TY - CONF A1 - Rhode, Michael A1 - Erxleben, Kjell A1 - Kaiser, Sebastian A1 - Kannengießer, Thomas T1 - Standardization and examples for R & D activities on hydrogen technologies with respect to testing procedures in Germany N2 - This contribution briefly summarizes the standardization activities in accordance with the "Nationale Roadmap Wasserstofftechnologien" and presents selected results on the activities in Germany with scope on hydrogen transport in pipelines. The talk was given during a panel discussion to set-up a steering committee for standardization for hydrogen pipelines and welding , coordinated by the International Institute of Welding. T2 - IIW Annual Assembly, Meeting of Commission XI CY - Singapore DA - 19.07.2023 KW - Hydrogen KW - Welding KW - Pipelines KW - Standardization KW - Research PY - 2023 AN - OPUS4-57976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Richter, Tim A1 - Erxleben, Kjell A1 - Schröpfer, Dirk A1 - Witt, Julia A1 - Özcan-Sandikcioglu, Özlem A1 - Kannengießer, Thomas T1 - Processing and application properties of multiple principal element alloys (MPEA) N2 - The presentation gives an overview of BAM's activities on processing influences and application properties of MPEAs in the form of joined and machined high and medium entropy alloys (CoCrFeMnNi and CoCrNi). In the case of welding, the focus is on defect-free welded joints with sufficient mechanical properties. In the case of machining, the focus is on the possible influence on the surface quality of the materials through adequate milling parameters. In addition, the hydrogen absorption and diffusion properties as well as the electrochemical corrosion behavior are fundamentally examined. T2 - FAU-Department Werkstoffwissenschaften, Seminar: Aktuelle Probleme der Werkstoffwissenschaften CY - Erlangen, Germany DA - 25.04.2024 KW - Welding KW - Application properties KW - Machining KW - High-entropy alloy KW - Hydrogen PY - 2024 AN - OPUS4-59975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Joining technologies for hydrogen components: current need and future perspectives N2 - The study provides an overview of the aspects of joining and its importance in manufacturing of components for the more and more important field of hydrogen as key factor for the energy transition to a decarburized future. To this end, the fundamentals of the technology fields of hydrogen production, storage, transport, and application are presented and the state of the art of manufacturing of components for hydrogen technologies by joining is summarized. Based on representative examples from practice, research and development, the importance of joining technology in hydrogen technologies is clearly highlighted and perspectives for the future are derived. From a macroeconomic perspective, the focal points, or trends of joining technologies here include: the erection of new infrastructure for hydrogen storage and transport, and the safe conversion of existing natural gas infrastructure and its challenges for welded materials. In addition, we show the problems that are anticipated with in-service repair welding of hydrogen pipelines. In hydrogen applications, the efficient mass production of fuel cells and electrolysers is becoming increasingly important. For that reason, the importance of additive manufacturing is highlighted. Finally, the challenges for technical regulations and standardization by using hydrogen are shown. T2 - AJP 2023: 3rd International Conference on Advanced Joining Processes 2023 CY - Braga, Portugal DA - 19.10.2023 KW - Hydrogen KW - Infractstructure KW - Joining KW - Welding KW - Research PY - 2023 AN - OPUS4-58674 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Kromm, Arne A1 - Mente, Tobias A1 - Brackrock, Daniel A1 - Czeskleba, Denis A1 - Kannengießer, Thomas T1 - Component test for the assessment of delayed hydrogen-assisted cracking in thick-walled SAW joints for offshore applications N2 - Offshore wind turbines continuously increase in size and weight and demand adequate offshore foundations concepts like monopiles, tripods, or jackets. These components are typically constructed using submerged arc welding (SAW) with high-strength thick steel plates like the S420ML. During welding, the occurrence of delayed hydrogen-assisted cracking (HAC) must be anticipated. HAC is a critical combination of the local hydrogen concentration within a susceptible microstructure under certain mechanical load, i.e., the occurring (welding) residual stresses. The welding sequence of the thick-walled plates complicates the residual stress distribution due to the necessary repeated thermal cycling, i.e., welding seam/layer deposition to fill the joint. For that purpose, SAW with two-wire-technique was used to weld a specially designed and prototype-like mock-up of a real component with a thickness of 50 mm, filled with over 20 passes and a seam length of 1000 mm. Additional welded stiffeners simulated the effect of a high restraint, to achieve critical HAC conditions. The necessity of a minimum waiting time (MWT) before the NDT can be conducted (to exclude HAC) was critically verified by the application of ultrasonic testing of the welded joint at different time-steps of the NDT of up to 48 h after the completion welding. The residual stresses were determined by a robot XRD goniometer. Tensile residual stresses up to the yield limit are found both in the weld metal and in the heat-affected zone. Numerical modeling allowed the qualitative estimation of the hydrogen diffusion in the weld. No noticeable HAC occurrence was identified and confirms the high cracking resistance of the investigated material. Finally, the applicability of the MWT concept should be critically discussed. KW - Hydrogen KW - Cold cracking KW - Minimum Waiting Time KW - Offshore steel grade KW - Component test PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-591981 DO - https://doi.org/10.1007/s40194-023-01658-5 SP - 1 EP - 15 PB - Springer Science and Business Media LLC AN - OPUS4-59198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -