TY - CONF A1 - Reinemann, Steffi T1 - Optimierung industrieller Korundschleifprozesse zur Sicherstellung der Korrosionsbeständigkeit nichtrostender Stähle N2 - In dem Vortrag wird das AiF-Vorhaben 18823 N/1 vorgestellt und der aktuelle Fortschritt zum Einfluss von Schleifprozessen auf die Korrosionsbeständigkeit nichtrostender Stähle präsentiert. T2 - Arbeitskreissitzung „Korrosionsuntersuchung und -überwachung“ des GfKORR e. V. CY - Magdeburg, Germany DA - 21.11.2017 KW - Korrosion KW - Corrosion KW - Korundschleifen KW - Corundum grinding KW - Nichtrostende Stähle KW - Stainless steels PY - 2017 AN - OPUS4-43050 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - The impact of methanogenic Archaea on material, environment and health N2 - Different environmental samples reveal that methanogenic Archaea are part of a multi-species biofilm on corroding metallic structures (Fig. 1). Studies on microbial influenced corrosion (MIC) focus mainly on sulphate reducing Bacteria (SRB), leading to the assumption that they are exclusively responsible for metal corrosion. In fact, methanogenic Archaea are known to be involved in metal corrosion as well (e.g.Methanococcus maripaludis DSM 2067). In some cases SRB and methanogenic Archaea have comparable high corrosion rates. However, the underlying mechanisms causing corrosion are still unknown. The goal of this study is to analyse two environmental isolates (M. maripaludis DSM 2067, M. maripaludis KA1) and two human-related isolates (Methanobrevibacter oralis and Methanobrevibacter smithii) for their ability to deteriorate/transform metals, which are relevant for technical and clinical applications. Moreover, the studies will provide essential information on the interaction mechanisms of human-related Archaea, which are frequently found in peri-implantitis, with dental material such as implants, crowns and bridges leading to their degradation/transformation. T2 - IBRG-Tagung CY - Berlin, Germany DA - 26.04.17 KW - Biofilm KW - Corrosion KW - Implants KW - Methanogens KW - Archaea KW - Anaerob PY - 2017 AN - OPUS4-42492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela T1 - SiO2-containing organic coatings for geothermal application N2 - Geothermal brine is considered to be an aggressive environment as it contains various dissolved salts. Even though carbon steel is commonly used as a construction material due to its machinability and economical reason, it is susceptible to uniform and localized corrosion in a high temperature and high pressure system. Therefore, a coating system is introduced to protect the carbon steel against corrosion in such environment. -It is necessary to find the optimum composition of SiO2 addition in the organic coatings to enhance the material performance, i.e. coatings adhesion, thickness optimization, thermal resistance. Current project aims at the addition of Polyaniline (PANi) as the active agent to improve the corrosion resistance of materials against a high saline medium at elevated temperatures. T2 - BAM PhD Day CY - Berlin, Germany DA - 21.09.2017 KW - Geothermal KW - Corrosion KW - Coating PY - 2017 AN - OPUS4-43362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela T1 - Polyaniline/SiO2 Containing Coatings for Geothermal Application N2 - Geothermal brine is considered to be an aggressive environment as it contains various dissolved salts. Even though carbon steel is commonly used as a construction material due to its machinability and economical reason, it is susceptible to uniform and localized corrosion in a high temperature and high pressure system. Therefore, a coating system is introduced to protect the carbon steel against corrosion in such environment. 1. Carbon steel is susceptible to uniform corrosion in presence of oxygen, with corrosion rate of immersion at 150 °C of 0.39 mm/a. 2. Exposure test of carbon steel at 150°C and 10 bar (pressurized by Ar) results in pitting corrosion with depth of 19 µm and width 4 µm on average. 3. OCP measurement shows that the stability of measurement is reached after 40 hours of immersion in the solution. 4. EIS measurement is useful to observe the effect of temperature, immersion time, and coating composition on the corrosion processes of coated metals for use in geothermal application. T2 - FU Forschungsseminar CY - Berlin, Germany DA - 28.11.2017 KW - Geothermal KW - Corrosion KW - Coating PY - 2017 AN - OPUS4-43363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Kranzmann, Axel A1 - Wolthusen, Helmut T1 - Unusual Corrosion Behavior of 1.4542 Exposed a Laboratory Saline Aquifer Water CCS-Environment N2 - Differently heat treated coupons of 1.4542 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h - 8000 h in an a) water saturated supercritical CO2 and b) CO2-saturated synthetic aquifer environment similar to on-shore CCS-sites in the Northern German Basin. Surface corrosion layers are homogeneous but unusually discontinuously ellipsoidal. After 8000 h at 100 bar maximum corrosion rate in the liquid phase is approximately 0.014 mm/year, with normalizing providing best corrosion resistance and approximately 0.003 mm/year in the supercritical phase where hardening+tempering at 670 °C leads to lowest corrosion rates. KW - CO2-storage KW - Supercritical CO2 KW - Steel KW - Pipeline KW - Corrosion KW - CCS PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-418472 DO - https://doi.org/10.1016/j.egypro.2017.03.1679 VL - 114 SP - 5229 EP - 5240 PB - Elsevier Ltd. AN - OPUS4-41847 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Kranzmann, Axel T1 - Borehole integrity of austenitized and annealed pipe steels suitable for carbon capture and storage (CCS) N2 - Properties of pipe steels for CCS (carbon capture and storage) technology require resistance against the corrosive environment of a potential CCS-site (heat, pressure, salinity of the aquifer, CO2-partial pressure). The influence of austenitzing in heat treatment routines of two different injection pipe steels (1.4034, X46Cr13 and 1.4021, X20Cr13) was evaluated. Steel coupons were austenitized at different temperatures (900- 1050 °C) for different lengths of time (30-90 min) before quenching and annealing prior to long term corrosion experiments (60°C, 100 bar, artificial brine close to a CCS-site in the Northern German Basin, Germany). In general, fewer pits are found on X46Cr13. Comparing steels with 13% chromium each the higher carbon content of X46Cr13 (0.46% C) results in a lower number of pits compared to X20Cr13 (0.20% C). It is found that neither the carbon content of the steels nor austenitizing temperature has much influence, but local corrosion behaviour is most susceptible towards austenitzing time. T2 - International Conference on Future Environment and Energy CY - Pattaya, Thailand DA - 23.01.2016 KW - Corrosion KW - CCS KW - Carbon storage KW - Aquifer KW - Austenitizing PY - 2017 SP - Article A0005, 213 EP - 219 AN - OPUS4-41854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Babutzka, Martin A1 - Reinemann, Steffi T1 - Influence of corundum grinding processes on the corrosion behaviour of austenitic stainless steels N2 - The scientific poster shows by means of corrosion testing in combination with surface analytical methods to which degree corundum grinding influences the corrosion behaviour of stainless steel surfaces. The austenitic stainless steel AISI 304 from a consistent heat was used for all investigations to guarantee the same chemical composition and thus no additional influences caused by the material itself. A wide range of different grinding parameters such as pressure, cooling medium and grain size of the abrasive was varied. Thus, comparison of the corrosion behaviour of different surface states and the evaluation of an optimum grinding process using corundum abrasives were possible. The results will contribute to present discussions and give novel impulses for companies in the metalworking industry. T2 - Eurocorr 2017 CY - Prague, Czech Republic DA - 03.09.2017 KW - Korrosion KW - Corrosion KW - Korundschleifen KW - Corundum grinding KW - Nichtrostende Stähle KW - Stainless steels PY - 2017 AN - OPUS4-41896 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - Methanogene Archaea - The impact of methanogenic Archaea on material, environment and health N2 - Different environmental samples reveal that methanogenic Archaea are part of a multi-species biofilm on corroding metallic structures (Fig. 1). Studies on microbial influenced corrosion (MIC) focus mainly on sulphate reducing Bacteria (SRB), leading to the assumption that they are exclusively responsible for metal corrosion. In fact, methanogenic Archaea are known to be involved in metal corrosion as well (e.g. Methanococcus maripaludis DSM 2067). In some cases SRB and methanogenic Archaea have comparable high corrosion rates. However, the underlying mechanisms causing corrosion are still unknown. The goal of this study is to analyse two environmental isolates (M. maripaludis DSM 2067, M. maripaludis KA1) and two human-related isolates (Methanobrevibacter oralis and Methanobrevibacter smithii) for their ability to deteriorate/transform metals, which are relevant for technical and clinical applications. Moreover, the studies will provide essential information on the interaction mechanisms of human-related Archaea, which are frequently found in peri-implantitis, with dental material such as implants, crowns and bridges leading to their degradation/ transformation. T2 - EMBO-Course CY - Wageningen, The Netherlands DA - 24.07.2017 KW - Corrosion KW - Methanogens KW - Biofilm KW - Implants PY - 2017 AN - OPUS4-41899 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Thoralf T1 - Long term corrosion behavior of stainless steel in maritime atmosphere N2 - In the context of a research project carried out by BAM, nine different steel alloys were exposed to maritime environmental conditions at the German Island of Helgoland over a period of five years and their corrosion behavior was compared and evaluated. In order to evaluate the influence of a possible concentration of corrosion specific crucial air constituents on the investigated steel grades, a series of sample surfaces were freely exposed to the we ather while other samples were protected from direct rain in a covered area. The parallel investigation of four different surface finishes (cold rolled, dry grinded, electro-polished, blasted) of the respective alloys also made it possible to take account of the specific influences and features of the surface finish during the material comparison. On the basis of the results of the natural exposure tests, conclusions were drawn about the influence of the alloy composition, the surface finish and the exposure time under maritime conditions. The samples of the three investigated duplex alloys exhibited the best corrosion resistance under the given maritime environmental conditions over the five-year period, both with and without crevice geometry. Likewise, the molybdenum alloy ferrite 1.4521 could achieve comparable corrosion resistance as the austenitic standard materials 1.4301 and 1.4404. The results on the freely exposed surfaces showed, that due to the washing effect the influence of the exposure time on the corrosion of the samples is low while the particular surface finish has a great influence on the overall corrosion behavior of the stainless steels. Thus, the electro-polished surfaces showed few signs of corrosion while the blasted surfaces exhibited very poor corrosion behavior. In the case of the covered specimens, the respective material-specific corrosion resistance as well as the exposure time have a significant influence on the corrosion behavior while the surface finishes were of marginal importance. T2 - EuroCorr 2017 CY - Prague, Czech Republic DA - 03.09.2017 KW - Corrosion KW - Maritime atmosphere KW - Stainless steel PY - 2017 AN - OPUS4-41859 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, Anja A1 - Kranzmann, Axel T1 - Potential of martensitic stainless steel X5CrNiCuNb 16-4 as pipe steel in corrosive CCS environment N2 - Pipe steels suitable for carbon capture and storage technology (CCS) require resistance against the corrosive environment of a potential CCS-site (heat, pressure, salinity of the aquifer, CO2-partial pressure). X5CrNiCuNb16-4 has been proven to be sufficient resistant in corrosive environments, but shows rather unusual corrosion behaviour in CCS environment. Therefore differently heat treated coupons of 1.4542 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h - 8000 h in an a) water saturated supercritical CO2 and b) CO2-saturated synthetic aquifer environment similar to on-shore CCS-sites in the Northern German Basin. Additionally fatigue tests were performed via push-pull tests with a series of 30 specimens was tested at stress amplitudes between 150 MPa and 500 MPa (sinusoidal dynamic test loads, R=-1; resonant frequency ~ 30 Hz). Best corrosion resistance in the liquid phase is achieved via normalizing prior to exposure and hardening+tempering at 670 °C leads to lowest corrosion rates in the supercritical phase. With no regard to atmosphere discontinuously ellipsoidal surface corrosion regions appear after exposure of 4000 h and more. The endurance limit of X5CrNiCuNb16-4 measured in air is reduced by more than 50% when exposed to CCS environment (maximum number of cycles (10 x 106) at a stress amplitude of 150 MPa) The scatter range TN = 1:34 is disproportionately large contributing to an overall unusual corrosion behaviour. KW - Corrosion KW - CCS KW - Carbon storage KW - Aquifer KW - Heat treatment KW - Fatigue KW - Endurance limit PY - 2017 DO - https://doi.org/10.18178/ijesd.2017.8.7.998 SN - 2010-0264 VL - 8 IS - 7 SP - 466 EP - 473 AN - OPUS4-41863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -