruno, Giovanni T1 - Influence of scanning strategies on the development of residual stresses in a LPBF IN718 alloy N2 - This presentation is a brief summary on the activites that 8.5 division has been carrying out on the measurements of residual stresses of a Laser Power Bed Fusion IN718 alloy. T2 - Euromat 2019 CY - Stockholm, Sweden DA - 02.09.2019 KW - Laser Powder Bed Melting KW - AM IN718 alloy KW - Residual stresses KW - Neutron diffraction KW - Synchrotron Energy Dispersive Diffraction PY - 2019 AN - OPUS4-48895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Comparison of different test methods for lifetime prediction of O-ring seals N2 - Elastomeric O-ring seals are used in a wide range of applications due to their excellent elasticity. However, like all polymers, elastomers degrade under the influence of e.g. time, temperature, oxygen, radiation and mechanical stress. Especially in applications where a replacement of seals after a certain time is hard or almost impossible, it is important to know the seal lifetime. Therefore, an extensive ageing programme with elastomers made of EPDM, HNBR and other materials was started with the aim of determining suitable methods for accelerated ageing and lifetime prediction. In order to determine the lifetime of polymeric parts, the time-temperature superposition principle is commonly used to shift property changes obtained by accelerated ageing at higher temperatures to lower temperatures. If the shift factors yield a straight line in an Arrhenius diagram, a corresponding activation energy can be determined. However, we have found that the shift factors and thus the predicted lifetime depends on the test method that yielded the shifted data. For example, the shift factor between 125 °C and 150 °C ageing temperature was roughly the same (5/5/4.5 respectively) for hardness, density and maximum of loss factor tan  measured on HNBR, but different for elongation at break (8) and compression set (2.2, excluding DLO-affected data). A possible explanation might be that while the different oxidation reactions proceed with a fixed activation energy, they have differing impact on the measured properties. For example, hardness is lowered by chain scission reactions, and increases by crosslinking reactions during ageing. As usually both chain scission and crosslinking reactions occur during ageing, the measured hardness increase reflects only the net effect of both reaction types. On the other hand, compression set is influenced additively by both reaction types: chain scission leads to an increase of the remaining deformation, as broken chains lose their recovery potential, and crosslinking reactions during ageing fix the compressed geometry, which also leads to less recovery. Thus, compression set reflects the total number of changes in the network and shows degradation effects much faster, which results in lower shift factors and lower activation energy. This phenomenon was observed for EPDM as well. In order to verify our hypotheses and to gain further insights, temperature-dependent oxygen consumption measurements are currently being performed and results will be presented at the conference. The shift factors and activation energy determined by oxygen consumption measurements are expected to be close to the values for compression set. T2 - Polymer Degradation Discussion Group Conference CY - Malta DA - 01.09.2019 KW - Compression set KW - Time-temperature superposition KW - Arrhenius KW - HNBR KW - EPDM KW - FKM KW - Activation energy PY - 2019 AN - OPUS4-48907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lugovtsova, Yevgeniya A1 - Johannesmann, S. A1 - Henning, B. A1 - Prager, Jens T1 - Analysis of Lamb wave mode repulsion and its implications to the characterisation of adhesive bonding strength N2 - Lamb waves are widely used for non-destructive evaluation of material parameters as well as for detection of defects. Another application of Lamb waves is quality control of adhesive joints. Researchers are currently investigating shear horizontal and zero-group velocity modes for characterisation of the adhesive bonding strength. In a new approach, Lamb wave mode repulsion is used to obtain the coupling strength between different layers to characterise the adhesive bonding strength. The modes of the individual layers become coupled in the multilayered systems forming particular regions, the so-called mode repulsion regions. This study investigates these modes and their interaction in two-layered plate-like structures with varying coupling strength both numerically, with the Scaled Boundary FEM, and experimentally. T2 - International Congress on Ultrasonics CY - Bruges, Belgium DA - 03.09.2019 KW - Lamb waves KW - Multi-layered system KW - Adhesive joint KW - Mechanical strength KW - Scaled Boundary FEM PY - 2019 AN - OPUS4-48910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Buljak, V. A1 - Bruno, Giovanni T1 - Modeling of elastic modulus evolution in porous ceramics due to thermally induced cracking N2 - Within polycrystalline porous ceramics used in automotive applications as diesel particulate filters, it is evidenced that during cooling from firing temperature micro cracks are gradually formed. The cracks are formed as a consequence of strong thermal anisotropy of grains. Typically these micro cracks are granting better thermal shock resistance, with respect to dense materials, but reduce stiffness. The reduction can be quantified by measuring the drop in elastic properties of bulk material which, depending on the level of porosity, can decrease even by 50% with respect to its value at high temperature. It is further observed that upon subsequent heating these cracks are closing and partially or totally healing at very high temperatures. Such peculiar behavior results in partial or complete recovery of the elastic properties of bulk material upon completing one thermal cycle. Despite its evident practical application, still there is no constitutive description of this phenomenon, capable of predicting the evolution of Young's modulus as a function of temperature history. For reliable numerical simulation of this phenomenon, it is required to model fracture. To model inter-crystalline fracture, an effective strategy is to use cohesive elements, since crack patterns are a priori known. Major limitation of this approach is that the cohesive elements already implemented within commercial codes cannot take into account crack healing upon subsequent heating. In this study new cohesive element is developed and numerically implemented within ABAQUS commercial finite element code, capable to model crack opening, closing and healing. Further on, a computer code is generated to build numerical model of porous ceramic specimens that takes into account experimentally measured crystallographic orientation and porosity, and models the microstructure by using Voronoi polygons. The developed numerical tools serve as a framework for more realistic simulations, required to study the hysteresis in elastic properties within porous ceramics provoked by thermal cyclic. In a subsequent phase, an inverse analysis procedure is developed, in which macroscopic properties are used to calibrate parameters entering into micro crack model. The approach is centered on a minimization of a discrepancy function designed to quantify the difference between experimentally measured quantities and their computed counterpart. The model is calibrated on the basis of experimental data regarding the drop of bulk Young's modulus with decrease of temperature. Developed procedure is tested with porous cordierite sample, and obtained results are quit promising despite the current limitation of using only two-dimensional model. T2 - European Ceramic Society Conference 2019 CY - Turin, Italy DA - 16.06.2019 KW - Microcracking KW - Cordierite KW - Inverse Problems KW - Finite elements KW - Cohesive Elements KW - Young's modulus PY - 2019 AN - OPUS4-48926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rethmeier, Michael A1 - Üstündag, Ö. A1 - Gumenyuk, Andrey T1 - Single-pass Hybrid Laser Arc Welding of Thick Materials Using Electromagnetic Weld Pool Support N2 - Hybrid laser-arc welding process allows single-pass welding of thick materials, provides good quality formation of joints with minimal thermal deformations and a high productivity in comparison with arc-based welding processes. Nevertheless, thick-walled steels with a thickness of 20 mm or more are still multi-pass welded using arc welding processes, due to increased process instability by increasing laser power. One limitation factor is the inadmissible formation of gravity drop-outs at the root. To prevent this, an innovative concept of electromagnetic weld pool support is used in this study. With help of such system a stable welding process can be established for 25 mm thick steel plates and beyond. Sound welds could be obtained which are tolerant to gaps and misalignment of the welded parts. The adaptation of this system to laser and hybrid laser-arc welding process can dramatically increase the potential field of application of these technologies for real industrial implementation. T2 - Lasers in Manufacturing Conference 2019 CY - Munich, Germany DA - 24.06.2019 KW - Full Penetration KW - Hybrid Laser Arc Welding KW - Electromagnetic Weld Pool Support KW - Thick Materials PY - 2019 AN - OPUS4-48975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rethmeier, Michael A1 - Gook, S. A1 - Üstündag, Ö. A1 - Gumenyuk, Andrey T1 - Avoidance of end crater imperfections at high-power laser beam welding of closed circumferential welds N2 - The present work deals with the development of a strategy for the prevention of end crater defects in high-power laser welding of thick-walled circumferential welds. A series of experiments were performed to understand the influence of the welding parameters on the formation of end crater defects such as pores, cracks, excessive root-side drop-through and shrinkage cavities in the overlap area. An abrupt switch-off of the laser power while closing the circumferential weld leads to a formation of a hole which passes through the whole welded material thickness. A laser power ramp causes solidification cracks which are initiated on the transition from full-penetration mode to partial penetration. Strategies with a reduction of the welding speed shows a creation of inadmissible root sagging. Defocusing the laser beam led to promising results in terms of avoiding end crater defects. Cracks and pores in the overlap area could be effectively avoided by using defocusing techniques. A strategy for avoiding of end crater imperfections was tested on flat specimens of steel grade S355J2 with a wall thickness of 10 mm and then transferred on the 9.5 mm thick pipe sections made of high-strength steel X100Q. T2 - The 72nd IIW Annual Assembly and International Conference 2019 CY - Bratislava, Slovakia DA - 07.07.2019 KW - End crater KW - Laser beam welding KW - Circumferential welds PY - 2019 AN - OPUS4-48976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rethmeier, Michael A1 - Üstündag, Ö. A1 - Gook, S. A1 - Gumenyuk, Andrey T1 - Mechanical Properties of Single-pass Hybrid Laser Arc Welded 25 mm Thick-walled Structures Made of Fine-grained Structural Steel N2 - The presented study deals with the performing and mechanical testing of single pass hybrid laser-arc welds (HLAW) on 25 mm thick plates made of steel grade S355J2. One of the challenges have to be solved at full penetration HLAW of thick plates is the drop formation occurring due to the disbalances of the forces acting in the keyhole and on the melt pool surface. Such irregularities mostly limit the use of high-power laser beam welding or HLAW of thick-walled constructions. To overcome this problem, an innovative concept of melt pool support based on generating Lorentz forces in the weld pool is used in this work. This method allows to perform high quality welds without sagging even for welding of 25 mm thick plates in flat position at a welding speed of 0.9 m min-1. For the obtain of full penetrated welds a laser beam power of 19 kW was needed. A high V-impact energy of up to 160 J could be achieved at the test temperature of 0 °C. Even at the most critical part in the weld root an impact energy of 60 J in average could be reached. The tensile strength of the weld reaches that of the base material. An introduce of the HLAW process with electromagnetic support of the melt pool in the industrial practice is an efficient alternative to the time- and cost-intensive arc-based multi-layer welding techniques which are established nowadays for joining of thick-walled constructions. T2 - 17th Nordic Laser Materials Processing Conference - NOLAMP17 CY - Trondheim, Norway DA - 27.08.2019 KW - Full Penetration KW - Hybrid Laser Arc Welding KW - Electromagnetic Weld Pool Support KW - Thick Materials PY - 2019 AN - OPUS4-48977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Schröder, Volkmar T1 - The influence of strong ignition sources on the explosion and decomposition limits of gases N2 - Explosion and decomposition limits of flammable and chemically unstable gases were determined experimentally in a dosed autoclave with varying ignition energy up to 1000 J. The ignition source was a lightning arc caused by an exploding wire igniter as described in EN 1839 B .. In case of methane only the upper explosion limit was influenced significantly by the ignition energy, whereas the lower explosion limit was constant. In case of R32 however. it was the lower explosion limit that was influenced significantly by the ignition energy and not the upper explosion limit. A particularly strong dependency from the ignition energy was found for the decomposition limits of the chemically unstable gases in nitrogen. T2 - 16th International Symposium on Loss Prevention and Safety Promotion in the Process Industries CY - Delft, The Netherlands DA - 16.06.2019 KW - Explosionsgrenzen KW - Zündenergie KW - Chemisch instabile Gase KW - Kältemittel KW - Zündquellen PY - 2019 AN - OPUS4-48993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -