TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - Straße, Anne A1 - Gumenyuk, Andrey T1 - Verfahrensentwicklung für die Prozessüberwachung in der additiven Fertigung - Thermografie N2 - Aktuell werden Prozessmonitoringsysteme in der additiven Fertigung (AM) zur Überwachung der Energiequelle, des Bauraums, des Schmelzbades und der Bauteilgeometrie zumindest im metallbasierten AM schon kommerziell angeboten. Weitere Verfahren aus den Bereichen der Optik, Spektroskopie und zerstörungsfreien Prüfung werden in der Literatur als geeignet für die in-situ Anwendung bezeichnet, es finden sich aber nur wenige Berichte über konkrete Umsetzungen in die Praxis. Die Bundesanstalt für Materialforschung und -prüfung hat ein neues Projekt gestartet, dessen Ziel die Entwicklung von Verfahren des Prozessmonitorings zur in-situ Bewertung der Qualität additiv gefertigter Bauteile in AM-Prozessen mit Laser- bzw. Lichtbogenquellen ist. Verschiedene Verfahren der zerstörungsfreien Prüfung, wie Thermografie, optische Tomografie, optische Emissionsspektroskopie, Wirbelstromprüfung und Laminografie werden in verschiedenen AM-Prozessen zum Einsatz gebracht und die Ergebnisse fusioniert. Die evaluierten Ergebnisse werden mit Referenzverfahren wie Computertomografie und Ultraschall-Tauchtechnik verglichen. Ziel ist eine deutliche Reduzierung aufwändiger und zeitintensiver, zerstörender oder zerstörungsfreier Prüfungen nach der Fertigung des Bauteiles und zugleich eine Verringerung von Ausschussproduktion. Hier wird das Projekt als Ganzes vorgestellt und der Fokus auf verschiedene Methoden der Temperaturmessung mit Hilfe der Thermografie gelegt. Anforderungen an die Messtechnik für verschiedene AM-Systeme werden diskutiert und erste experimentelle Ergebnisse werden präsentiert. T2 - Innotesting 2019 CY - Wildau, Germany DA - 21.02.2019 KW - Additive Fertigung KW - Thermografie KW - Prozessüberwachung PY - 2019 AN - OPUS4-47457 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Mohr, Gunther A1 - Baesso, Ilaria A1 - Straße, Anne A1 - Pittner, Andreas A1 - Pignatelli, Giuseppe A1 - Seeger, Stefan A1 - Nazarzadehmoafi, Maryam A1 - Ehlers, Henrik A1 - Gohlke, Dirk A1 - Homann, Tobias A1 - Scheuschner, Nils A1 - Ulbricht, Alexander A1 - Heinrich, P. A1 - Maierhofer, Christiane T1 - Process monitoring of additive manufacturing of metals - an overview of the project ProMoAM N2 - The project ProMoAM is presented. The goal of the project is to evaluate which NDT techniques or combination of techniques is suited for in-situ quality assurance in additive manufacturing of metals. To this end, also 3d-data fusion and visualization techniques are applied. Additional ex-situ NDT-techniques are used as references for defect detection and quantification. Feasability studies for NDT-techniques that are presently not applicable for in-situ use are performed as well. The presentation gives a brief overview of the whole project and the different involved NDT-techniques. T2 - Workshop od Additive Manufacturing: Process, materials, simulation & implants CY - Berlin, Germany DA - 13.05.2019 KW - Additive manufacturing KW - Process monitoring KW - NDT PY - 2019 AN - OPUS4-48087 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai A1 - Mohr, Gunther A1 - Gumenyuk, Andrey A1 - Straße, Anne A1 - Pittner, Andreas A1 - Günster, Jens A1 - Gornushkin, Igor B. A1 - Pelkner, Matthias A1 - Ehlers, Henrik A1 - Heckel, Thomas A1 - Zscherpel, Uwe A1 - Seeger, Stefan A1 - Bruno, Giovanni T1 - ProMoAM - Verfahrensentwicklung für das Prozessmonitoring in der additiven Fertigung N2 - Verfahren zum in-situ Monitoring der Prozess- und Bauteilparameter sollen Fehlstellen und Inhomogenitäten bereits während der Fertigung nachweisen und zukünftig auch die Regelung der Prozessparameter ermöglichen. T2 - Challenges in Additive Manufacturing: Innovative Materials and Quality Control, Berlin Partner Workshop CY - Berlin, Germany DA - 12.09.2018 KW - Additive Fertigung KW - Prozessmonitoring KW - ProMoAM PY - 2018 AN - OPUS4-46300 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Maierhofer, Christiane T1 - Towards the determination of real process temperatures in the LMD process by multispectral thermography N2 - Due to the rapid thermal cycles involved in additive manufacturing of metals, high internal stresses and peculiar microstructures occur, which influence the parts mechanical properties. To systematically examine their formation, in-process measurements of the temperature are needed. Since the part emissivity is strongly inhomogeneous and rapidly changing in the process, the applicability of thermography for the determination of thermodynamic temperatures is limited. Measuring the thermal radiation in different wavelengths simultaneously, temperature and emissivity can be separated. Here, we present results of a preliminary study using multispectral thermography to obtain real temperatures and emissivities in directed energy deposition (DED) processes. T2 - Thermosense: Thermal Infrared Applications XLIII CY - Online meeting DA - 12.04.2021 KW - Additive Manufacturing KW - Process monitoring KW - Multispectral thermography KW - Laser metal deposition KW - TES KW - LMD KW - Temperature emissivity separation PY - 2021 U6 - https://doi.org/10.1117/12.2587881 VL - 2021 SP - 77 EP - 83 PB - SPIE AN - OPUS4-52516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altenburg, Simon A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Maierhofer, Christiane T1 - In-situ monitoring of a laser metal deposition (LMD) process: comparison of MWIR, SWIR and high-speed NIR thermography N2 - Additive manufacturing offers a range of novel applications. However, the manufacturing process is complex and the production of almost defect-free parts with high reliability and durability is still a challenge. Thermography is a valuable tool for process surveillance, especially in metal additive manufacturing processes. The high process temperatures allow one to use cameras usually operating in the visible spectral range. Here, we compare the results of measurements during the manufacturing process of a commercial laser metal deposition setup using a mid wavelength infrared camera with those from a short wavelength infrared camera and those from a visual spectrum high-speed camera with band pass filter in the near infrared range. KW - Additive Manufacturing KW - Process monitoring KW - Thermography KW - LMD KW - Metal KW - MWIR KW - SWIR KW - NIR PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-516318 VL - 19 IS - 2 SP - 97 EP - 114 PB - Taylor & Francis Group CY - London, UK AN - OPUS4-51631 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Mathematical analysis of the bulging effect in high power laser beam welding of thick steel sheets N2 - The present work is devoted to the mathematical analysis of the bulging effect in high-power laser beam welding of thick steel sheets. The numerical results are based upon experimental results from previous studies, revealing the relationships between the bulging effect, the hot cracking formation, and the distribution of alloying elements in the weld pool. The widening of the molten pool in its middle area is observed for both complete and partial penetration welding of 8 mm - 15 mm thick structural steel sheets. The weld pool shape is extracted from the simulations to evaluate the extent of the necking and bulging of the solidification isotherm and their influence on the hot cracking formation and the mixing behavior of the weld pool. Relying on an earlier numerical study utilizing a fixed keyhole, simulation models considering a dynamic keyhole are developed thereto. The link between the bulge and the studied phenomena is found to be significant. T2 - Beam Technologies & Laser Applications CY - Saint Petersburg, Russia DA - 20.09.2021 KW - Deep penetration laser beam welding KW - Bulge effect KW - Numerical modelling KW - Hot cracking KW - Necking KW - Mixing behavior PY - 2021 AN - OPUS4-53375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical study of the bulging effect in deep penetration laser beam welding N2 - This article is devoted to the study of the bulging effect in deep penetration laser beam welding. The numerical results of the investigations are based upon experimental results from previous studies to reveal the relationship between the bulging effect and the hot cracking formation, as well as the mixing of alloying elements in the weld pool. The widening of the molten pool in its center area can be observed in full penetration as well as in partial penetration welds on 8 mm and 12 mm thick structural steel plates, respectively. The weld pool shape is extracted from the simulations to evaluate the extent of the necking of the solidification line as well as the bulging phenomena and its influence on the hot cracking phenomena. Relying on an earlier numerical study utilizing a fixed keyhole, simulation models considering a dynamic keyhole are developed thereto. Additionally, the mixing behavior of alloying elements during partial penetration is investigated. The link between the bulge and the studied phenomena is found to be significant. T2 - Lasers in Manufacturing Conference 2021 CY - Online meeting DA - 21.06.2021 KW - Deep penetration laser beam welding KW - Welding simulation KW - Solidification cracking KW - Bulging effect PY - 2021 AN - OPUS4-52847 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical study on the formation of a bulging region in partial penetration laser beam welding N2 - A transient three-dimensional thermo-fluid dynamics numerical model was developed to study the formation of a bulging region in partial penetration laser beam welding. The model accounts for the coupling between the fluid flow, the heat transfer, and the keyhole dynamics by considering the effects of multiple reflections and Fresnel absorption of the laser beam in the keyhole, the phase transitions during melting and evaporating, the thermo-capillary convection, the natural convection, and the phase-specific and temperature-dependent material properties up to the evaporation temperature. The validity of the model was backed up by experimentally obtained data, including the drilling time, the weld pool length, the local temperature history outside the weld pool, the process efficiency, and a range of metallographic cross-sections. The model was applied for the cases of partial penetration laser beam welding of 8 mm and 12 mm thick unalloyed steel sheets. The obtained experimental and numerical results reveal that the bulging region forms transiently depending on the penetration depth of the weld, showing a tendency to transition from a slight bulging to a fully developed bulging region between penetration depths of 6 mm and 9 mm, respectively. T2 - The 13th International Seminar "Numerical Analysis of Weldability" CY - Graz - Castle Seggau, Austria DA - 04.09.2022 KW - Laser beam welding KW - Deep penetration KW - Bulge formation KW - Numerical modeling PY - 2022 AN - OPUS4-55719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Meng, Xiangmeng A1 - Karkhin, Victor A1 - Rethmeier, Michael T1 - On the relationship between the bulge effect and the hot cracking formation during deep penetration laser beam welding N2 - Recent studies have confirmed the widening of the weld pool interface, known as a bulge effect, during deep penetration high power laser beam welding. The link between such geometric particularities of the weld pool shape and the hot cracking phenomena is significant. The present work seeks to extend the level of understanding by investigating their relationship. A coupled multiphysics, multiscale numerical framework is developed, comprising a series of subsequent analyses. The study examines the influences of the bulge on the three most dominant effects causing hot cracking, namely the thermal cycles, the mechanical loading, and the local microstructure. The bulge in the weld pool shape forms approximately in the middle of the plate, thus correlating with the location of hot cracking. It increases the hot cracking susceptibility by enhancing the three dominant effects. The numerical results are backed up by experimental data. T2 - 11th CIRP Conference on Photonic Technologies [LANE 2020] CY - Online meeting DA - 07.09.2020 KW - Hot cracking KW - Bulge effect KW - Numerical modelling KW - Laser beam welding KW - Deep penetration PY - 2020 AN - OPUS4-51277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - A decoupling numerical approach for the study of hot cracking formation during high power keyhole mode welding of steel plates with a high sheet thickness N2 - The weld pool dynamics and shape play a fundamental role in keyhole mode welding. The presented work aims the experimental and numerical investigation of the influence of the weld pool characteristics on the formation of hot cracking. The experimental procedure allows recording the molten pool in the longitudinal section of a butt joint configuration of 15 mm thick structural steel and transparent quartz glass by using a high-speed video camera and two thermal imaging cameras. The observations show that the dimensions of the weld pool vary depending on the depth. The regions close to the surface form a teardrop-shaped weld pool. A bulge-region and its temporal evolution are observed approximately in the middle of the depth of the weld pool, where hot cracking appears. A numerical framework including models for the weld pool dynamics, global temperature field, transient stress state, crystal growth, diffusion and macro-segregation and subroutines for their one-way couplings is developed. The numerically obtained and experimentally observed results are in a good agreement. It is shown that the bulge-region leads to a delay in the solidification behavior, increased temporal tensile stresses and accumulation of impurities in the defect region and hence enhance the probability of hot cracking formation. T2 - Colloquium, Dept. Materials Science & Engineering, The Ohio State University CY - Columbus, Ohio, USA DA - 18.10.2019 KW - Keyhole mode welding KW - Weld pool shape KW - Bulge KW - Hot cracking PY - 2019 AN - OPUS4-49339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -